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Summary 
 

We describe a new transform domain-based regularization 
scheme where the sparsity constraint is applied nonlocally 
to a group of windows that have similar signal content. 
Unlike existing regularization methods that work on 
individual overlapping windows, one at a time, our method 
searches the dataset for windows with similar signal 
content to the current window of interest. All such similar 
windows are then put together to form an adaptive window 
block (AWB), adaptive in the sense that all windows within 
the block have similar signal content. The uplift of using an 
AWB is the increased sparsity and low rank structure of the 
true signal within the block when compared to a single 
window. A modified projection onto convex sets (POCS) 
type scheme is then performed on the AWB to regularize 
the data. Since this modified POCS works on adapted 
blocks of windows we call it block adaptive POCS 
(BAPOCS).  Using 3D supershot gathers from both a WAZ 
and NAZ survey from the Gulf of Mexico (GOM) we show 
the significant improvement that can be achieved in the 
RTM image by using our BAPOCS method. 
 

Introduction 
 

Seismic data is inherently redundant and repetitive. Similar 
dips and similar structures appear throughout a dataset due 
to the consistency of the subsurface geology that we are 
trying to image. However almost all existing seismic data 
regularization methods like POCS (Abma et al., 2006), 
anti-leakage fourier transform (ALFT, Xu et al., 2005), 
sparse tau-p (Wang et al., 2014) do not explicitly exploit 
this natural redundancy and repetitiveness, instead all these 
methods work on individual windows, one at a time 
(windows can be 3D, 4D or 5D depending on the 
dimensions of the data). Recently developed nonlocal (NL) 
methods in the field of image processing have shown that 
exploiting redundancy in images, by allowing individual 
windows to communicate and share information can vastly 
improve applications like image denoising and 
reconstruction.  In fact NL methods are considered to be 
the state of the art (Buades et al., 2011) when it comes to 
these applications in image processing. Examples of such 
nonlocal methods include nonlocal means (Buades et al., 
2005), block matching 3D, BM3D (Dabov et al., 2007), to 
name a few.  
 

In this paper we present a method (BAPOCS) where NL-
processing techniques using AWBs are included within a 
well-studied existing seismic data regularization scheme 
(POCS) using the BM3D framework developed by Dabov 

et al. We demonstrate with real data examples the superior 
uplift that can be achieved using our BAPOCS method. 
Although we focus on including NL techniques into the 
POCS scheme, it is relatively straightforward to incorporate 
NL techniques into almost any other transform domain 
based regularization scheme, such as ALFT. 
 

Theory 
 

The underlying assumption in a transform domain (e.g., 
Fourier domain) regularization method is that the true 
signal is inherently low dimensional and compressible in 
the transform domain. Thus it can be effectively separated 
from the regularization noise, which is random and devoid 
of structure, by an L1 inversion using thresholding and 
shrinkage of transform domain coefficients (e.g., POCS, 
ALFT, and Sparse Tau-P). However whether a typical 
seismic dataset with irregular trace distribution, missing 
traces, holes etc. is truly compressive or not in the 
transform domain is debatable. A logical approach then 
would be to try and use schemes that can explicitly enhance 
the sparsity of the seismic data in the transform domain. 
BM3D is a well-known NL technique that attempts to do 
this for natural images to improve thresholding and 
shrinkage-based denoising. In this abstract we describe how 
BM3D’s NL principles are modified and adapted for 3D 
seismic data regularization within a POCS scheme. The 
main steps for a typical 3D supershot receiver patch 
regularization scheme using BAPOCS are described below. 
The method’s applicability to other types of datasets 
(example offset cubes) remains unchanged. 
 

