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Coherent and incoherent seismic noise complicates the analysis of seismic data and attenuation of this 

noise is one of the primary objectives of seismic data processing prior to imaging. Seismic noise often 

varies in space as well as in frequency and time, which can be exploited for noise removal. Here, we 

present a novel noise attenuation method that makes full use of these properties. The new method 

combines a short time Fourier transform, an extension of the vector median filter to complex numbers, 

an efficient thresholding method, and a fast dip scan in the frequency domain. This novel method allows 

the exploitation of variability in seismic noise inside a single process and the attenuation of seismic noise 

all the way to the spatial alias frequency. This paper introduces the new noise attenuation method with 

a special focus on the extension of the vector median filter. It then demonstrates the effectiveness of 

the new processing algorithm for low and intermediate frequency noise attenuation using a field data 

example from offshore Namibia. The new noise attenuation method facilitates imaging of deep crustal 

reflectors crucial to meeting the imaging objectives. 
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Introduction 

 

Seismic data always comprises both signal and noise; seismic data processing usually concerns itself 

with the competing objectives of conserving the desired signal whilst attenuating the undesired noise. 

One approach to seismic noise attenuation exploits time and frequency differences between signal and 

noise (e.g. primary and multiple arrivals or interfering seismic sources) and the incoherency of the 

seismic noise in a specific domain (e.g. swell noise in receiver domain). While these properties can be 

exploited for effective noise attenuation (e.g. Elboth et al. 2010; Gulunay 2008), time-frequency noise 

attenuation has received relatively little attention as compared to other noise attenuation techniques. 

 

Vector median filtering (Kasparis and Eichmann 1987; Astola et al. 1990), an efficient noise 

attenuation algorithm, has recently been applied in seismic data processing (Huo et al. 2012; Liu, 

2013; Zhang et al., 2013). Since this new algorithm promises improved results compared to 

conventional median filters, this new methodology merits further research. However, previous studies 

have focused on the time or frequency domain application of the vector median filter (VMF) and to 

our knowledge no attempt has been made to extend this method to the time-frequency domain. 

 

In this study, we present a novel time-frequency noise attenuation method based on an extension of 

the VMF. While previous work focused on the application of the VMF to real numbers in the time 

domain, the method has been recently extended to filtering complex numbers, which allows noise 

attenuation in the frequency domain (Perez Ortega 2017). Furthermore, combining this complex VMF 

with a short-time Fourier transform (Gabor 1946) has allowed attenuating noise in specific frequency 

bands and specific time windows (Perez Ortega, 2017). Here, we present the extension of the time-

frequency VMF with a fast-dip scan that honours the local dip of events in the seismic data. This 

modification allows noise attenuation in spite of spatial aliasing. Additionally, we have introduced an 

effective thresholding scheme, which prevents primary damage during noise attenuation.  

 

We start this paper with a review of the frequency and time-frequency VMF and describe how the 

algorithm has been improved using a fast dip scan and thresholding method. We then apply the 

method to a field dataset from offshore Namibia and effectively attenuate swell and other low 

frequency noise. Last, we finish with a short discussion and conclusion. 

 

Vector median filter for complex numbers 

 

The VMF (Kasparis and Eichmann 1987; Astola et al. 1990) is an improvement over the conventional 

median filter, because it processes the information not as individual samples, but as vectors and 

exploits the correlation between signal components. The VMF was introduced to seismic processing 

by Huo et al. (2012) and Liu (2013). Unlike the conventional sort-based median filter, the VMF is 

based on the sum of distances between adjacent time-windowed traces around a central sample: 

𝐷(𝑿𝑗) =  ∑‖𝑿𝑗 − 𝑿𝑖‖.

𝑁

𝑖=1

 (1) 

Here, 𝑿 denotes a real vector of seismic samples in a time window and the indices 𝑖 and 𝑗 refer to 

seismic traces in a spatial window. The median corresponds to the vector with the smallest distance 

value 𝐷 (Huo et al. 2012; Liu 2013). We extend this distance function by replacing the real vector 

with a complex vector 𝒁. Instead of filtering the time samples, we apply a Fourier transform and 

apply the filter to the complex samples (Zhang et al. 2013). The distance function then becomes: 

𝐷(𝒁𝑗) =  ∑‖𝒁𝑗 − 𝒁𝑖‖

𝑁

𝑖=1

. (2) 

The median value can be derived using: 

𝒁𝑚 =  argmin
𝒁𝑗

𝐷 (𝒁𝑗). (3) 

Without any further modifications, the complex median allows low frequency noise attenuation in the 

frequency offset domain.  



 

 

80th EAGE Conference & Exhibition 2018 

11-14 June 2018, Copenhagen, Denmark 

This frequency-offset VMF works well for flat seismic structures and low frequencies. However, 

seismic events usually have significant moveout associated with them and application of the above 

filter may damage these events. Huo et al. (2012) recognized this problem and solved it using a time-

domain dip scan. However, in the frequency domain such a dip scan is not feasible.  

 

To implement a complex VMF that honours the dip of seismic events, we first transform the data into 

the time-frequency domain using a short-time Fourier transform (Gabor 1946). This transform 

converts each seismic trace into a time-frequency matrix, where each column holds a frequency vector 

for a constant time. We then apply the VMF to each column of this matrix separately yielding a time-

frequency VMF. Having transformed each seismic trace into the time-frequency domain, a dip scan 

can be implemented using a frequency domain time shift for each column of the time-frequency 

matrix. After applying a range of trial moveouts, we can find the vector median for all adjacent traces 

and moveouts. With this modification the distance can be defined as: 

𝐷(𝒁𝑗(𝑝)) =  ∑‖𝒁𝑗(𝑝) − 𝒁𝑖(𝑝)‖.

