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Summary 
 
We develop a new efficient scheme of illumination analysis 
for arbitrary acquisition system using plane waves. With 
this scheme, we can calculate the total illumination 
efficiently which considers the distribution of source and 
receivers. Therefore, it can be a useful tool to study the 
influence of the model (e.g. salt body) and the acquisition 
system (e.g. shot distribution and aperture size). This can 
be used for acquisition design and model building. In the 
past, to calculate illumination for a given source and 
receiver distribution, we have used Green’s function for 
every subsurface location. For efficiency, we can reduce 
the computational cost by calculating Green’s function 
sparsely. Consequently, the shallow part of the illumination 
map may include footprints from this approach. Here, we 
proposed a new method using plane waves instead of 
calculating the single point Green’s function for the 
receiver side. Our simulation includes a number of plane 
waves with different takeoff angles from all the receiver 
locations for each shot. This routine, coupled with source-
side illumination, properly calculates the illumination for a 
given acquisition system.  Furthermore, this method out 
performs previous techniques for all types of illumination 
analysis, including large scale 3D input. Our demonstration 
includes a 2D Kepler salt model dataset to confirm the 
validity of our method, and then progresses to a 3D 
Freedom/Patriot model with an orthogonal shooting 
application. 
 
 
Introduction 
 
In the Gulf of Mexico, huge salt bodies always exist in the 
acquisition area, which results in a severe illumination 
problem especially in the subsalt area. Seismic illumination 
studies promote our understanding of how the subsurface 
structure and specific acquisition design influence imaging 
targets. This illumination analysis provides an estimation of 
the energy distribution in the subsurface, which helps us 
improve acquisition design and increases understanding of 
the migrated image. Ray-based illumination methods (Bear 
et al., 2000, NORSAR software) are very popular and 
efficient. However, they are not accurate enough to handle 
very complex structure, such as a salt dome where sharp 
velocity contrasts exist. To solve this problem, wave-
equation based illumination analysis methods are proposed 
(Rickett, 2003; Jin and Xu, 2010). These have added cost, 
but provide reliable illumination for complex structures.  
 
Illumination analysis can also be done in the angle domain, 
which provide us with a better understanding of the 

influence of dipping structures in the subsurface (Wu and 
Chen, 2006; Xie et al., 2006; Cao and Wu, 2009). However, 
angle decomposition is very expensive, especially in the 3D 
case. Our implementation required additional effort to 
make this calculation efficient for high performance 
illumination analysis in the 3D case (Mao and Wu, 2007; 
Mao et al., 2010). In addition, we have included the 
flexibility to operate on a target-oriented basis. (Mao et al., 
2013).  
 
It’s relatively easy to calculate the source side total 
illumination, which is a summation of the energy of all the 
sources. However, because the acquisition aperture is also 
an important factor for the illumination analysis, we have to 
take the receiver distribution into account for a specific 
acquisition system. High-accuracy calculations for our 
source, receiver distribution are accomplished by applying 
Green’s function for each source and receiver location and 
summing all coupled energy for each source, receiver pair.  
For a 3D case, this approach is not feasible because there 
are too many Green’s functions to calculate. In a real 
application, we usually calculate a subset of Green’s 
functions for a survey, which is more efficient, but will 
include footprint artifacts. 
 
In this study, we develop an efficient scheme of 
illumination analysis for given acquisition survey. Here, we 
use the wave-equation based migration in the frequency 
domain. Instead of calculating of single point Green’s 
function for the receiver side, we simulate a number of 
plane waves with different takeoff angle from all the 
locations of receivers in each shot. Together with the 
source-side illumination, we can calculate the illumination 
for the given acquisition system. This scheme provides a 
useful tool for acquisition design and analyzing the image 
amplitudes. We calculated several numerical examples 
including a real application of a 3D data. 
 
Illumination analysis for given acquisition system 
 
For a given acquisition geometry, we use a wave-equation 
based propagator to get the frequency-space Green’s 

function ܩሺ࢞, ,ݖ ,ݏ ߱ሻ	 from the source ݏ to the subsurface 

point ሺ࢞,  ሻ. Then we can get the total illumination by theݖ
summation of the energy from all the sources: 
  

,࢞௧௧ሺܦ ,ݖ ߱ሻ ൌ ∑ ,࢞ሺܩ| ,ݖ ,ݏ ߱ሻ|ଶ௦ .             (1) 
 

To produce the source, receiver illumination for a specific 
acquisition survey, we have to calculate all the Green’s 
functions from all the receivers. Similarly for the source 
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