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Summary 

 

Seismic attributes are an invaluable aid in the interpretation of 

seismic data.  Different attributes are derived for different 

purposes.  For example there are discontinuity attributes for fault 

interpretation, impedance and AVO-derived attributes for 

lithology interpretation, spectral decomposition frequency 

volumes to quantify tuning effects and help identify hydrocarbons, 

and many others. Extracting all the potential information hidden in 

the seismic data using a single attribute almost never occurs.  

Therefore a combination of attributes or multiattribute analysis is 

carried out to gauge more information overall than what is possible 

with any one attribute 

. 

When attempting multiattribute analysis usually attributes of a 

similar kind are used, i.e. coherence and curvature attributes for 

fault interpretation, or impedance, lambda-rho, mu-rho, or other 

similar kind of attributes for lithology or fluid interpretation.  

However, in doing so we may be limiting ourselves to a subset of 

the information, say structural vs. stratigraphic. There are several 

ways of combining multiple attributes, with visualization in RGB 

and HLS color space coupled with transparency being one of the 

more powerful means. Unfortunately, such color display is limited 

to three and with transparency four attributes. One of the methods 

commonly used for this purpose is principal component analysis, 

which essentially ‘churns’ the different attributes and yields one or 

two volumes that represent the maximum variation in the input 

attributes. Such analysis reduces redundancy but projects the 

interpreter into mathematical vs. physical space, such that the 

resulting images can be difficult to understand. We present the 

results of our investigation into the combination of attributes that 

should be used for such an analysis. 

 

Introduction 

Principal component analysis (PCA) is a useful statistical 

technique that has found many applications including image 

compression and pattern recognition in data of high 

dimensionality.  We are familiar with the usual statistical measures 

like mean, standard deviation and variance, which are essentially 

one-dimensional.  Such measures are calculated one attribute at a 

time with the assumption that each attribute is independent of the 

others.  In reality, many of our attributes are coupled through the 

underlying geology, such that a fault may give rise to lateral 

changes in waveform, dip, peak frequency, and amplitude. Less 

desirably, many of our attributes are coupled mathematically, such 

as alternative measures of coherence (Barnes, 2007) or of a suite 

of closely spaced spectral components. The amount of attribute 

redundancy is measured by the covariance matrix. The first step in 

multiattribute analysis is to subtract the mean of each attribute from 

the corresponding attribute volume. If the attributes have radically 

different units of measure, such as frequency measured in Hz, 

envelope measured in mV, and coherence without dimension, a Z-

score normalization is required. The element Cmn of an N by N 

covariance matrix is then simply the cross-correlation between the 

mth and nth scaled attribute over the volume of interest. 

Mathematically, the number of linearly independent attributes is 

defined by the value of eigenvalues and eigenvectors of the 

covariance matrix. The first eigenvector is a linear combination 

that represents the most variability in the scaled attributes. The 

corresponding first eigenvector represents the amount of 

variability represented. Commonly, each eigenvalue is normalized 

by the sum of all the eigenvalues, giving us a percentage of the 

variability represented.   

 

Covariance matrices are routinely used by marketers to identify 

trends. For example, if you just order 24 baby bottles online, the 

good people at google will soon present you with a pop-up panel 

to buy baby diapers and adult sleep aids, fleshing out the first 

eigenvector of a new parent. While the computation of 

multiattribute eigenvectors and eigenvalues does not provide the 

same physical insight into the data as multiattribute display, it does 

reduce the number of attributes used for subsequent analysis. For 

this reason principal component analysis is the first step in 

“fancier” clustering techniques such as self-organizing maps, 

generative -topographic maps, and support-vector machine 

analysis. 

