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Summary 

 

The key to success for simultaneous source separation is the 

ability to formulate an appropriate sparse inversion problem 

so that nontrivial solutions to a highly under-determined 

system can be found. An important issue with the sparse 

inversion is the potential of energy leakage between the 

component shots that need to be deblended. In this paper we 

identify leakage as a basis misidentification problem and 

provide a reweighted thresholding method to reduce the 

leakage. Further, our study of the iterative thresholding and 

subtraction class of methods for source separation, indicate 

that existing model update procedures are suboptimal. We 

propose an updating step based on orthogonalization that has 

strong theoretical guarantees for improved convergence and 

is potentially more robust to leakage issues.  

 

Introduction 

 

A simultaneous source (SimSrc) acquisition can be 

represented using Berkhout's (2008) formulation, d = Гm, 

where Г is the blending matrix, d is the recorded data in RN 

and m is our targeted unblended records in RM with M>N. 

Since the system is underdetermined, methods have been 

proposed in the geophysics literature to solve this problem 

by adding constraints. The constraint used is the assumption 

that the model is sparse in a transform domain and the 

problem is rewritten as: 

 

                        d = ГΨx   m = Ψx                              (1) 

 

where Ψ is the suitable transform domain where the model 

has a sparse representation, x. Solving equation (1) by means 

of a sparse inversion is essentially similar to a rapidly 

emerging field known as compressive sensing (CS, Candes 

et al. 2006). From a CS standpoint existing SimSrc 

separation methods can be broadly classified as: (1) Convex 

relaxation: l1 minimization (Moore et al. 2008, Akerberg et 

al. 2008, Lin and Herrmann 2009, Li et al 2013) and (2) 

Greedy algorithms: some form of iterative thresholding  

(Abma 2010, Doulgeris et al. 2011, Mahdad et al., 2011, 

Chen et al. 2013).  The class (2) methods are usually easier 

to implement and faster than the class (1) methods, even 

though l1 minimization when done in a suitable domain (e.g. 

curvelets) has stronger theoretical guarantees for 

convergence and model recovery. Our motivation for this 

paper is twofold: (1) Analyze the problem of leakage of 

energy between sources from a CS perspective and provide 

a simple way of trying to minimize the leakage and (2) 

Provide a method that improves the convergence behavior of 

greedy algorithms and can further minimize leakage.  

 

 

Analysis of Leakage for SimSrc separation 

 

For SimSrc separation leakage may be defined as the cross 

contamination of energy between the targeted deblended 

records.  In this paper we analyze leakage as being caused 

by an incorrect support (and basis) identification of the 

model in its sparse domain, Ψ. All sparse inversion methods 

have the underlying assumption that the model satisfies 

||x||0≤s, and is thus s-sparse (at most s significant model 

components or support that can fully explain the model 

space) with s<<M in some suitable transform domain. The 

goal of the inversion is to correctly identify this support and 

the corresponding basis for the model space. Whenever this 

is incorrect we can expect leakage issues to show up.  

 

 

We develop the analysis based on greedy methods in the 

Fourier basis, though the theory applies to all general 

methods in any transform domain for sparse inversion of the 

SimSrc problem. Consider a 1D signal that is sparse in the 

frequency domain and has its basis vectors denoted by the 

bold arrows in Figure (1), located at their support locations. 

The thresholding step in the Fourier space can be defined as 

the set J containing the support values aj (most coherent 

spectrum values) at the current iteration as: 

 

                         J = {aj} = |<vi, Rk->|≥ ts                     (2) 

 

where Rk is the residual at the kth iteration ts is the threshold 

value, |<q,m>| is the absolute value of the vector inner 

product or correlation and vi is a candidate basis vector in the 

Fourier domain. The support is thus identified as the row 

vector from the Fourier kernel forming the smallest angle 

with the residual. When the support is misidentified the 

corresponding basis vector would show up at on offset to the 

true vector (dashed line in Figure 1) and/or as a damped 

version of true basis. Let Ψt be the true basis where the signal 

has a sparse representation and let Ψb be the estimated basis 

 

∆⍵ 
⍵ 

Figure 1: 1D representation of error in basis selection. 

Solid lines are the true basis vectors for the sparse signal. 

Dashed line is the 2nd basis identified incorrectly with an 

offset ∆⍵ to the true basis.  
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Reweighted thresholding and orthogonal projections 

which has at least one suboptimal basis vector selection. 

