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Summary 

Amongst other things, rock physics analysis is usually carried out 
for estimating the volume of clay, water saturation and porosity 

using seismic data. Though these rock-physics parameters are easy 

to compute for conventional plays, there are a lot of uncertainties 

in their estimation for unconventional plays, especially where 
multizones need to be characterized simultaneously. We discuss 

them with reference to a dataset from the Delaware basin where the 

Bone Spring, Wolfcamp, Barnett and the Mississippian formations 

are the prospective zones. We elaborate on the challenges and the 
uncertainties in the characterization of these multi-zones, and how 

we overcome them. Our conclusion is that any deterministic 

approach (single rock-physics model) for characterization of the 

target formations of interest may not be appropriate and we build 
the case for adopting a robust statistical approach, comprising a 

graphical crossplot method and employing Bayesian classification. 

While the former makes use of neutron and density porosity data 

for defining the different lithofacies, the latter yields the 
uncertainty associated with the individual lithofacies. In this whole 

exercise, we begin with well-log data and define different 

lithofacies based on the graphical crossplot method. Thereafter, we 

correlate these facies with the interpreted mud-log data available 
for one well. Having gained the confidence in defining the different 

lithofacies, we then determine the lithofacies and their probabilities 

using the seismic impedance inversion attributes. The resultant 

facies seem convincing and correlate well with facies information 
derived from mud-log data interpretation.      

Challenges and uncertainty in the characterization of shale 

formations using rock-physics analysis 

Rock-physics analysis consists of two parts namely modeling and 

inversion. As the names suggest, attempts are first made to model 

the elastic response using mineral fractions, water saturations and 

porosity. Thereafter, rock-physics properties mentioned above are 
extracted using elastic properties computed using seismic 

impedance inversion.   

As per rock physics, the elastic modulus (M) of a rock can be 

expressed as follows 

1

𝑀
= ∑

(1−∅)𝑉𝑖

𝑀𝑖
+

∅

𝑀𝑓𝑙𝑢𝑖𝑑

𝑛
𝑖 .   (1)  

  

where Mi are the ith mineral moduli and Vi are the ith mineral 

volume fraction. 

As can be gauged from the equation above, parameters such as 
mineral volume fraction, water saturation and porosity play an 

important role in the rock-physics analysis. While these parameters 

are relatively easy to estimate for conventional reservoirs, there are 

a lot of uncertainties in their estimations for unconventional 

reservoirs. Some of the challenges are discussed below.   

Uncertainty in the estimation of volume of shale from well-log data 

Based on the fact that shale is usually more radioactive than 

sandstones and carbonates, the gamma-ray log curves are used to 
distinguish shale formations (with higher values) from others. Not 

only that, gamma-ray logs can also be used to determine the 

volume of shale present in a formation. Of course, there are other 

ways of computing the volume of shale from different well-log 
curves, but gamma-ray logs happen to be one of the methods, 

where first gamma-ray index is computed and is then transformed 

into volume of shale using linear or nonlinear empirical 

relationship. The gamma ray index is defined as IGR=(GRlog-
GRmin)/(GRmax-GRmin); IGR represents gamma-ray index, GRlog 

represents the gamma-ray reading at any depth, GRmin represents 

the minimum gamma-ray value which would correspond to clean 

sandstone, GRmax represents the maximum gamma-ray value which 
would correspond to shale. Thus, one needs at least one or more 

points on a clean sand, and similarly some points on a real shale 

rock in the shale interval under investigation.  In the absence of 

such values, the computation could fall apart. For bringing in 
accuracy in such calculations, a linear correction through the use 

of a scalar multiplication has been suggested but results in an 

overestimation of Vsh. Empirical nonlinear corrections have been 

suggested by Larionov (1969), one for Tertiary or younger rocks, 
and another one for older rocks (Asquith and Krygowski, 2004). 

Some other corrections by Stieber (1970) and Clavier (1971) have 

also been proposed. All these corrections result in improved 

estimates in certain situations, but inaccuracies still show up in 
shaly sand formations. However, such empirical corrections have 

the drawback that they require other independent log curves or core 

data for calibration. 

