
Hydrocarbon-bearing dolomite reservoir characterization: A case study from eastern Canada 
Amit Kumar Ray, Ritesh Kumar Sharma* and Satinder Chopra, Arcis Seismic Solutions, TGS, Calgary, Canada. 
 

 

Summary 

 

Carbonate reservoir rocks constitute 20% of sedimentary 

rocks while it holds more than 50% of the world’s proven 

hydrocarbon reserves and accounts for 40% of the world’s 

total hydrocarbon production. Therefore, carbonate 

reservoirs are very important targets for oil and gas 

exploration. Hydrocarbons are produced where these 

carbonates have been fractured and dolomitized and laterally 

sealed by tight, undolomitized limestone. However, it is a 

difficult task to differentiate between limestone and 

dolomite. Nevertheless, a photoelectric (Pe) log curve can be 

used at the well location to discriminate between limestone 

and dolomite formations. While Pe logs exhibit almost 

constant values for background limestone, the dolomite units 

are represented by low values of Pe relative to the higher and 

almost constant values of background limestone. The 

purpose of the present work is to map the lateral extent of a 

dolomite reservoir unit in the area of interest in eastern 

Canada using a Pe volume derived from seismic. 

 

For this study, multiattribute regression analysis and 

probabilistic neutral network (PNN) are used to validate and 

predict hydrocarbon accumulations associated with 

hydrothermal dolomite. The Pe property has been effectively 

predicted and validated throughout the 3D volume and has 

been found to characterize the dolomite reservoir efficiently. 

 

Introduction 

 

The study area is a carbonate reservoir located in eastern 

Canada. The reservoir encompasses hydrocarbon charged 

thin hydrothermal dolomite units within the thicker 

limestone package. The objective was to characterize the 

dolomite reservoir units and capture the spatial 

heterogeneity efficiently within the 3D area. 

 

The latest available density logging tools make it possible to 

differentiate between dolomite and limestone using the 

photoelectric index (Pe) log. As the low-energy gamma rays 

are absorbed by the formation, they are recorded by Pe log 

in units of barns per electron (b/e). The recorded log value is 

directly proportional to the combined atomic number of the 

individual elements within the formation. The higher the 

average atomic number of the elements within the formation, 

the higher Pe value the formation exhibits. As dolomite has 

lower average atomic number than calcite, dolomite 

formation exhibits lower Pe value than limestone formation. 

Thus, Pe is a good tool to distinguish a dolomite formation 

from a limestone formation in a carbonate environment. 

 

Neural networks have gained in popularity in geophysics 

over the last two decades. They have been applied 

successfully to a variety of geophysical problems. Among 

other applications, neural networks can be trained to identify 

the complex, non-linear relationship between petrophysical 

data and seismic attributes. 

There are many different types of neural network 

implementations. The most common neural networks, that 

have been widely used in geophysical problems, are the 

multi-layer feed-forward neural network (MLFN) (Berge et 

al., 2002; Herrera et al., 2006) and the probabilistic neural 

network (PNN) (Leiphart and Hart, 2001; Hampson et al., 

2001). The potential advantage with PNN is that by studying 

the mathematical formulation, its behavior can often be 

understood better than MLFN (Hampson et al., 2001). 

 

Probabilistic neural network (PNN) derives a non-linear 

relationship between seismic data and its various attributes 

with petrophysical properties and predicts the suitable 

petrophysical property away from the well (Hampson et al., 

2001; Leiphart and Hart, 2001). It has been reported that 

neural networks effectively predict petrophysical properties 

such as porosity, Gamma Ray, photoelectric index etc. 

(Chopra and Pruden, 2003; Minken and Castagna, 2003; 

Pramanik et al., 2004; Singh et al., 2007; Calderon and 

Castagna, 2007) using seismically derived attributes. 

