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Summary 
 
We present a common offset multiarrival final laser-beam 
Q-migration (Q-beam) algorithm, which maintains high 
frequency and accuracy with improved performance over 
standard Gaussian beam migration. This is achieved by a 
laser beam method, which limits the beam spread similar to 
a laser. Such an approach handles large lateral velocity 
variations without imposing dip or multiarrival limitations 
for imaging. Furthermore, our method applies Q amplitude 
loss and phase-shift compensation in the Gaussian-beam 
multiarrival imaging condition, including interpolation in 
the inverse Q weighted travel time T* domain. Overhead 
cost for this approach when compared against standard 
Gaussian or Kirchhoff migration is negligible. Laser beam 
migration preserves broadband data frequency and is 
appropriate as a final imaging tool as presented by our 
broadband data example. The validity of our final laser 
beam Q-migration is demonstrated with our 2D synthetic 
data set and 3D field data set, compared against standard 
Gaussian beam and Q-Kirchhoff migration. 
 
Introduction 
 
Migration is a mapping operation, which involves the 
rearrangement of seismic elements so that the recorded 
wavefields are relocated to their true locations. Ray-based 
migrations use precalculated source and receiver traveltime 
measurements to map the surface seismic events back to 
their correct subsurface location. Production Kirchhoff 
migration applies a single-arrival approach, which 
mispositions other arrival energies and can introduce 
migration artifacts. Wave-equation based migration 
backward propagates the recorded wavefield and forward 
propagates the source wavelet, and includes some 
associated approximations (e.g., finite-difference) to the 
full wave equation. This migration accounts for 
multiarrivals, but substantially increases the computational 
cost over a standard Kirchhoff migration.  Similarly, 
reverse time migration has added cost, increasing runtime 
exponentially with frequency, (i.e., N4) making it 
impractical for broadband data.  
 
Beam migration is a multiarrival ray-based migration 
algorithm which handles multivalued traveltime and 
raypath naturally   (Hill, 1990, 2001; Gray et. al, 2009). 
Standard beam migrations use the “fat beam” approach, 
propagating the plane wave Pm within a relatively large 
neighborhood along the central ray (e.g., shaped with a 
Gaussian window), and the beam properties are then 
extrapolated with a Taylor expansion around the central 
ray. 3D production parameters spread the beams along time 

significantly, which introduce extrapolation errors that 
grow rapidly along the spread direction. Considering this, 
most production beam migrations focus on speed instead of 
quality, and was originally designed as a tomographic 
engine. Specifically, in regards to tomographic semblance 
analysis, beam migration isolates energy to a small number 
of seismic elements (Sherwood et. al, 2009). The algorithm 
has even been simplified for fast-beam migration (Gao et. 
al., 2006), which adopts a one-to-one mapping from the 
data domain elements to image domain. This may violate 
the multiarrivals assumption and sacrifice the migration 
quality, removing itself as final migration tool. 
 
To maintain accuracy and efficiency, our “laser beam” 
migration is a controlled width beam migration, which 
strictly limits the seismic energy with a “thin beam”, 
typically within a few wavelengths from the central ray. 
Similar to Kirchhoff beam migration (Liu and Palacharla, 
2011), laser beam migration is also a generalized Gaussian 
beam migration. Ray tracing with laser beam migration 
uses a high-frequency approximation and does not require 
additional cost for broadband data processing. Constrained 
to  a laser thin width, laser beam migration, approximates 
the propagation of the seismic wavefield with the accuracy 
level of the high frequency central rays, consequently 
performing well in the presence of caustics and beam 
spread. Thus the amplitude loss and phase shift, especially 
at high-frequency values can be correctly compensated 
inside a multiarrival beam migration. As the broadband 
acquisition and processing including Q-compensation 
becomes routine in production workflows, the capability 
for preserving high-frequency energy and accuracy is 
crucial for industry. After careful implementation, 
laser-beam migration can be several times faster than the 
production Kirchhoff migration and provides much higher 
frequency than the wave-equation based migration within 
the same turnaround time. This independent development is 
similar to the focused beam (Nowack, 2008) and frozen 
beam (Yang et. al, 2013) approach. 
 
Theory 
 
Laser-beam migration is a generalized Gaussian beam 
migration with a controlled beam width, which is 
predefined to a few wavelengths from the central ray. With 
a laser-thin beam, the extrapolation errors of beam property 
(ray amplitude, real and imaginary travel time, etc.) from 
the central ray are minimized to almost no influence on 
wavefield modeling and final image. This approach gives 
us the flexibility to choose either dynamic or kinematic ray 
tracing. This is extremely important to improve the 
accuracy and efficiency for shallow depths with high beam 
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