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Summary 
 
We propose an adaptive approach to address the practical 
issues in least-squares reverse time migration (LSRTM) 
with a focus on subsalt imaging. The problems include 
imperfect migration velocity, slow convergence in subsalt 
area, and extra migration artifacts introduced in gradient 
computation. The adaptive solution involves strategies to 
enhance data consistency in time domain and control the 
migration aperture to precondition the LSRTM gradient for 
fast convergence. We use constrained dynamic warping to 
correct the misalignments between synthetic and input 
waveforms due to short-wavelength velocity errors. The 
waveform amplitude differences are mitigated by a locally 
windowed gain using input data as reference. During the 
LSRTM iterations we gradually open the migration 
aperture to control the weighting for updating structures 
with different dips. The extra artifacts introduced during 
gradient computation by the two-way migration operator 
are suppressed via a structure-oriented smoothing process. 
We demonstrate the effectiveness of the proposed adaptive 
strategies via a 3D synthetic model derived from the true 
geology of the Gulf of Mexico (GoM). Lastly, we examine 
the results of the adaptive LSRTM approach on our multi-
client wide-azimuth data acquired in the Freedom area of 
the GoM. The images of shadow zone and subsalt area are 
significantly improved after a few iterations regardless of 
the practical limitations such as velocity error and weak 
illumination near and below the salt body. 
 
Introduction 
 
Seismic imaging algorithms are continuously evolving and 
the corresponding research is moving toward inversion-
based methods such as least-squares migration (LSM, 
[Schuster, 1993, Nemeth et al., 1999, Duquet et al., 2000, 
and Tang, 2009]). Least-squares reverse time migration 
(LSRTM) has gained particular interest in recent years 
(e.g., Wong et al., 2011, Dong et al., 2012, Dai et al., 2013, 
Zhang et al., 2013, and Zhan et al., 2014) by virtue of its 
improved amplitude response, higher spatial resolution, 
reduced migration artifacts, and enhancement of complex 
structures (Zeng et al., 2014a) compared to conventional 
depth migration algorithms. Despite the encouraging 
success of LSRTM on preliminary field data studies, 
further investigation is needed to address many practical 
issues such as unknown source wavelet, imperfect 
migration velocity, massive computation cost, etc. 
Appropriate quality control (QC) methods are also needed 
to ensure the convergence of LSRTM iterations or to 
uncover the problems as early as possible when the 
inversion is unstable. Sophisticated strategies are also 

needed to improve the stability of LSRTM so that it can be 
less prone to the practical problems in conventional depth 
migration. 
 
In general, LSRTM iteratively updates the seismic image 
with a similar workflow to what is used in full waveform 
inversion (FWI). One of the major differences between 
these two methods with respect to implementation is that 
LSRTM searches for solution based on seismic reflectivity 
rather than seismic velocity in FWI. Currently all LSRTM 
algorithms are implemented as a single parameter inversion 
for seismic reflectivity (or impedance) only, in which 
seismic velocity is fed to the program as an input parameter 
and remains unchanged during the entire inversion 
procedure. This raises a fundamental problem of LSRTM: 
any errors in the velocity model will propagate throughout 
the inversion and will introduce uncertainty in the final 
inverted seismic image. From this point of view, LSRTM 
encounters the same paradox related to the requirement of 
seismic velocity in conventional depth migration 
algorithms. In theory LSRTM has to assume the velocity 
model is perfect otherwise there will be time shifts between 
the waveforms of synthetic and input data. This 
misalignment distorts the subtracted residual waveforms, 
and then smear the gradient after back projection using the 
same migration kernel. In previous studies (e.g. Wang et 
al., 2013, Dong et al., 2014, Zeng et al., 2014a, and Zeng et 
al., 2014b) a matching filter was applied to the synthetic 
data to partially correct this problem. Also, Luo and Hale 
(2014) proposed to warp the input data rather than synthetic 
data to force the time domain data and the migrated depth 
domain image to be consistent. Here we revise this 
approach with a more sophisticated quality control to raise 
the confidence level of the warped data. The concept of this 
data warping strategy is coincident with the “adaptive 
image focusing” idea proposed by Etgen et al. (2014). 
Therefore, we name our approach “adaptive LSRTM” 
because the input data are adaptively corrected to 
compensate for the velocity errors. 
 