 

In this paper, multiattribute linear regression and PNN have 

been applied in a hydrothermal dolomite field to predict 

photoelectric log property (Pe) for characterizing the 

dolomite intervals. Neural networks combine high resolution 

well log data with laterally continuous seismic data and 

convert the seismic data to an appropriate and interpretable 

petrophysical data volume (Ronen et al., 1994; Schultz et al., 

1994a, b). Relationships between various seismic attributes 

and available Pe curves have been established and validated 

through multiattribute regression and PNN. Pe curve is used 

to discriminate lithology, which is important in 

hydrothermal dolomite fields. 

 

Method and analysis of results 

 

An integrated workflow has been formulated to characterize 

the dolomite reservoir and is shown in Figure 1. As the first 

step, well log data was analyzed to see the correlation 

between the elastic and petrophysical properties and to 

delineate the dolomite reservoir units in well log domain. For 

this, crossplot analyses of well log data in the ZOI are 

performed. One such analysis is shown in Figure 2, a 

crossplot of computed P-impedance and S-impedance log 

curves, color-coded with Pe log curve. The anomalous and 

low Pe points on the crossplot space corresponding to high 

values of both P-impedance and S-impedance separate out 

from the points with relatively higher Pe values. Those 

anomalous points with low Pe values have been captured 

(red polygon) and back-projected to the well log panel. The 

captured zone has been interpreted as the dolomite reservoir 

units and can be distinguished clearly from the background 

limestone with relatively higher and flat Pe values. Pe has 

been found to be a distinctive lithology indicator in the 

carbonate environment that can well delineate the dolomite 

reservoir units. Consequently, multiattribute linear 

regression and PNN have been used to predict the Pe 
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Hydrocarbon-bearing dolomite reservoir characterization 

property from the seismic attributes for the purpose of 

characterizing dolomite reservoir units. 

 

Prestack inversion has been carried out to derive P-

impedance and S-impedance volumes from prestack seismic 

gather data. Lambda-rho and Mu-rho attributes have been 

computed from the inverted P-impedance and S-impedance 

volumes. A combination of seismic attributes that includes 

these inversion attributes were input to the multiattribute 

regression and PNN process to predict Pe property. 

 

To see the correlation of any single seismic attribute with the 

Pe log, single attribute regression was performed with the P-

impedance attribute. A crossplot between the inverted P-

impedance and a well log Pe is shown in Figure 3. It is 

observed that there is considerable scatter in the crossplot 

space and the correlation coefficient is very low. Therefore, 

it would not be advisable to use single attribute regression 

analysis to predict Pe. 

 

Now, multiattribute regression and PNN was performed to 

the data. The key aspect of this method is the selection of 

seismic attributes to be used in the neural network training. 

For this purpose, a multiattribute stepwise linear regression 

analysis (Hampson et al., 2001) was performed using 12 

wells.  The wells considered were almost uniformly 

distributed throughout the 3D area. The convolution 

operator length and optimum number of attributes were 

chosen using the cross-validation criteria (Hampson et al., 

2001). The additional attributes always improve the 

correlation to the training data, but they may be useless or 

worse when applied to new data not in the training set. This 

is called overtraining (Hampson et al., 2001). In the process 

of cross-validation, one well at a time is excluded from the 

training data set and prediction error is calculated at the 

excluded well location. The analysis is repeated for all the 

wells, each time excluding a different well. 

 

An operator length of 7 samples gave the minimum 

validation error with 5 attributes. The attributes were 

1/(Lambda-rho), 1/(P-impedance), Sqr(Mu-rho), 

Instantaneous frequency and Filter of (55/60 -65/70) on 

seismic data. Figure 4 shows the plot of training and 

validation error curves versus number of attributes for the 

optimum operator length of 7 samples.  By performing the 

stepwise regression and validation tests before training the 

PNN, the problem of overfitting the data is eliminated 

(Schuelke and Quirein, 1998, Hampson et al., 2001).  

