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Summary 
 
Recent research shows that the curvelet domain multiple 
elimination is more effective than the conventional time-
space domain approach. There are two categories of curvelet 
domain methods: direct matching and inversion-based. We 
propose a hybrid method that combines the advantages of the 
two categories. First, multiple-contaminated data and the 
predicted model are transformed to the curvelet domain. We 
then break the multiple adaptation into two stages: a global 
adaptation that corrects significant errors in the multiple 
model among the curvelets with similar dips, temporal and 
spatial coordinates across neighboring gathers, followed by 
a step that improves the coefficients by solving an 
optimization problem with sparsity constraints. The 
crossline data coherency is considered and a robust primary-
multiple separation is achieved without performing 3D 
curvelet transforms. Finally, both multiple-free data and 
adaptive multiple are transformed back to the time-space 
domain. More than one iteration might be run on the 
residuals until only the incoherent noise is left. We tested the 
proposed method on a 2D line from the Gigante survey in 
the southern Gulf of Mexico. The result shows improved 
multiple attenuation in comparison with an inversion-based 
method in curvelet domain.  
 
Introduction 
 
For decades, multiple attenuation has been an important step 
in seismic processing, though recent efforts try to include the 
full waveform in the migration engine (Berkhout, 2012, 
Verschuur et al., 2016). Multiple attenuation usually consists 
of two major steps: multiple prediction and adaptive 
subtraction. Despite great success, none of the multiple 
prediction methods provide a “perfect” multiple model. In 
fact, predicted multiples can be severely mismatched. 

Therefore, the adaptive subtraction is crucial to match 
amplitudes, phase, and kinematics to the input data. 
 
Least-squares (LS) matching in the time-space (TX) domain 
has been the most widely used adaptive subtraction tool 
(Berkhout and Verschuur, 1997). It adapts the multiple 
model to the input (primaries and multiples) to minimize the 
residual energy in L2 norm. This method is often applied 
over several iterations (in various sort domains) and is robust 
and efficient in regions where primary and multiple events 
are well separated, but can cause significant damage to 
primary events in other regions. L1 norm matching (Guitton 
and Verschuur, 2004) can reduce the primary damage when 
the multiples are relatively weak, but the improvement is not 
significant, while the computational cost increases 
significantly (Abma et al., 2005). 
 
Processing the data in the curvelet domain has been an 
attractive alternative to the TX domain ever since it was 
introduced by Candes and Donoho (2000), as seismic events 
are naturally decomposed into a linearly weighted sum of 
curvelets with signature scales, dips, and time and space 
coordinates (Figure 1). Adaptive subtraction methods in 
curvelet domain can be implemented through either direct 
matching or solving an optimization problem. Neelamani et 
al. (2008a) proposed to match the complex coefficients of 
the multiples to ones of the data elementwise. Saab et al. 
(2007) proposed a primary-multiple separation scheme by 
solving an optimization problem with extra sparsity 
constraints on both primaries and multiples. 
  
These methods generally provide an uplift to LS adaptive 
subtraction in TX domain, but have some disadvantages as 
well. Direct matching is relatively easy to implement, but it 
is difficult to set the bounds of the adaptation, leading to 
“over-adapting”, thus primary damage is common (Nguyen 
and Dyer, 2016). Inversion-based methods allow for the 

   

 

Figure 1: Synthetic data with water bottom multiples (a), multiple model (b), and multiple’s curvelet amplitudes (c). S1-S6 
represents coefficients at six scales in the curvelet domain. 
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trade-off between overall data fitting and sparseness of the 
models. However, it requires a relatively accurate initial 
multiple model before it can find a reasonable solution (Wu 
and Hung, 2015) in several iterations, which add to the 
already significant compute-time. Our proposed method 
combines advantages of the two approaches outlined above. 
First, we obtain an initial solution by applying a global 
matching operator to the predicted multiple in the curvelet 
domain. Then, we obtain the multiple-free data and the 
adaptive multiple by solving the optimization. The crossline 
data coherence is considered by grouping curvelets with 
similar dip, temporal and spatial locations between 
neighboring gathers.  
 