Following equation (1) our inversion scheme assumes the 

model to be sparse in the estimated incorrect basis, Ψb as: 

                                m =Ψbxb                                                          (3) 

 

While the model is actually sparse in the true basis as: 

                              m = Ψtxt                                                             (4) 

 

Consequently we have a resolution matrix that connects the 

true sparse estimate, xt with the incorrectly estimated xb via: 

 

                             xb = Ψ-1
bΨtxt                                  (5) 

 

We define the matrix Ψ-1
bΨt as the resolution matrix that 

defines the leakage in SimSrc separation. The resolution 

matrix would lead to smearing across components of the 

estimated signal producing leakage. Insertion of (5) into (1) 

gives: 

                            d = ГΨtΨ-1
bΨtxt                             (6) 

 

Equation (6) explains the degradation in separation quality 

from a compressive sensing (CS) standpoint.  One of the key 

assumption in CS for solving equation (1) is that the signal 

is sparse in the transform domain, i.e. its coefficients decay 

fast, via some power law. The resolution matrix weakens this 

assumption by smearing components across all model 

coefficients and thus the expected decay of the coefficients 

no longer happens. In other words x is no longer s-sparse. 

Notice that the smearing not only happens across the 

targeted unblended records, but also within each record 

producing undesirable noise in the final separation. The 

problem arises essentially because the support of a frequency 

sparse signal are themselves sparse only when its FFT/DFT 

Fourier coefficients are exact integer multiples of the Fourier 

basis’ fundamental frequency (Duarte et al. 2010), which is 

generally not the case. 

 

Notice the similarity with Anti-leakage Fourier transform 

(ALFT) based data regularization (Xu et al. 2005) where the 

resolution matrix in equation (6) now governs the well-

known spectral leakage issue. ALFT-regularization can thus 

be classified as a sparse greedy inversion where the blending 

matrix is simply a sampling operator and the inversion 

imposes a sparsity constrain to reconstruct the data on the 

intended regular grid. We can also see that a potential 

problem with iterative thresholding based regularization like 

ALFT-regularization and POCS interpolation (Abma 2006), 

when the missing data has a regular pattern can be explained 

when viewed from a sparse CS inversion framework. The 

regular pattern in the missing traces imposes a regular 

pattern in the blending matrix, and thus one of the key 

requirements for the inversion to work effectively that the 

blending matrix and the sparse basis need to be maximally 

incoherent is weakened.   

 

Compared to data regularization, the SimSrc problem has an 

added level of complexity, introduced by recording the data 

at a close to sub Nyquist rate. The practical implication of 

this is that we should expect separation to be much more 

sensitive to acquisition design parameters (particularly 

spacing and randomness in the shooting). We note that the 

analysis done in this section opens up the exciting possibility 

of combining deblending and regularization into one step. 

But this issue is not explored further in this paper.  

 

Reweighted thresholding 

 

A technique commonly used in thresholding processes for 

data regularization and noise suppression (Qin et al. 2012) is 

to compute radial weights for the spectrum in an unaliased 

band. The idea is to use these weights to enhance coherent 

energy and also suppress aliased events which do not start 

from the origin. Based on equation (2) we can say that such 

weighting improves the support identification. In the SimSrc 

problem, weights are computed in a spectrum that has 

contribution from multiple sources.  Such weights tend to 

have a high degree of contamination compared to the data 

regularization problem. Thus a simple strategy to improve 

the support identification step is using a reweighting scheme 

for the spectrum. Once a first pass of 

 

 

 separation is complete, we recompute the weights on the 

initial separated outputs and then restart the iteration with the 

new weights. Since the recomputed weights are more robust,  

  
                   (a)                                                   (b) 

  
                     (c)                                                   (d) 

Figure 2: (a) blended data, (b) S1 estimate, (c) S2 estimate (5x 

stronger), (d) S1 estimate, without StOMP, at same iteration 

number. Notice the ringing noise left on the top and bottom in 

2(d) indicated by the red ovals.  
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Reweighted thresholding and orthogonal projections 

 

we expect thresholding or support identification for the 

second stage of iteration to be better. To effectively use the  

reweighting scheme a projection of the original blended data 

is done onto the model space so that each individual 

component of the model space (i.e. each record to be 

unblended) can have their own independent weights for the 

thresholding step.  

