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Summary 

 

Seismic impedance inversion is an important tool to estimate rock and 

reservoir properties from the seismic data. Seismic data is band-limited 

in nature and lacks the low-frequency component. As the low-

frequency component holds the basic information on geological 

structure, the lack of low-frequency information degrades the 

quantitative prediction based on seismic inversion. So, it is essential to 

build an accurate low-frequency model to have confidence in seismic 

inversion and in turn on the quantitative predictions made therefrom. 

In this paper, we develop a new workflow of predicting the low-

frequency impedance model that uses a single-well low-frequency 

model apart from other relevant seismic attributes in the multi-attribute 

regression analysis. This study was carried out on a dataset from 

northeastern British Columbia in Canada. Inversion results using this 

approach have been validated at the blind well locations and an 

excellent match between well logs and inversion results has been 

observed. We have also attempted the collocated cokriging technique 

for building a low-frequency model and used it for seismic impedance 

inversion. A comparison of both the methods has been discussed. 

    

Introduction 

 

Currently, impedance inversion of seismic data is a standard tool to 

estimate the elastic properties from seismic data for reservoir 

characterization projects. Knowledge of absolute impedance is 

necessary for quantitative as well as qualitative predictions of the 

reservoir. As the seismic data is band-limited and does not contain the 

low-frequency band of the spectrum, it is essential to build a proper 

low-frequency model for better estimates of the reservoir properties. 

Sams and Saussus (2013) have shown some practical implications of 

low-frequency model selection on quantitative interpretation results. 

Typically such a model is built by using well log data, interpreted 

horizons and sometimes the seismic velocities provided the velocity 

data is of good quality. There are a variety of interpolation techniques 

that could be used to construct the low-frequency model from well log 

data.  These include linear interpolation of single well data, inverse-

distance, triangulation, kriging, and cokriging methods. If there is 

considerable lateral variation in the elastic properties across the 3D 

area, a single-well model does not work very well. Also, inverse 

distance and triangulation methods usually generate some kind of 

bull’s eye effect on the low-frequency model that creates artifacts on 

the inversion results, which are not geological. 

A novel approach has been devised that uses the multi-attribute 

regression technique for building the low-frequency impedance model. 

Multi-attribute regression is a good interpolation technique that uses 

both well log and seismic data to establish a relationship between 

various seismic attributes and the available log curves (Hampson et al., 

2001). The application of multi-attribute analysis for building a low-

frequency model has been discussed by Zou et. al. (2013). It is 

important to include suitable attributes to establish a proper regression 

relationship. In this paper, we adopt a new workflow using multi-

attribute regression analysis to predict the low-frequency component 

for use in seismic impedance inversion. 

Furthermore, a collocated cokriging technique has also been used to 

build low-frequency impedance models for use in impedance 

inversion. Cokriging is a standard interpolation technique, and it’s 

most common variant in the industry is collocated cokriging that uses 

seismic data as a secondary variable. It uses the variogram model to 

distribute the well log properties away from the well location. The 

variogram model is generally based on some relevant secondary data 

which can represent the spatial heterogeneity in the study area. 

Inversion results based on the low-frequency models using both the 

methods have been compared. 

 

Method and analysis of results 

 

A workflow has been designed to build a low-frequency model for 

impedance inversion from the dataset of northeastern British 

Columbia, Canada. As the first step, we generate a low-frequency 

impedance model using a single well that seems to represent the overall 

trend within the 3D volume. Then, using this low-frequency model, a 

model-based inversion is run on the data. Though the inversion result 

shows a reasonably good match for some of the wells, we notice 

mismatches for other wells in the 3D area. Therefore, an improved 

low-frequency model is required for a better estimate of impedance 

volume from seismic inversion. 