Furthermore, we extend the concept of adaptive imaging by 
altering migration parameters (such as aperture) during 
LSRTM iterations to speed up the convergence of the 
inversion focusing on subsalt area. This approach is 
efficient particularly when interpreters are more interested 
in the subsalt geology of the sediments related to potential 
reservoirs. We name this an “image adaptive” strategy 
because it is equivalent to applying natural weights to 
sediment images which are gently dipping in subsalt areas. 
Computation cost will also be greatly reduced due to the 
controlled aperture in LSRTM. To eliminate the extra 
artifacts generated by the two-way migration operator 
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Adaptive least-squares RTM 

during gradient computation, we apply a structure-oriented 
smoothing (Fehmers and Höcker, 2003, and Hale, 2009) to 
clean up the stacked gradient so that the subsalt image can 
be updated without introducing extra migration swings. 
 
In the following paragraphs, we discuss the proposed 
adaptive strategies in detail. We also demonstrate the 
effectiveness of the adaptive strategies via synthetic and 
real world examples based on data from the GoM. 
 
Data Adaptive with Constrained Dynamic Warping 
 
By realizing the challenges of velocity model building with 
increased geological complexity, it is expected that the 
migration velocity is never perfect in practice (Etgen et al., 
2014). An interesting study presented by Albertin and 
Zhang (2014) shows that migration error occurs even with 
perfect velocity model when a complex salt body involved. 
The convergence of LSRTM is measured by minimizing 
the least-squares difference between synthetic and input 
seismic waveforms. In theory, this waveform difference 
should be related only to the difference between migrated 
seismic image and the true earth reflectivity. However, the 
almost unavoidable velocity errors violate this assumption 
and introduce unwanted time shifts in synthetic waveforms 
with respect to the input data. Previously, we used a 
matching filter to correct the synthetic data so that the 
waveforms can be aligned to generate reasonable residual 
waveforms. However, this correction will be cancelled 
when we reverse-time migrate the residual and generate a 
blurred gradient due to using inaccurate velocities (again) 
for migration. It is attractive to apply a local wavefield 
correction in image domain before stacking (e.g., Huang et 
al., 2014, Etgen et al., 2014, and Albertin and Zhang, 2014) 
to re-focus the image. An equivalent data domain method is 
to adjust the input data to force it to be consistent with the 
velocity model and the migrated image (Luo and Hale, 
2014). For LSRTM this data domain adjustment is feasible 
because it is done only once before the first iteration. Thus, 
imposing no extra computation cost for the inversion. 
Because the modeling kernel and the migration kernel share 
the same velocity model, the synthetic data are self-
consistent with the migrated image in terms of time to 
depth mapping. After adjusting the input data using 
synthetic as reference, we can obtain a better-focused 
image by correctly mapping the time-domain data to depth-
domain image. 
 
Similar to Luo and Hale (2014), we employ dynamic 
warping (Hale, 2013) to perform the adaptive data 
correction. We should be aware that dynamic warping itself 
assumes that the differences of the two input signals are 
minor and mainly due to (temporal or spatial) distortion. 
That means we need to assume that the seismic events in 
the synthetic data can be always found to match those in 

the reference data. However, in LSRTM, this is not always 
true due to the quality limitation of the initial image. 
Especially for the images near the salt, e.g. in the shadow 
zone or just below the base of salt, the image quality is 
usually limited compared to those in shallow sediments 
above the salt. In addition, extra artifacts on the initial 
image will also generate spurious events on the synthetic 
record and therefore degrade the coherency of the synthetic 
and input waveforms. To overcome this problem, we 
introduce a confidence level to measure the reliability of 
the warped data to evaluate the quality of the data adaptive 
correction. The confidence level at each sample point is 
calculated by a 2D normalized cross-correlation as follows: 
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where d and u are the warped input and synthetic samples, 
respectively. The h and l correspond the half window size 
along the spatial and temporal direction. 
 

 
Figure 1. a) Input shot record, b) Synthetic shot record, and c) 
the confidence level for residual weighting based on cross 
correlation. 

We measure the coherence of the warped input and the 
reference (synthetic) by calculating the confidence level 
using a 2D sliding window in x-t domain according to 
equation 1. A high confidence level indicates the input 
waveform matches the synthetic one well in the scale of the 
dominant period, while a low confidence level suggests the 
warping is inappropriate making the result less reliable. By 
using this confidence level to constrain the corresponding 
residual data, we can avoid unwanted artifacts in the 
gradient by automatically filtering out the less desirable 
residual waveforms. Figure 1 illustrates the concept of 
residual weighting based on the confidence level. 
 

