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Summary 
 
We have developed an iterative adaptive subtraction 
method to separate shot blended data. The model of 
coherent events is determined and alternately adaptively 
subtracted from the primary and secondary sets of shot data 
in their respective common offset gathers.  We add the 
residual from a given iteration to the other set of shot data 
for the next iteration. This iterative process reconstructs the 
deblended data of both sets of shots simultaneously. We 
illustrate our method by generating simulated simultaneous 
source data using the synthetic Marmousi data. The results 
show little crosstalk remaining after deblending and the 
migration images are very similar to those of the unblended 
data. 
 
Introduction 
 
In recent years, more and more oil and service companies 
have studied simultaneous shooting for marine acquisition. 
Compared to conventional marine seismic acquisition, 
simultaneous shooting can either reduce the acquisition 
costs by reducing the temporal shot intervals, or increase 
the shot density in the same acquisition time.  Furthermore, 
it can also gain both benefits by combining the two 
approaches. 
 
The processing of the simultaneous source data can be 
similar to conventionally acquired data but it introduces 
crosstalk artifacts to the migration image from incongruous 
sources and thus decreases the imaging quality. Many 
different data separation techniques exist to separate the 
data and minimize the interference between sources. These 
approaches separate into two main categories: passive 
separation and active separation.  
 
Active separation methods solve the data deblending as an 
inversion problem (Moore et al., 2008; Abma et al., 2010). 
We transform the simultaneous source data to a sparse 
model domain so the events from different shots are better 
separated and thus help to reconstruct the deblended data. 
 
Passive approaches usually start from the pseudodeblended 
data and sort the result into another domain where the 
blending noise becomes incoherent. These approaches 
remove the noise either by coherency filters (Beasley et al., 
1998, Huo et al., 2012), or by iterative subtraction (Mahdad 
et al., 2011, Peng et al., 2013). 
 
TGS developed adaptive subtraction flows to separate 
simultaneous sources for OBC data (Kim et al, 2009). It is 
very effective in attenuating the interference in the data 

while preserving the weak signal, but the drawback is the 
separation failed when the distance of the simultaneous 
shots is small so that the interferences are the same 
amplitude level as the coherent signal. The simulation tests 
show shot distance should be greater than 2 km.  
 
Here we improve on this method by subtracting the 
incoherent noise and adding the residual back to the data in 
an iterative approach. We demonstrate that the enhanced 
method can separate the blended data with weak events 
preserved and very little leakage, even with adjacent 
simultaneous sources. We know that the interference from 
adjacent shots mainly affect the shallow part of migration 
image while the interference from a blended distant source 
may damage the deeper structural events. 
 
Enhanced Adaptive Subtraction Flow 
 
Figure 1 shows the adaptive subtraction flow (Kim et al., 
2009). We refer to “primary” as those shots fired on a 
predetermined firing cycle and refer to “secondary”  as the 
shots fired with a random delay (or in advance, with respect 
to the primary shots). By shifting the shot records, we can 
make the primary shot response coherent and secondary 
shot responses random, and vice versa, and we call them 
primary shot domain data and secondary shot domain data 
respectively. 

To ensure the model for adaptive subtraction of the 
secondary shot does not include any primary events, we 
apply a somewhat harsh filter to the data that distorts the 
secondary events in the model. Even adaptive subtraction 
cannot compensate for all the differences so secondary shot 

 
Figure 1:  Flow diagram for adaptive subtraction to separate 
simultaneous sources and recover the primary shots.  S-CO is 
Secondary Common Offset Ensembles and P-CO is Primary 
Common Offset Ensembles (Kim et al., 2009) 
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Enhanced subtraction for deblending 

residual energy remains after subtraction. The final step of 
applying a median filter may attenuate some of the residual 
energy but also may damage the primary shot events. This 
problem can magnify, especially in the case where the 
simultaneous source distance is small. We developed an 
enhanced adaptive subtraction flow to remove the 
interference and reconstruct both primary and secondary 
shot data simultaneously by iteration. 
Figure 2 shows the modified job flow for the adaptive 
subtraction part. Instead of median filtering at the final 

step, we separate the data into two parts after adaptive 
subtraction.  The part that remains after subtraction 
includes all of the primary shot events and some leakage 
from secondary shots.  The subtracted part includes events 
from secondary shots only if we applied a sufficiently 
aggressive filter to generate the subtraction model.  Note 
this processing procedure also separates coherent event and 
random noise in primary shot common offset domain, so 
we can repeat it by subtraction and addition alternately to 
reconstruct both the primary and secondary source events 
simultaneously by iteration, as shown in Figure 3. 
 
The initial processing step is in the secondary shot domain. 
We can select a very aggressive median filter to build up 
the model for the secondary shot coherent events. 
Therefore, after the first iteration, the reconstructed primary 
shot data contains almost all the primary shot events and 
some leakage from secondary shots, while the 
reconstructed secondary data contains only secondary shot 
events with distortion.  
 