𝑁

𝑖=1

 (4) 

Here, the indices 𝑖 and 𝑗 refer to seismic traces and 𝑝 denotes a trial moveout. The median can be 

found by finding the smallest distance for all adjacent traces and all trial moveouts. 

𝒁𝑚 =  argmin
𝒁𝑗(𝑝)

𝐷 (𝒁𝑗(𝑝)). (5) 

Last, we point out that it is a common problem for noise attenuation algorithms to be overly 

aggressive in some parts of the data. This effect can be mitigated using a threshold. Therefore, we 

only apply the filter, if the absolute value of the unfiltered data is significantly larger than the absolute 

value of the filtered data. This procedure leaves small variations intact and only targets anomalous 

variations.  

 

Low frequency noise attenuation using the vector median filter 

 

In the following section, we will use the new filter for noise attenuation along a 2D seismic line 

acquired offshore Namibia. The seismic data is part of a large 2D seismic survey and a description of 

the local geology is given by Hodgson and Rodriguez (2017) and Intawong and Hodgson (2017). The 

2D line used in this study consists of 3555 shots acquired with a shot spacing of 25 m. The shots were 

recorded on 480 receivers with a trace spacing of 12.5 m and the total record length was 8.2 s. While 

the data were processed using a broadband processing sequence all the way to pre-stack time 

migration, this study focuses on the early part of the processing flow (i.e. noise attenuation). Prior to 

noise attenuation only minimal processing was required (navigation merge and trace editing). 

 

The low frequency noise attenuation sequence used in this study included a Fourier transform and two 

passes of frequency VMF. We started by applying a frequency domain VMF to common channel 

records from 0 to 8 Hz and to common mid-point gathers from 0 to 6 Hz. The lower cut-off frequency 

was chosen, because the common mid-point gathers exhibit more dip than the common channel 

records. The spatial window width was 23/11 traces for common channel/mid-point records and the 

frequency window width was 0.3 Hz. This effectively attenuated most of the low frequency swell 

noise visible in the seismic records.  

 

To attenuate higher frequency noise, we applied a Gabor transform followed by a time-frequency 

VMF between 0-60/0-30 Hz for common shot/receiver records. The cut-off frequency corresponds to 

the spatial alias frequency for a trace spacing of 12.5 m in the shot domain and 25 m in the receiver 

domain. The spatial window with was 11/7 traces and the frequency window width was 40/22 Hz for 

the common shot/receiver gathers. The larger frequency window width for the time-frequency method 

as compared to the frequency method was due to the coarse frequency sampling of the Gabor 

transform compared to the Fourier transform. The time-frequency VMF included a dip-scan using 11 

velocities between -1.5 km/s and +1.5 km/s. The low frequency noise attenuation sequence was 

completed by applying a high-pass filter with a low-cut frequency of 2 Hz and a slope of 18 dB. 
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The results of the new noise attenuation workflow are shown in Figure 1. Seven shot gathers show the 

effect of applying our processing sequence (Figures 1a-c). Most of the low frequency noise has been 

effectively attenuated. The small primary damage to the direct wave energy (Figure 1c) caused by the 

high-pass filter is negligible, since the direct wave is removed in a subsequent processing step. We 

stress that, although noise attenuation was applied all the way to 60 Hz, no high frequency primary 

signal was attenuated. Last, the residual low frequency noise visible in the filtered data (Figures 1b) is 

related to the threshold used to mitigate primary damage. 

 

 
Figure 1 Low frequency noise attenuation using frequency and time-frequency VMF. Figures a and b 

show seven shots gathers before and after application of the noise attenuation processing flow. The 

maximum offset recorded for each shot is 6 km. Figure c shows the removed seismic energy. Figures d 

and e show brute stacks before and after noise attenuation and Figure f the removed seismic noise. 

The black arrows mark a deep reflector. All data were high-pass filtered with a 2 Hz low-cut and a 

linear gain was applied with time. 

 



 

 

80th EAGE Conference & Exhibition 2018 

11-14 June 2018, Copenhagen, Denmark 

To illustrate the effect of low frequency noise on the seismic image, we stacked the seismic data 

before and after noise attenuation using a one dimensional stacking velocity function (Figures 1d-f). 

The vertical stripes (Figure 1e) are related to high frequency reverberations and are handled at a later 

processing step. In general, low frequency noise attenuation has considerably improved the seismic 

image. In particular, the dipping reflector around 6 s was hardly visible underneath the noise and is 

clearly visible after noise attenuation. 

 

Discussion and Conclusion 

 

In this paper, we have presented an extension of the VMF to the time-frequency domain. This 

extension allows attenuating noise that varies with both time and frequency. A comparison with other 

noise attenuation methods is not included due to a lack of space, but our method performed at least as 

good as these other methods. Furthermore, an efficient dip scan has allowed us to apply the VMF 

filter all the way to the spatial alias frequency. This extension is a major improvement over the time 

domain VMF, since an implementation of a dip scan in the time domain would require pre-filtering 

the input data to protect against spatial aliasing. In contrast, the time-frequency implementation allows 

targeting a specific frequency band at a specific time. Finally, we want to stress the flexibility of the 

VMF framework, which can be handle complex or hypercomplex numbers. 
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