STEP 1: Forming the adaptive window block (AWB) 
 

The key step in our method is the creation of the AWB 
which allows NL processing techniques to be introduced 
into the regularization problem. For the current 3D window 
of interest (Wref) in a supershot gather, a search is 
performed within a user-determined radius around Wref 

(within the same supershot and across neighboring 
supershots) to find other windows of similar signal content. 
The similarity is defined based on the normalized 
Euclidean distance (d) between the window of interest 
(Wref) and other windows (Wother), computed on a low-pass 
filtered version of the windows, as: 

 
 

Computing the similarity on a low-pass filtered version 
ensures that problems due to aliasing are not encountered. 
If the computed normalized distance for the window, Wother, 
is smaller than a user-defined threshold, then Wother is 
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4D Non Local Regularization of 3D seismic data using block adaptive POCS 

included as part of the window block. Once such windows 
are found, they are put together one behind the other (in 
decreasing order of similarity) to create the AWB. Figure 1 
shows the process for 2D windows. In general for 
computation efficiency we limit the number of windows 
included in the AWB to be between 8-10.  Notice that 
unlike the sparse tau-p based supershot regularization 
proposed by Wang et al, 2014, our method can naturally 
incorporate crossshot information.  
 

For a 3D supershot, Step 1 turns a 3D window into a 4D 
window block thus increasing the dimensionality of the 
data. Note that by construction within the AWB the signal 
characteristics are highly similar along the newly 
introduced 4th dimension (window-index dimension in 
Figure 1), thus the true signal has a low rank structure and 
much higher degree of compressibility in the higher 
dimensional Fourier transformed AWB space (4D space) as 
compared to the corresponding lower dimensional Fourier 
transformed single individual window (3D space). In 
essence, the AWB construction ensures, that irrespective of 
the nature of the dataset, transform domain sparsity is 
enhanced to facilitate better thresholding and signal 
recovery.   
 

STEP 2: Block Adaptive POCS (BAPOCS) Iteration  
 

 

Similar to a regular POCS, the regularization stage begins 
by performing an FFT along all axes of the AWB. Unlike 
3D POCS which requires a 3D-FFT for the window, here a 
4D FFT is performed on the window block. Since several 
different windows are simultaneously transformed to the 
Fourier domain as a block, the concept of Collaborative 
Filtering (Xu, 2009) comes into play. Each window within 
the block collaborates with each other to improve the signal 
identification and thresholding task at each POCS iteration. 
For a window block the number of significant coefficients 
needed to represent the data is much smaller than if each 
window was individually transformed to the Fourier 

domain (due to the low frequency dominance along the 
added window dimension). Care is taken during the 
thresholding process that the DC component and the low 
frequencies around the DC component are extracted 
unchanged along the window dimension. This is critical 
because if the AWBs are properly constructed, then the 
dominant basis function along the window axis should be 
around the DC component (representing little to no 
variation along the window axis in the simplified case that 
all windows have the same signal, a monodip event for 
example). Other than this modification, no other changes 
are required to be made for the original POCS iteration 
steps as describes in Abma et al., 2006.  
 

An important part of a regular POCS iteration is the 
selection of an initial threshold and then subsequently 
lowering it with iterations such that more and more 
significant components of the signal are allowed to enter 
the solution.  However for BAPOCS an important 
distinction from regular POCS is that the sparsity is 
enforced on a window-block and not individual windows. 
This makes the choice of the threshold more complicated 
(Li, 2008) both for computation speed as well as quality. 
Following Li, 2008, we use a soft thresholding scheme 
where the local variance of the window block is chosen as 
the soft thresholding parameter. Intuitively this makes 
sense as the local variance of the block is an estimate of the 
interpolation noise within the block that we are trying to 
remove. Also to handle potential blurring effects in the 
reconstruction due to the involvement of multiple windows 
within the block, the soft thresholding scheme is alternated 
with a Wiener Filtering towards the end of the iterative 
process (the final 10-15% iterations).  
 

Once the final POCS iteration of the AWB is complete, we 
obtain a regularized estimate of all the windows that make 
up that block. We make a simplifying choice here and only 
update the primary window of interest (red window in 
Figure 1) as the final solution. However other reconstructed 
windows within the block are maintained in a buffer to aid 
in the construction of AWBs for the next primary window 
of interest.   
 