a) b) c) 
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After travel time adjustment of the input data by dynamic 
warping, we also need to correct the amplitude of the 
synthetic since it too will be inaccurate due to the limitation 
of Born modeling. It is noteworthy that in practical 
amplitude correction we should fix the synthetic amplitude 
only to a certain level rather than a perfect match. 
Otherwise, we will lose the true amplitude advantage of 
LSRTM. Specifically, an ideal amplitude match should 
produce waveforms that have same overall amplitude level 
in the scale of dominant period with only detailed 
differences that are meaningful to LSRTM. To accomplish 
this we employ a strategy of reference gain control which is 
related to automatic gain control (AGC). To preserve the 
true amplitude variation rather than equally scaling up 
everything, we first normalize the amplitude of synthetic 
waveforms. Then, we match the root-mean-square (RMS) 
value to that of the input waveform. After that, the residual 
can be obtained by direct subtraction of the input and 
synthetic waveforms with the weighting from the 
previously calculated confidence level. 
 
Image Adaptive with Controlled Aperture 
 
We extend the idea of adaptive imaging to the imaging 
domain for LSRTM with a focus on the subsalt. In 
structural imaging interpreters are more interested in the 
locations (or geometric shapes) of reflectors than the true 
amplitudes of the steep dips, such as faults or salt flanks. 
Conventional LSRTM is not explicitly aware of the dip 
information used by the two-way wave equation. It simply 
treats all events equally and updates them simultaneously 
during iterations. The salt body itself is a strong reflector 
that contributes more to the overall least-squares data misfit. 
Usually LSRTM uses the final velocity model in which the 
salt bodies are well defined by sophisticated model building 
processes. So, updating the images of salt bodies is not as 
important as fine tuning the sediments near or below the 
base of salt. The true amplitude information is usually 
focused on the relatively gently dipping subsalt sediments 
that are close to the salt body, where potential oil traps may 
exist. It is obvious that equal updating of all images, 
regardless of the geological emphasis, increases the number 
of iterations in efficiency. In many cases, the subsalt 
sediments are dipping relatively gently and can be imaged 
without a large aperture. By limiting the migration aperture 
when calculating the LSRTM gradient, we naturally drop 
the updates for steeply dipped salt flanks (since their 
amplitudes are less important as long as their location and 
shape remain intact) and concentrate more on the nearby, 
poorly-imaged sediments. This can greatly reduce the cost 
of LSRTM and speed up the convergence of the inversion 
to efficiently obtain satisfactory images for subsalt 
sediments. In practice, we first migrate the data using large 
(inline and cross-line) apertures to get good initial image 
containing well defined steep dips. Then we calculate the 

gradient starting with a relatively small aperture and 
gradually increase the aperture during each iteration of 
LSRTM updating. This strategy, in principle, is a natural 
(image domain) adaptive weighting process for LSRTM 
updating that recognizes the geological emphasis. The 
controlled aperture strategy benefits the inversion with 
respect to not only the subsalt image quality but also less 
computation cost. 
 
We use total illumination compensation to scale up the 
LSRTM updates corresponding to the weak subsalt events 
for fast convergence. A side effect is the migration artifacts 
in the subsalt area are also boosted up. To eliminate these 
extra artifacts on the gradient we apply a structure-oriented 
smoothing to the stack gradient. We found this 
preconditioning is essential to the adaptive approach to 
properly enhance the image S/N in subsalt. 
 
Examples 
 
We test the adaptive strategies using a 3D synthetic model 
dominated by a salt body. Figure 2 shows the images of the 
near-salt sediments are closer to the true reflectivity after 
three LSRTM iterations. Finally, we apply the adaptive 
LSRTM to a WAZ real data from a subset of the Freedom 
area in the GoM. The success of the subsalt image 
improvements (Figure 3) confirms the effectiveness of the 
adaptive LSRTM strategies. 
 

Figure 2. a) Conventional RTM, and b) Adaptive LSRTM 
images of the synthetic salt model based on the geology of the 
GoM. 

a)

b)
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Conclusions 
 
We present an adaptive approach and detailed strategies for 
LSRTM focusing on subsalt imaging. The adaptive 
LSRTM overcomes the practical issues such as short-
wavelength velocity errors, amplitude mismatch, and slow 
convergence for subsalt events due to weak illumination. 
Both the synthetic and real data examples based on the 
GoM data show significant improvements for images near 
the steeply dipped salt flanks and those below the base of 
salt within just a few LSRTM iterations. 
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Figure 3. a) Conventional RTM, and b) Adaptive LSRTM images (two iterations) migrated from the Freedom WAZ data in the GoM.

 

a) 

b) 
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