Method 
 
We divide our method into four steps. First, we apply a fast 
discrete curvelet transform (FDCT) with wrapping (Candes 
et al., 2006) to the input data and predicted multiple model. 
Second, we apply a global matching operator to the curvelet 
coefficients of the multiple model. Curvelets are orthogonal, 
therefore it is possible to apply this operator to individual 
scales independently to make the process more efficient. 
Nguyen and Dyer (2016) proposed a global matching 
scheme in a subband (wedge) that contains curvelets with 
common scales and dips, before applying a sample-by-
sample matching. For real data, the errors of predicted 
multiples might vary significantly within a wedge. For 
example, amplitude and phase of high order multiples 
(usually in the deep section) in the SRME model can be very 
different from true multiples, whereas low-order multiples 
(usually in the shallow section) are much closer. On the other 
hand, noise with unbalanced amplitude contaminates the 
multiple model throughout the whole gather (Kustowski et 
al., 2013). Therefore, the wedge-based global matching 
scheme might have difficulties handling real data. 
 
To overcome this issue, we group the curvelet coefficients 
of the multiple model by similar dips, temporal and spatial 
locations, rather than by wedges (Figure 2a). We first find 
the most significant curvelets within a selective group of the 
multiple model, as they are more likely multiples than 
erroneously predicted primaries or noise. We then calculate 
the mean amplitude and phase of these coefficients, as well 
as the mean values of the corresponding coefficients of the 
input data. Next, we apply the amplitude ratio and phase 
differences of the mean values to the multiple coefficients. 
We repeat this procedure until all dips, temporal and spatial 
locations are covered.  
 
This step will yield an adapted multiple model, which should 
be close to the “correct” model, and can serve as the initial 
solution of the inversion. In practice, we adopt the method 
proposed by Saab et al. (2007). 
 

f൫C୮, C୫൯ ൌ ฮC୮ฮଵ,୵౦
 ‖C୫‖ଵ,୵ౣ

 ‖AC୫ െ AC୫∗‖ଶ
ଶ 

ƞฮA൫C୮  C୫൯ െ dฮ
ଶ

ଶ
                                                       (1) 

 
where ܥ∗ are curvelet coefficients of the primary (p) and 
multiple (m), respectively; ‖ܥ∗‖ଵ,௪∗

 are weighted L1 norms 
of the coefficients; A denotes the inverse curvelet transform 
(CT) with wrapping; d is the input data with multiple 
contamination. Ƞ controls the trade-off between the model 
sparsity, multiple fitting, and overall data fitting. Note that 
 ∗ represents the adapted multiple coefficients after theܥ
global matching. This optimization problem can be solved 
by applying a soft-thresholding operator (Daubechies, et al., 
2003). Once ܥ and ܥ are satisfactory, we apply the inverse 
CT to obtain the multiple-free data and adapted multiple 
model.  
 
The CT is computer resource demanding, thus most 
successful curvelet domain applications are implemented in 
2D, though multidimensional CT has been introduced for 
more than a decade (Ying et al., 2005). Neelamani et al. 
(2008b) propose a “curvelets + wavelets” method by 
applying a 1D wavelet transform in the crossline direction 
and a 2D CT in the inline direction. To avoid the 3D CT’s, 
we group the curvelet coefficients not only across “wedges”, 
but also between the neighboring gathers in the global 
matching step (Figure 2b). A better estimate of the mean 
values can be achieved by taking into account the data 
coherency in the crossline direction. After we obtain the 
globally-matched model, we use the average thresholds 
when solving the optimization problem. These will result in 
robust primary-multiple separation without performing 
expensive 3D CT’s.  
 