In order to capture the differences among different approaches we 
implement them on well-log data over a 3D seismic volume from 

Delaware Basin. In Figure 1, the sonic, density and gamma-ray 

curves from a well are shown in tracks 1, 2 and 3.  The red curves 

show the input curves as such and the blue curves are their 
smoothed versions, which were used in the computations. In track 

4, the computed volume of shale curve is shown in red, along with 

the scaled curve in blue and the curve with Stieber correction in 

black. Notice the large variations in these curves which will 
introduce discrepancies in the computations they are used in. The 

volume of shale was computed by a petrophysicist by first 

subdividing the curves into five basic zones, with the prominent 

ones being the Bone Spring, Wolfcamp and the 
Barnett/Mississippian intervals.  Next, the minimum and 

maximum values of gamma-ray log in the respective zones were 

picked up.  Finally, the computations of gamma-ray index were 

merged into a single composite curve, shown in track 5. This turns 

out to be different from the other curves shown in track 4. 

Thus, we see there is uncertainty associated with the determination 

of volume of shale depending on the type of method adopted. The 

rule of thumb is to use minimum value of Vsh estimated using above 
approaches or the one which shows the maximum correlation with 

available XRD data. 
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Challenges and uncertainty in the seismic reservoir characterization 

Uncertainty in the determination of water saturation 

Any well-log evaluation for estimation of water saturation in shales 

will depend on the type of shale and its volume. Usually the 

resistivity log is used to estimate the water saturation in the 

undisturbed formations of interest.  As the resistivity in the matrix 
is high, any change in the measured resistivity comes from the fluid 

present in the pores of the formation. Archie’s equation (Archie, 

1952) is an empirical relationship that was derived for clean 

sandstones but works well for some nonclean formations also and 
is usually used to compute water saturation. Even though it remains 

flexible in its use, it needs to be modified for its application to 

shales and carbonates. For nonshaly rocks, it is a good idea to 

consider the volume of shale in the matrix to account for excess 
conductivity.  The Simandoux equation (Simandoux, 1963) does 

that but it remains unclear which equation should be used to 

determine water saturation. 

Uncertainty in the determination of porosity 

In a given formation, if the bulk density (𝜌𝑏) is known (from well-

log data), and the density of the matrix (𝜌𝑚) and the fluid (𝜌𝑓) is 

also known, the porosity of that formation can be calculated as 𝜙 =
(𝜌𝑚 − 𝜌𝑏)/( 𝜌𝑚 − 𝜌𝑓). Usually, a constant value of matrix density 

(sandstone, limestone, dolomite) is used for porosity estimation in 

the above equation. Such an approach works well for conventional 
plays. Besides, in the Delaware Basin, the formations of interest 

(Bone Spring, Wolfcamp, Barnett) represent a series of multiple 

stacked transgressive sequences composed of naturally fractured, 

low-porosity interbedded carbonates, clastic sands, and shales. 
These formations are composed of varying amounts of quartz, 

calcite, dolomite, kerogen and clay minerals (illite, albite and 

pyrite).  Such a mixture of minerals results in grain densities 

varying from 2.5 g/cm3 to 2.7 g/cm3 and pose a major challenge in 
the estimation of porosity, water-saturation and organic richness. 

An uncertainty range of 0.2 g/cm3 can increase the error bar on 

porosity by 6%, which can drastically impact resource estimation 

(Malik et al., 2013). 

Kim et al. (2016) also have shown the importance of matrix density 

in porosity determination in the Horn River Basin in Canada. In the 

presence of gas, the porosity calculated using the equation above 

results in a higher value for the reservoir when the density log data 
is used, as the density calculation itself is affected by the presence 

of gas. This calls for the use of a lower value of fluid density in the 

equation. Even when the ECS (elemental capture spectroscopy)-

determined grain-density log is used, and if any value greater than 
zero is used for fluid density, the porosity computation using the 

above equation results in an overestimated value. This, therefore, 

questions the validity of the equation for the determination of 

porosity in the exercise at hand. 