The next processing step is in the primary shot domain. The 
reconstructed primary data in the previous step separates 
into two parts. One is the reconstructed primary shot data 
with less distortion, and we add the other part to the 

reconstructed secondary shot data in the previous step to 
make new reconstructed secondary shot data. 
We repeat the above steps in primary shot and secondary 
shot common offset domain alternately.  After a few 

iterations, we reconstruct both primary shot and secondary 
shot data simultaneously.  The cross-shot leakage is 
insignificant compared to the signal. We will show the 
results with simulated synthetic data tests. 
 
Deblending Results 
 
We tested this approach on 2D synthetic streamer data. We 
used the Marmousi model to generate the synthetic data set, 
which contains complex structures, steeply dipping 
diffractions, and weak coherent events in order to 
demonstrate the effectiveness of our approach on different 
cases. The receiver spacing is 12.5 m.  The source interval 
for both primary and secondary shots is 25 m, and the 
offset between primary shot and secondary shots is 12.5 m. 
The time delay of the secondary shot to the primary shot is 
a random dithering time within the range of 100 ms to 600 
ms. The previous adaptive subtraction method (Kim, 2009) 
is not robust in separating adjacent simultaneous shot data, 
so it is not here for comparison.  We present the 
reconstructed results from blended data. 
 
Figures 4a-4h show the common offset gathers of 
following: (a) blended primary source, (b) reconstructed 
primary source, (c) the true unblended primary source,(d) 
difference between reconstructed and unblended primary 
source, (e) blended secondary source, (f) reconstructed 
secondary source, (g) the true unblended secondary source, 
and (h) difference between reconstructed and unblended 
secondary source. Figures 4i-4p show the corresponding 
data in a zoomed-in area that is marked in Figure 4a.  

 
Figure 2:  Revised adaptive subtraction flow: Instead of median 
filtering at the final step, the data is separated by two parts: the part 
after adaptive subtraction includes all of the primary shot events 
and leakage from secondary shots, whereas the part containing the 
subtracted events includes mostly secondary shot events only.  

 
Figure 3:  Iterative processing flow for enhanced adaptive 
subtraction approach.  PS is Primary Shot Domain and SS is 
Secondary Shot Domain. The subscripts represent the source index 
and the superscripts represent the number of iteration. 
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Enhanced subtraction for deblending 

      
 

       
 

      
 

       

      
 

       
  

      

 

      
  
Figure 4:  Comparison of the reconstructed deblended data and the unblended data: (a) Blended primary common offset gather, (b) Reconstructed 
primary source,  (c)  True unblended primary source, (d) Difference between reconstructed and unblended primary sources, (e)  Blended secondary 
common offset gather, (f)  Reconstructed secondary source, (g)  True unblended secondary source, (h) Difference between reconstructed and 
unblended secondary sources, (i) Zoomed-in details of blended primary common offset gather in the area maeked in Figure 4a, (j) Zoomed-in 
details of reconstructed primary source,  (k)  Zoomed-in details of true unblended primary source, (l) Zoomed-in details of the difference between 
reconstructed and unblended primary sources, (m)  Zoomed-in details of blended secondary common offset gather, (n)  Zoomed-in details of 
reconstructed secondary source, (o)  Zoomed-in details of true unblended secondary source, and (p) Zoomed-in details of difference between 
reconstructed and unblended secondary sources, 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) (n) (o) (p) 
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Enhanced subtraction for deblending 

 
The minor difference between the reconstructed and 
unblended data (Figures 4d and 4h) confirms our data 
separation and reconstruction job flow works effectively. 
Figure 5 shows the NRMS between the simultaneous and 
unblended data has dramatically dropped from an average 
of 82.3 to 2.4 after 10 iterations. The migration images in 
Figure 6 also demonstrates that the enhanced adaptive 
subtraction approach removed most of the artifacts of 
crosstalk from the simultaneous acquisition, which we 
cannot attenuate by migration and stack alone especially in 
the shallow sections.  
 
Conclusions 
 
We developed an enhanced adaptive subtraction method to 
separate simultaneous data and reconstruct the deblended 
primary and secondary shot data simultaneously by 
iteration. This method is an improvement over the TGS 
legacy processing flow used to separate simultaneous OBC 
data when the simultaneous sources apart from each other 
by a certain large distance.  The synthetic data test shows 
our new approach is applicable to streamer data as well, 
and the simultaneous sources can be close to each other in 
distance. The reconstructed deblending data and the 

migration images demonstrate this new technique is quite 
effective even for relatively weak events and complex 
structures. 
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Figure 5:  Comparison of the changes to NRMS (normalized RMS) 
for simultaneous data and unblended data a) Before deblending, 
and b) After deblending.  

 
  

 
 

 
 

Figure 6:  Comparison of the migration images of a) blended data; 
b) deblended data and c) unblended data.  

 

(b) 

(a) 

(b) 

(c) 

(a) 
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