Figure 2b shows a comparison of the uplift obtained using 
BAPOCS when compared to a regular POCS, 2a, for a real 
shot gather from a WAZ survey (far cable zoom shown) in 
which 85% traces were randomly removed (blue inset box 
in 2a) and reconstruction was attempted. Notice the 
improved continuity of events within the black circles and 
arrows in 2(b) compared to 2(a) as well as the reduction in 
the regularization noise indicated by the green circle and 
the arrows. Notice that for the input decimated data (blue 
inset box), computation of similar windows would be 
difficult and corrupted due to the large number of missing  

             
Figure 1: 3D Adaptive window block construction, 2D windows 
similar (yellow) to the current window (red) are stacked together to 
form a 3D window block, additional dimension is the window-
index. 

© 2017 SEG 
SEG International Exposition and 87th Annual Meeting

Page 4308

D
ow

nl
oa

de
d 

08
/1

8/
17

 to
 2

05
.1

96
.1

79
.2

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



 

traces. In such a case a simple strategy is to run a 20 Hz 
low frequency reconstruction of the gathers with regular 
POCS, construct AWBs as per Step 1 on this initial 
estimate and then begin the step 2 BAPOCS iteration. 
 

Application to RTM imaging 
 

We show the uplift of using BAPOCS on field data by first 
attempting regularization of a shallow water NAZ dataset. 
Figure 3(a) shows the RTM inline image using the 
conventional partial NMO (PNMO) based RTM 
regularization. Notice the improved continuity of shallow 
sediments in the BAPOCS RTM image (3b) in the red box 
and red arrow, sharpening of a steep major fault plane 
(yellow arrow) and sharpening of smaller faults bunched 
together (yellow boxes). In general the swing noise is also 
reduced significantly throughout the section when 
compared to Figure 3a.  
 

 Figure 4a shows an oblique line, also in the sediment area, 
for a WAZ dataset from GOM. Again notice the significant 
improvement in event continuity, noise reduction, increased 
fault plane fidelity for the BAPOCS RTM image (4b) when 
compared to 4a. The depth slices for BAPOCS (Figure 4d) 
through the major faults in the area clearly indicate the 
increase in sharpness as well as reduction in swing noise 
compared to 4c. For this same dataset we now concentrate 
on the subsalt events where a series of dipping events are 
observed (Figure 5a). The dipping structures show breaks 
and unclear imaging in the original RTM (Figure 5a) as 
indicated by the arrows. This breaks in the imaging are also 
clearly seen in the depth slice as well (Figure 5c, yellow 
box).  On the other hand for BAPOCS, the events are 
imaged with improved continuity (Figure 5b) Both 
continuity and amplitude is maintained for the events 
Notice the depth slice for BAPOCS (5d) clearly shows this 
improved continuity that we obtain using our BAPOCS 
regularization scheme. 
 

 
 

Figure 2. POCS reconstruction (a) of the 85% decimated shot gather (blue box) compared to BAPOCS reconstruction (b). 

Figure 3. Stacked RTM image of a shallow water dataset using PNMO based regularization (a) and our method (b). 
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Conclusions 
 

We have described a method that is able to introduce 
nonlocal processing techniques into the problem of seismic 
data regularization. We have shown that allowing local 
windows to communicate with each other using adaptive 
window blocks (AWB), allows signal reconstruction in a 
transform domain to be much easier by improving the 
sparsity as well the low-rank structure of the dataset. RTM 
imaging results for field data regularized with our 
BAPOCS method show the significant uplift that can be 
obtained. In general our method turns a d-dimensional 
regularization problem into (d+1)-dimensional problem by 
creating an added dimension referred to as the window-
dimension. For computational efficiency the number of 

elements (contributing windows) in the added dimension is 
kept small (much smaller than a true 4D seismic 
regularization). Also unlike existing regularization schemes 
for supershots which tend to work on a shot-by-shot basis, 
our nonlocal schemes allows crossshot information to be 
included, increasing the robustness  
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Figure 4. Stacked RTM image (Oblique line) of a WAZ dataset in sedimentary area using PNMO based regularization (a) and our method (b), 
corresponding depth slice at 3.5km (c) and (d). 

Figure 5. Subsalt dipping structures for WAZ Inline RTM image using PNMO regularization (a) and our method (b), corresponding depth slice at 
9.5km (c) and (d). 
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