With the detailed descriptions given above for the challenges and 

the large uncertainties in the estimation of volume of shale, 

porosity and water saturation, an uncalibrated petrophysical/rock-
physics model in the complex depositional environment of the 

Delaware Basin will lead to large uncertainties in the computed 

rock-physics properties. The inherent implication in this 

conclusion is that any deterministic approach adopted for 
characterization of the target formations in the Delaware Basin 

may not be appropriate. We therefore recommend that a statistical 

approach be considered for the purpose. 

 

Following a statistical approach  

In the Delaware Basin, the formations of interest (Bone Spring, 

Wolfcamp, Barnett) represent a series of multiple stacked 

transgressive sequences composed of naturally fractured, low-

porosity interbedded carbonates, clastic sands, and shales. As 
stated above, these formations are composed of varying amounts 

of quartz, calcite, dolomite, kerogen and mainly clay minerals 

(illite, albite and pyrite). It would therefore help to understand the 

different types of facies, and how to identify them in the Delaware 
Basin. The type, volume of shale and effective porosity of a 

formation can be determined using well-log data with a graphical 

crossplot method as has been demonstrated by Ghorab et al. (2008) 

and Alaskari and Roozmeh (2017). The authors attempt to 
distinguish between laminated, dispersed and structural shale types 

amongst other applications. 

The neutron-porosity (𝜙𝑁) and density-porosity (𝜙𝐷) data are 

crossplotted for the shale interval under investigation as shown in 

Figure 2. Three points are marked on this crossplot, namely, point 

F that represents fluid or water point, where 𝜙𝐷 = 𝜙𝑁 = 100%, 
point M that represents matrix point where 𝜙𝐷 = 𝜙𝑁 = 0 (which 

will be true if the neutron and density tools are calibrated), and the 

shale point SH.  The location of SH represents the shaliest segment 

of the well and will vary from one well to another. The porosity 

values on both axes do not exceed 0.5, as these are the maximum 

limit of porosity realizable. The well-data points from 𝜙𝐷  and 𝜙𝑁 

curves entering the crossplot need to be corrected for the presence 

of hydrocarbons. On Figure 2, the well-data points from 𝜙𝐷and 𝜙𝑁 

curves representing clean formations will fall along the line MF, 
and their location will indicate the effective porosity.  Points along 

the line M-SH will have 𝜙𝑒 = 0 and represent the volume of shale 

with zero effective porosity. Based on the characteristics of each 
of the shale types, the data points from the laminated shale will fall 

along or around the line LS-SH, the dispersed shale points along or 

around line DIS, and structural shale points along or around line 

STR. However, in the absence of core samples and their 
descriptions, it may be difficult to confirm any such facies analysis 

that may be carried out. Nevertheless, the above graphical method 

has helped us understand and describe the different facies that we 

assign to the different clusters in 𝜙𝐷  and 𝜙𝑁 crossplot space, 

which we describe in the next section. 

Utilizing a robust statistical approach for characterization of 

unconventional plays 

The 𝜙𝑁 and 𝜙𝐷 logs were picked up for five deep wells (W1-W5) 

covering our broad zone of interest, and crossplotted for the 

interval, Bone Spring to Woodford shale as shown in Figure 3. The 

cluster of data points are colour coded with resistivity.  Two 

different trends, one corresponding to the carbonates and the other 
corresponding to the shales are seen on the crossplot.  Based on the 

interpretation of Figure 2, the points close to the apex M and SH 

must be coming from limestone matrix and shaly formations 

respectively. Points along the clean carbonate formation line have 
been interpreted as tight limestone, moderate-quality limestone and 

high-quality limestone. Additionally, points along the line MSH 

have been interpreted as coming from shaly-limestone, limy-shale 

and clay-rich shale. Similarly, the points along line SH-LS are 
interpreted as coming from organic-rich shale.  We confirm our 

observation that three different facies enclosed by the polygons in 

cyan, yellow and yellowish-green are representing the Bone Spring 

formation, which agrees with a similar conclusion arrived at by 
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Challenges and uncertainty in the seismic reservoir characterization 

Franseen et al. (2016).  The clay-rich shale and the organic-rich 
shale facies seem to be coming from the Barnett to Mississippian 

interval. The shaly-limestone and limy-shale facies are observed 

within the Wolfcamp zone. 