The 4th term of equation 1 includes all residual energy, i.e. 
incoherence noise. However, due to the compromise 
between model sparsity and overall data fitting, some weak 
events (primaries or multiples) might still exist in the 
residual. Several iterations of residual adaptive matching 
that separate the residual primaries and multiples are 
necessary to guarantee minimum energy loss and primary 
damage, through the whole process (Figure 3). 
 
Data Example 
 
We applied the proposed method to a 2D line of the Gigante 
project. Gigante is an 186,000 km 2D survey acquired in the 
Gulf of Mexico (Figure 4). We selected line 238 because of 
its complex multiple content that leads to difficult multiple 
elimination. The predicted SRME model has strong 
amplitude and phase distortions, as well as kinematic errors. 
In fact, 2D multiple models usually contain more kinematic 
errors than 3D models due to out of plane contributions, 
leading to more challenges for the adaptive subtraction. For 
comparison, we also show the multiple elimination result of 
an inversion-based curvelet domain method (referred as 
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CINV) that takes a TX domain matched model as the initial 
input. 
 

 
Figure 5a and 5b are the input data and SRME model, 
respectively. The model contains significant amplitude and 
phase distortions that are common for SRME (Dragoset et 
al., 2010). Some kinematic errors also exist. Figure 5c shows 
the final primary section after 15 iterations of inversion by 
Saab’s approach. The multiples are significantly attenuated, 
but residual multiples are still visible across the section 
(black arrows). The result of the proposed hybrid crossgather 
method (referred as HCG) is shown in Figure 5d. It produces 
a better multiple elimination result, and as expected, does not 
seem to attenuate primary events. The crosswedge and 
crossgather global matching provides a better initial model 
with minimum primary leakage for the inversion, and the 
extra iterations on the residuals ensure minimal primary 
damage. 
 
Discussion 
 
The proposed method can easily be extended to allow the 
input of several multiple models. For example, in shallow 
water environments, a water bottom-related multiple model 
and SRME model are used in combination to attenuate 
different types of multiples (Zhai et al., 2015). Neelamani et 
al. (2008) propose a method to adapt all multiple models 
simultaneously. Following this approach, in the global 
matching step the adapted curvelet coefficients of multiple 
model 1 are obtained, and multiple model 2 is adapted by 
matching the curvelet coefficients to the residual. All 

multiple models can be adapted sequentially, and a 
combined, globally matched model, is output by linear 
summation of all adapted models (Figure 3). 
 

 

Conclusions 
 
We propose a hybrid crossgather curvelet domain method 
that efficiently adapts multiple models to input data 
containing primaries and multiples. We first apply a global 
matching operator to the predicted multiple model in 
curvelet domain by adapting the coefficients with similar 
dips, temporal and spatial coordinates across neighboring 
gathers. The crossline data coherency is taken into account 
this way without calculating 3D curvelet transforms. Then, 
we apply an inversion-based approach to further improve the 
result. Several iterations might be necessary to ensure 
minimum primary damage. We have shown that the 
proposed method provides a superior adaptive subtraction of 
multiple models on real data from the Gulf of Mexico in 
comparison to the conventional adaptive subtraction method 
in TX domain followed by an inversion-based method in 
curvelet domain that relies on the TX domain result. The 

 

Figure 2: Curvelet coefficients of the multiple model at 
scale 5. Each block in a) represents a “wedge” that 
includes coefficients with common dips. Boxes with 
different colors represent selective groups with similar 
dips, temporal and spatial locations. b) schematically 
shows how coefficients from neighboring gathers are 
grouped. 

Figure 3: Flow chart of the proposed method. 

 
 

Figure 4: Gigante map. Blue lines are 2D lines that covers 
> a 600,000 km2 area. Line 238 is marked by black. 
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method can easily be extended to handle several input 
models created by different modeling algorithms. 
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Figure 5: Channel gathers of line 238. a) input data; b) SRME model; c) CINV result; d) HCG result with 3 iterations 
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