 

The relationship derived from multiattribute linear 

regression was then applied to the data to estimate Pe. Figure 

5 shows the crossplot between predicted Pe and actual well 

log Pe using multiattribute linear regression. We get a 

correlation coefficient of 0.74 between the well log Pe and 

predicted Pe for the wells included in the training.  It is 

observed that using multiattribute linear regression 

scattering of the data points in the crossplot has been reduced 

compared to the single attribute approach, but there is still 

some obvious scatter observed in the crossplot space. 

 

Then, PNN was trained using the seismic derived attributes 

which were found to be optimum based on the multiattribute 

regression analysis. PNN was able to estimate Pe with a 

good degree of accuracy. The average training correlation at 

the well locations was 0.88. Moreover, the average 

validation correlation at the well locations was 0.61 which 

gave confidence about the predicted Pe volume. Figure 6 

shows the crossplot between actual Pe and predicted Pe at 

the well locations.  To show the match between actual Pe 

and predicted Pe they are overlain in the log view panel and 

shown in Figure 7. Figures 6 & 7 illustrate that actual and 

predicted Pe exhibit a reasonably good correlation at the well 

locations.  
 

The predicted Pe volume was analyzed and a fairly good 

match was seen at the blind wells. Figure 8 shows a section 

of the predicted Pe volume passing through blind well A. A 

Pe map has been generated for the reservoir unit from 

predicted Pe volume. The map is shown in Figure 9. Low Pe 

zones are indicated by warm colors on the map and the wells 

falling within those zones have been found to be high net-to-

gross dolomite wells. Therefore, the predicted Pe response 

within the reservoir interval correlates fairly well with the 

net-to-gross dolomite within the same interval throughout 

the 3D area. 

 

The workflow of the adopted method is given below: 

 

 
 
Figure 1: Integrated workflow for estimating Pe volume to 
characterize the dolomite reservoir 
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Figure 2: Crossplot of well log P-impedance and S-impedance, color 

coded with Pe log curve (above). Captured points enclosed by the 

red polygon are back projected on the well log panel (below). 
 

 

Figure 3: Crossplot of inverted P-impedance and well log Pe for 12 

wells. A correlation of only 0.4 is observed between inverted P-
impedance and well log Pe. 

 

 
 

Figure 4: Average training and validation error versus number of 

attributes for the optimum operator length of 7 samples. Black curve 

represents average training error and red curve represents average 

validation error. The validation error does not improve after 5 
attributes. 

 

Figure 5: Crossplot of actual Pe and predicted Pe derived using 

multiattribute linear regression for 12 wells. A correlation of 0.74 is 
observed between actual and predicted Pe. 

 

 
 
Figure 6: Crossplot of actual Pe and predicted Pe derived using PNN 

for 12 wells. A good correlation of 0.88 is observed between actual 

and predicted Pe. 
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Hydrocarbon-bearing dolomite reservoir characterization 

 

Figure 7: Log panel showing the match between actual Pe log and 

modeled Pe log derived using PNN for different wells. 

 

Figure 8: Segment of Pe section passing through blind well A. Pe 

curve is overlain on the Pe section for comparison. 

 

 

 

Figure 9: Map showing spatial distribution of average Pe values 
within the reservoir unit. Warm color represents low Pe values 

which is indicative of high net/gross dolomite zone. 

 

Conclusions 

 

Photoelectric (Pe) log curves have been found to be a 

distinctive lithology indicator in the carbonate environment 

which has delineated the dolomite reservoir units from 

background limestone in the area of interest well. The Pe 

property has been predicted using multiattribute linear 

regression and probabilistic neural network (PNN) using 

seismic and inversion-derived attributes. The predicted Pe 

has been validated with the Pe log curve at a blind well 

location and a reasonably good match has been observed. It 

has been found that throughout the 3D area the predicted Pe 

response within the reservoir interval correlates fairly well 

with the net-to-gross dolomite within the same interval. 
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