Next, we pulled out the mud-log interpretation available for one 
well and tried to seek out the facies for each of the individual 

intervals that we have interpreted. In Figure 4 we show how the 

well log-derived facies (siliceous mudstone) compares to the mud 

log interpretation. Favorable comparisons were noticed for all the 
well-defined facies which lent us confidence in the facies we had 

defined. As we are trying to characterize the different facies from 

well data between Bone Spring and Mississippian markers using 

different polygons, it is possible that a wide range of values within 
each polygon may represent the same facies. Understandably, the 

cluster points closer to the center within each polygon for the same 

facies should be more probable than the points away from the 

center. Consequently, we can follow an approach that accounts for 
the uncertainties associated with the different facies. This work 

follows the Bayesian classification approach and provides a facies 

model reflecting the quality of the lithounits and a related 

uncertainty analysis. For executing the Bayesian approach, the 

different facies were defined based on the cut off values of 𝜙𝐷 and 

𝜙𝑁  well curves for the broad zone from Bone Spring to 

Mississippian.  The eight facies as interpreted earlier, and their 

probability density function (PDF) are shown by the different 

colored ellipses in Figure 5a. Once this was done, the next question 
we tried to address was if it is possible to see such 

lithoclassification in the crossplot space of seismically derived 

attributes. For doing so, various combinations of parameters such 

as (P-impedance vs VP/VS, S-impedance vs rho, Lambda-rho vs 
Mu-rho, etc.) were considered.  The commonly used crossplot of 

P-impedance vs VP/VS is shown in Figure 5b. Notice the excessive 

overlap and thus the complication of defining different facies in the 

elastic parameter domain. Thus, we conclude that the 𝜙𝑁 and 𝜙𝐷 

are essential for the characterization of our zone of interest, and we 

need to derive them from seismic data. In most cases, as 𝜙𝐷 is 

derived from density data, it might be a good approach to compute 

the density attribute from seismic data first and then transform it 
into density porosity.  The density estimation from seismic data 

requires either data with large offsets or multicomponent seismic 

data, and both these were not available. A neural-network approach 

(multiattribute regression analysis) is an alternative way for 
computation of density (Sharma et al., 2018). In this exercise 

considering the availability of sparsely-uniform well control in 

terms of 𝜙𝑁  and 𝜙𝐷log curves over the 3D seismic volume, we 

turned to a multiattribute regression approach to achieve our goal 

of obtaining 𝜙𝑁 and 𝜙𝐷 from seismic data. An optimal number of 

attributes along with operator length which exhibit the minimum 

validation error were selected for predicting the density and 

neutron porosities volume. The seismic attributes used in the neural 
networks are Poisson’s ratio, E-rho, relative impedance, absolute 

P-impedance, S-impedance, and a filtered version of the input 

seismic data.  

A representative crossplot from the predicted 𝜙𝐷 and 𝜙𝑁 volumes 

along an arbitrary line that passes through different wells are 

shown in Figure 6a.  An equivalent crossplot from the well-log data 

is shown in Figure 6b. A striking similarity is seen between the two 
crossplots, which lends confidence in the approach that has been 

used. Further, using the Bayesian classification PDFs for each of 
the facies generated earlier, we generated the facies volume and 

their probability volume. A representative section through the 

facies volume passing through the different wells is shown in 

Figure 7. We notice straightaway that the carbonate content in 
Bone Spring increases as we go from the western to the eastern part 

of the line, which is as per our expectation and geological 

knowledge of the area. A clay-rich shale facies seen on the upper 

part of the Barnett, organic-rich shale seen on the lower portion of 
the Barnett, which might be prospective, and limy-shale and shaly-

lime facies are seen in the interval from Wolfcamp to Barnett. In 

the Bone Spring interval, we notice a mix of tight limestone, 

calcareous mudstone and siliceous mudstone. The yellow color 
representing the siliceous mudstone seen on the western side of 