 

By convention, the first step is to order the eigenvalues from the 

highest to the lowest.  The eigenvector with the highest eigenvalue 

is the principal component of the data set (PC1); it represents the 

vector with maximum variance in the data and also represents the 

bulk of the information that would be common in the attributes 

used.  The eigenvector with the second-highest eigenvalue, called 

the second principal component, exhibits lower variance and is 

orthogonal to PC1.  PC1 and PC2 will lie in the plane that 

represents the plane of the data points.  Similarly, the third 

principal component (PC3) will lie in a plane orthogonal to the 

plane of the first two principal components.  In the case of N truly 

random attributes, each eigenvalue would be identical, and equal 

to 1/N. Since seismic attributes are correlated through the 

underlying geology and the band limitations of the source wavelet, 

the first two or three principal components will almost always 

represent the vast majority of the data variability.    

 

Saleh and de Bruin (2000) demonstrated the extraction of AVO 

attributes from distorted offset-dependent amplitudes, and went on 

to show that these attributes were more robust displaying improved 

ability to identify fluid effects. 

 

Tingdahl and Hemstra (2003) discussed the estimation of fault 

orientation using principal component analysis on seismic 

attributes such as dip, azimuth, coherence, or meta-attributes 

derived from the others.  All the considered attributes have a 

common property in that they have high values at the position of 

the faults and exhibit low vales elsewhere. 
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Churning seismic attributes with principal component analysis 

 
Singh (2007) discussed the application of principal component 

analysis on AVO-derived attributes for lithofacies discrimination 

and fluid detection.  In particular this study found that PC2 was a 

robust discriminator of lithofacies in comparison with other 

attributes such as acoustic impedance, shear impedance and other 

attributes derived from a combination of these two attributes. 

 

Guo et al. (2009) compute 86 spectral components ranging from 5 

to 90 Hz using a matching pursuit technique described by Liu and 

Marfurt (2007).  Next PCA was performed on the 86 spectral 

components by forming an 86x86 covariance matrix.  Thereafter, 

the covariance matrix is decomposed into 86 eigenvalue-

eigenvector pairs.  They found that the first 3 components account 

for most of the spectral variance seen along the horizon of interest, 

with the remaining components accounting for about 17 percent of 

the data variance.  This way the dimensionality reduction was 

brought down from 86 to 3. 

 

The choice of the attributes that are selected for the principal 

component analysis would of course be dependent on the goal of 

the exercise that has to be performed.  For the applications 

mentioned above, the work carried out by Tingdahl and Hemstra 

(2003) focused on the fault orientations, and so the choice of the 

attributes input into the exercise were all that had some kind of 

definition of the faults.  The facies determination exercise by Singh 

(2007) used the AVO attributes, but since the fluid discrimination 

was the objective, the PC2 component was the component showing 

variability above the background represented by PC1.  Similarly, 

the spectral components analysis done by Guo et al. (2009) uses 

the frequency volumes generated by spectral decomposition of the 

seismic data to generate eigenspectra (spectra that best represent 

the response within the zone of interest).  Interestingly, sometimes 

we see such analysis carried out on disparate input datasets, 

comprising the discontinuity attributes and the lithology attributes.  

There might be merit in arguing that the two separate classes of 

attributes would bring different characteristics into the ‘pot 

ingredients’ that could be churned beneficially.  This is the 

motivation for the present work. 

  

We have tried to compare the first (PC1) and the second (PC2) 

principal component displays using a varied mix of the input 

attributes, comprising the following attributes amongst others. 

 

Discontinuity attributes: Coherence and curvature attributes are 

commonly used for interpreting faults, fractures, reef edges, 

channels, etc. (Chopra and Marfurt, 2007). Coherence, most-

positive curvature (long-wavelength), most-negative curvature 

(long-wavelength), most-positive curvature (short-wavelength), 

most-negative curvature (short-wavelength), are the commonly 

used discontinuity attributes. 

 

Sweetness attribute: Is usually considered a sand/shale indicator.  

Itself a “meta-attribute” sweetness is defined as the amplitude 

envelope divided by the instantaneous frequency, the sweetness 

attribute exhibits high values of sweetness for hydrocarbon-

saturated sands.  This would be because the presence of 

hydrocarbons enhances the amplitude envelope and lowers the 

frequency somewhat in Tertiary basins (Hart, 2008). 