For this purpose, we attempted multi-attribute regression analysis 

(Hampson et al., 2001) to generate the low-frequency impedance 

model. First, the impedance logs were filtered to extract the low-

frequency component of the impedance log data. Seven wells, which 

were uniformly distributed throughout the 3D volume, were used in 

the multi-attribute training network. In the first phase of the analysis, 

seismic amplitude data and relative impedance derived from coloured 

inversion were used to train the filtered impedance logs. Poor match, 

with a correlation coefficient of only 0.4, was observed between the 

actual filtered impedance log and the modelled impedance log, derived 

from this multi-attribute regression process.  Figure 1 shows the match 

for all the training wells. Due to poor training correlation, it was not 

advisable to use the predicted impedance as the low-frequency model 

for the inversion process. 

In the second phase of the analysis, we added the single-well 

impedance model as one of the inputs along with the other attributes 

used in the earlier training network. This approach helped in improving 

the training process considerably. Figure 2 shows the match between 

SEG New Orleans Annual Meeting Page  3398

DOI  http://dx.doi.org/10.1190/segam2015-5851713.1© 2015 SEG

D
ow

nl
oa

de
d 

09
/1

0/
15

 to
 2

05
.1

96
.1

79
.2

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Robust low-frequency model building for impedance inversion 

the actual filtered impedance log and the modelled impedance log 

derived with this new approach. It is now observed that there is an 

excellent match between the actual filtered impedance log and the 

modelled impedance log and the correlation coefficient improves to 

0.96. Moreover, the validation correlation is also considerably high 

and gives a correlation coefficient of 0.92. In the process of validation, 

one well at a time is excluded from the training data set and prediction 

error is calculated at the blind well location. The analysis is repeated 

as many times as there are wells, each time leaving out a different well. 

The validation match is shown in Figure 3. While a low-frequency 

model based on inverse distance method shows bull’s eye artifacts on 

the horizon slice (Figure 4), the low-frequency model generated based 

on the new approach does not show those kind of artifacts on the 

horizon slice (Figure 5). 

Next, we run model-based post-stack inversion using the low-

frequency model generated with the new approach. We get an 

excellent match between the actual impedance log and the inverted 

impedance log for all the wells on the 3D volume. Figure 6 shows the 

match in a blind well between the actual impedance log (blue curve), 

inverted impedance using single well low-frequency (black curve) and 

the inverted impedance using the low-frequency based on the new 

approach (red curve). It is noticed that the low-frequency based on the 

new approach gives an excellent and improved match with the actual 

impedance log when the blind well is considered. This lends more 

confidence in the new approach for generating low-frequency model. 

Additionally, we have used a collocated cokriging technique to build a 

low-frequency impedance model. Collocated cokriging is a variogram-

based geostatistical technique that uses a relevant secondary attribute 

to guide populating the well log properties of interest away from the 

well. Variogram modeling is the critical part of the whole process to 

obtain the property of interest that not only matches at the blind wells 

but also conforms to the geology. 

The variogram is estimated by 

2𝛾(𝒉) =
1

𝑁(𝒉)
∑ [𝑍(𝑢𝛼) − 𝑍(𝑢𝛼 + 𝒉)]2

𝑁(𝒉)

𝛼=1

 

where 𝑍(𝑢𝛼) is a variable under consideration at a location 𝑢𝛼 

𝑁(𝒉) denotes the number of pairs of data locations approximately a 

distance vector h apart. 

Identification of proper variogram ranges is important to capture the 

lateral variations as well as geologically congruent results. In order to 

produce a valid variogram model for use in collocated cokriging, it is 

reasonable to use one of the  predefined functional forms such as linear, 

logarithmic, quadratic, Gaussian, spherical, exponential etc. for fitting 

the experimental data (Cressie, 1985). Relative impedance derived 

from coloured inversion were used as a secondary attribute in the 

variogram modelling. We used spherical function to fit the 

experimental data points for the horizontal as well as vertical 

directions. 

Gringarten and Deutsch (2001) have discussed the methodology for 

variogram interpretation and modelling in detail. The major horizontal 

direction of continuity has been determined from the 2D variogram 

map shown in Figure 7(a). Figures 7(b), 7(c), and 7(d) show the 

variogram plots for major, minor and vertical directions respectively. 