Wolfcamp is probably the production zone being tapped at the 

present time. To gain confidence in the facies analysis described 

thus far, we sought the available mud-log data for the other wells 
on the 3D seismic volume. We overlay the lithostrips obtained for 

two of the wells over this section. Notice the one-to-one correlation 

between the shale noticed in the Barnett, Wolfcamp units and more 

calcareous and siliceous mudstone with tight limestone in the Bone 
Spring interval. The presence of siliceous mudstone in the 

Wolfcamp unit on the well to the west correlates well with the 

prospective zone (green arrow) we interpreted based on the seismic 

facies analysis. Similarly, we notice more carbonate in the Bone 
Spring (light blue arrow) in the well to the east. The presence of 

shaly-lime (with more carbonate content) and limy-shale (little 

carbonate) correlates well with the mud-log lithostrip indicated 

with magenta and orange arrows. Such correlation between the 
seismic facies and the independent information coming from the 

mud-log records lends confidence in the analysis carried out. The 

probability volume also showed good corroboration. 

Conclusions 

We have tried to highlight the uncertainties in the estimation of 

volume of shale, water saturation and porosity from well-log data 

for unconventional reservoirs. In view of these uncertainties, we 

suggest that any deterministic approach for characterization of the 

target formations may not be appropriate and that a robust 

statistical approach should be adopted. For doing so we first 

demonstrate the interpretation of different types of lithofacies that 

could be carried out on a crossplot of 𝜙𝐷against 𝜙𝑁 from well log 

data and take it forward to execute a Bayesian classification 

approach using cut off values of 𝜙𝐷and 𝜙𝑁 for different facies in 

the broad zone of interest from Bone Spring to Mississippian. Once 

the 𝜙𝐷and 𝜙𝑁 attributes were determined from seismic data with 

the help of neutral networks, seismic lithofacies volume was 

generated which showed good correlation with the lithofacies 

interpretation carried out on mud log data. Such a robust statistical 

approach holds promise for its application in unconventional plays. 
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Figure 1: The sonic, density and gamma ray curves

from a well in the Delaware Basin are shown in

tracks 1, 2 and 3. The volume of shale curves

corrected using scaling and Stieber corrections are

shown in track 4. The volume of shale was

computed by a petrophysicist by first subdividing

the curves into three basic zones, namely the Bone

Spring, Wolfcamp and the Barnett/Mississippian

and the computations of gamma ray index were

merged into a single composite curve, shown in

track 5.

Smoothed
data

Input data

Figure 2: Crossplot between 𝜙𝑁 and 𝜙𝐷 for

the formation interval of interest. The triangle

shown between the shale point, matrix point

and the fluid/water point can be used

estimating the type of shale, volume of shale

and effective porosity in the interval of

interest.

Figure 3: Crossplot between neutron-

porosity and density-porosity for the litho-

interval Bone Springs to Mississippian. The

data points are coloured based on the

resistivity values. Based on the information

gathered so far, we assign the nomenclature

to the cluster points as shown.

Figure 5: (a) Crossplot of P-impedance vs

VP/VS, showing that it would be easy to

distinguish between different lithologies

(carbonate, sand and shale), but may be
difficult to differentiate between shale characteristics, which might be useful for well

completion processes. (b) Interpretation of litho-classification based on well log neutron

and density porosity by restricting their values. The probability density functions for the

individual clusters are also shown overlaid.

Figure 4: Interpretation of litho-column

(siliceous mudstone) for well W1 based on the

litho-classification carried out as shown in

Figure 3.

Figure 6: Equivalent crossplots of neutron-

porosity and density porosity for the Bone

Springs to Woodford shale interval from (a)

seismically-derived data, and (b) well data.

Figure 7: An arbitrary line passing through

six different wells extracted through the

facies volume. The gamma ray curves are

overlaid on the display. The lithostrips

obtained for two wells are overlaid on the

display. One-to-one correlation is noticed

between the shale in the Barnett and

Wolfcamp and more sand and limestone in

the Bone Spring interval. Also, more

limestone content is notice towards the right,

which is closer to the Central Basin Platform.

(Data courtesy: TGS, Houston)
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