 

Orthogonal Projections 

 

The greedy methods when used for SimSrc separation can 

be generalized to be similar to a class of methods  

collectively known as Projection Pursuit (Huber, 1985) in 

the statistics community. An issue with convergence as well 

as potential leakage can occur (Donoho, 1985) if a particular 

projection is non-orthogonal. When viewed from such a 

projection pursuit framework, our implementation uses the 

following main projections: (1) Projection of blended data 

onto the model space, (2) Projection onto the support 

(thresholding), (3) Projection onto the feasible set (sparse 

model space), (4) Projection back onto the data space to 

update residual. Existing thresholding methods use 

projections (3) and  (4) in the form: 

                         mk = mk-1 + AT
k-1d                                   (7) 

                         Rk = Rk-1  -   Ak-1 mk ,                               (8) 

 

where A=ГΨk-1, with the columns of  Ψk-1  populated with 

the vectors obtained during the thresholding step described 

in equation (2). Thus for each iteration it is guaranteed that 

the residual is orthogonal only to the basis vectors selected 

at the current iteration. However full backward orthogonality 

with all basis vectors selected till the current iteration is not 

maintained. We conclude that using equation (7) is a 

suboptimal estimate of the model.  If a suboptimal model is 

used to update the residual, then support identifications for 

the next thresholding iteration could be suboptimal as well 

which might add to leakage. A natural solution is to enforce 

orthogonality between the residual and the column space of 

equation (1).  For CS, such schemes have been proposed 

previously (Stagewise Orthogonal matching Pursuit, 

StOMP, Donoho et al., 2006) which we adopt for the SimSrc 

problem. Using orthogonal projections we update the model 

and the residual as: 

                      mk = (BT
k-1Bk-1)-1BT

k-1d                            (9) 

                     Rk = d -   Bk-1mk                    ,                                     (10) 

where B=ГΨI, with the columns of  ΨI  populated with all 

the basis vectors selected till the kth iteration. Another 

advantage of this is improved convergence (Tropp 2004). A 

similar orthogonal step was proposed for the data 

regularization problem (Hollander et al., 2012) but our 

implementation has two important distinctions: (1) StOMP 

allows multiple terms to enter the thresholding step, (2) We 

use the FFT instead of the DFT leading to faster 

implementation.  

  

Examples 

 

In Figure (2a) we show a simple synthetic where two sets of 

linear events (S1 and S2, S2 being 5 times stronger than S1) 

are combined together by applying small random time shifts 

to one of the datasets. We show the separation result of 

stopping the iterations after a fixed number of steps for S1, 

with (2b) and without orthogonal projections (2d). Notice 

the faster convergence for StOMP while providing perfect 

separation when iterations are stopped after a fixed number 

of steps. Due to the simplicity of the synthetic no 

reweighting schemes were used for this example.  

     
                                               (a)                                                                                            (b) 

  

Figure 3:(a) Separation result without reweighting scheme and orthogonal projections on a receiver gather, (b) separation 

with reweighting and orthogonal projections, notice the leakage energy that is left within the black oval in (a) compared to 

(b), seen as "dots". Also note the over-all reduction in noise level 
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Reweighted thresholding and orthogonal projections 

 

We now show results for a SimSrc data set simulated using 

the Marmousi synthetic. The data are generated by simply 

combining two records with a random time delay so that no 

continuous recording or random sampling (e.g. jittered 

sampling) of the records is done. Thus we test the sparse 

inversion in one of its worst case scenarios. Figure (3) shows 

a zoomed in comparison of the separation results without 

using reweighting and orthogonal projections (3a) and 

Figure (3b) shows the result of using both reweighting and 

orthogonal projections. Note the reduction of leakage energy 

within the black oval in (3b) compared to (3a). Finally 

Figure (4) shows the separation results on one receiver 

gather. The difference plot Figure (4c) shows little leakage 

of coherent energy and mostly contains the blending noise. 

This indicates that the separation (Figure 4b) is of high 

quality. Weak events are also well preserved when we 

compare the separation result (Figure 4b) with the original 

unblended data (Figure 4d).  

 

Conclusions 

 

In this paper we have defined the leakage problem in SimSrc 

separation as the result of incorrect support identification. 

Using this we have introduced a reweighting scheme for the 

spectrum to improve the support identification during the 

thresholding step. We have also used orthogonal projections 

for the model updating step to improve convergence and 

further reduce chances of potential leakage for the iterative 

thresholding methods. Our method produces good 

separation even in the case where the acquisition parameters 

do not allow the best utilization of the power of the CS-

sparse inversion. We note that for successful and optimal 

source separation of field data substantial burden rests on the 

acquisition step as the problem is particularly sensitive to 

data quality.  
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                                               (a)                                                                                            (b) 

  
                                               (c)                                                                                                   (d)  

 

Figure 4: (a) blended data, (b) separated estimate, (c) difference between b and a, (d) original unblended data. Notice that very 

little coherent energy leaks into the difference plot in (c). Weak events, are well preserved when (b) and (d) are compared. 
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