 

GLCM texture attributes: (energy, entropy and homogeneity): 

GLCM (grey-level co-occurrence matrix) texture attributes are 

useful for the determination of seismic facies analysis. GLCM 

energy is a measure of textural uniformity in an image, GLCM 

entropy is a measure of disorder or complexity of the image, and 

GLCM homogeneity is a measure of the overall smoothness of the 

image.  More information on these attributes can be found in 

Chopra and Alexeev (2005) and Yenugu et al. (2010).   

 

Spectral decomposition: frequency attributes (spectral magnitude 

components, peak frequency, peak magnitude). Spectral 

decomposition refers to the transformation of seismic data into 

individual frequency components within the seismic bandwidth. 

The derived frequency data has found application for the 

interpretation of bed thickness, discontinuities and distinguishing 

fluids in the reservoirs (Partyka et al.,1999). 

 

The dataset chosen for this exercise is from central Alberta, 

Canada. We focus on the Mannville channels at a depth of z=1150 

to 1230 m that are filled with interbedded units of shale and 

sandstone. On the 3D seismic volume, these channels show up at a 

mean time of t=1000 ms plus or minus 50 ms.  In Figure 1 we show 

the coherence attribute display depicting the channel edges.  We 

would like to populate these channels with better definition, 

showing internal variation within their bounds.  For this we begin 

with the principal analysis (PCA) on one kind of attributes.  In 

Figure 2, we show the PCA performed on discontinuity attributes 

and find that the ‘Sobel on coherence’ attribute dominates and that 

the resulting displays depict better definition of the channels.  In 

Figure 3 we show PCA performed on lithology attributes and 

notice that GLCM energy attribute has a higher contribution and 

exhibits higher values within the channels.  In Figure 4 we show 

the spectral decomposition attributes and notice that the dominant 

attribute is the 60 Hz frequency volume. 

 

Having done this we bring together all the attributes which have 

shown higher contribution in the previous three steps.  We show 

the results in Figure 5.  Notice again the ‘Sobel on coherence’ 

dominates, but if this attribute is taken out of the attribute mix and 

replaced with coherence attribute, we notice a more balanced 

contribution from the first two attributes (Figure 6). 

 

Conclusions 

 

Principal component analysis carried out on a similar kind of 

attributes is a good dimensionality reduction tool.  When 

performed on discontinuity attributes, one kind of geologic feature 

dominates PCA1, with PCA2 and PCA3 enhancing artifacts 

associated with numerical differences in the computation rather 

than geology. We therefore hypothesize that one may wish to use 

a more balanced mix of attributes in the pot, so that PC2 and PC3 

yield additional geologic insight. Similar is the case with lithology 

and spectral decomposition attributes.   

 

While the data reduction in principal component analysis is 

powerful, the results are always computed in mathematical space. 

Principal components of spectral components will be some kind of 

spectra with measurement of magnitude as a function of frequency. 

Linear components of attributes having different units of measure 

are much harder to visualize, though combinations of low peak 

frequency, strong negative amplitude at near offset, a negative-

amplitude gradient, and a high coherence are a well-known 

hydrocarbon indicator. 
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Churning seismic attributes with principal component analysis 

 
Principal components are routinely used in facial recognition and 

monetary transfers to identify patterns. In this application, the most 

important eigenvectors are computed to represent the bulk of all 

faces or monetary transactions. Then the attribute vector of interest 

(a suspected criminal or in our case, a good well) are then projected 

against this smaller number of eigenvectors. This small number of 

principal component coefficients are then compared to the smaller 

number of principal component projection volumes. 
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Figure 1: Strat-slice at a level close to a horizon picked at 1020ms from a 

coherence volume showing different channels.  Some can be seen clearly (yellow 

arrows), other are not so clear (blue and green arrows). 
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