Correlation ranges thus obtained from variogram modelling for all 

three directions were used in the collocated cokriging to estimate the 

P-impedance property. The same seven wells that were used 

previously in the multi-attribute regression analysis were taken as 

input in the collocated cokriging analysis. The P-impedance so 

generated was filtered to generate a low-frequency impedance model 

and used to invert the seismic data. Figure 8 shows a horizon slice of 

the low-frequency impedance model in the zone of interest. We don’t 

see any kind of bull’s eye effect on the horizon slice and so the model 

is devoid of any artifact which is geologically inconsistent. Figure 9 

shows a comparison of the inverted impedance based on the low-

frequency model at a blind well using collocated cokriging and the new 

approach we adopted using multi-attribute regression. We get a fairly 

good match between the well log impedance and the inverted 

impedance derived based on both the low-frequency models. 

Moreover we see a very close match between the inverted impedances 

based on the low-frequency models using collocated cokriging and the 

new approach of multi-attribute regression. This confirms that the new 

approach we adopted for building the low-frequency model is equally 

good and can be implemented with confidence for building the low-

frequency model. 

 

Figure 1: Match between the modeled impedance log and actual filtered impedance 

log using multi-attribute regression. Black curve represents the filtered impedance 

log and red curve represents the modelled impedance curve. Analysis window is 

marked by yellow bar. Poor correlation coefficient of 0.4 is observed. 

 

Figure 2:  Match between the modeled impedance log and actual filtered impedance 

log using multi-attribute training network after including single well low-frequency 

model as one of the input. Black curve represents the filtered impedance log and red 

curve represents the modelled impedance curve. Analysis window is marked by 

yellow bar. Correlation coefficient improves significantly to 0.96. 
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Robust low-frequency model building for impedance inversion 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Validation match between the modeled impedance log and actual filtered 

impedance log using multi-attribute network after including single well low-
frequency model as one of the input. Black curve represents the filtered impedance 

log and red curve represents the modelled impedance curve. Analysis window is 

marked by yellow bar.  A high correlation coefficient of 0.92 is observed. 

 

Figure 5:  Horizon slice in the ZOI for the low-frequency model generated 

using inverse distance interpolation method 

 

Figure 6:  Match at the blind well between the actual impedance logs (blue 

curve), inverted impedance using single well low-frequency model (black 

curve) and the inverted impedance using the low-frequency model based on 

the new approach (red curve). 
 

Figure 4:  Horizon slice in the ZOI for the low-frequency model generated 

using inverse distance interpolation method 
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Robust low-frequency model building for impedance inversion 
 

 

 

 

 

 

Conclusions 

 

The low-frequency model is an important aspect for model-based 

inversion to generate absolute elastic properties from seismic data. A 

single-well low-frequency model does not always work well and other 

interpolation methods such as the one following an inverse-distance 

approach, create bull’s-eye artifacts on the low-frequency model. Our 

new approach for generating a low-frequency model gives a very good 

estimate of the low-frequency component for use in the model-based 

impedance inversion. The very good match at the blind well, between 

the actual impedance log and the inverted impedance using the low-

frequency based on the new approach, gives confidence in the new 

approach of generating low-frequency model. 
  

Moreover, we see a very close match between the inverted impedances 

based on the low-frequency models using collocated cokriging and the 

new approach of multi-attribute regression. This confirms that the two 

methods that we adopted for building the low-frequency models are 

equally good and can be implemented with confidence. 
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Figure 7:  (a) 2D variogram map showing the major direction of continuity. Plots showing 

different analytical variograms fitted to the experimental data for (a) major, (b) minor and 

(c) vertical direction. 

 

Figure 8:  Horizon slice in the ZOI for the low-frequency model generated 

using collocated cokriging. 

 

Figure 9:  Match at the blind well between the actual impedance logs (blue 

curve), inverted impedance using the low-frequency model based on 

collocated cokriging (black curve) and the inverted impedance using the 

low-frequency model based on the new approach (red curve). Note a very 
close match between the inverted impedances based on two different low-

frequency models.  
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