
Time variant de-ghosting and its applications in WAZ data 
Zhigang Zhang*, Zhaohong Wu, Bin Wang, and Jean Ji, TGS, Houston, TX, USA 
 
Summary 
 
The importance of de-ghosting cannot be overstated in the 
pursuit of a broad-band image, and an accurate estimation 
of the ghost delay time, explicitly, or implicitly, is critical 
for the de-ghosting process. We propose the uses of L2 or 
L1 norm of the de-ghosted data in search of the ghost delay 
time. This method has proven robust and stable using both 
synthetic data and real data. We have built a time-variant 
adaptive de-ghosting method with this method, applied it 
for wide azimuth (WAZ) and full azimuth (FAZ) data, and 
provide results in this abstract. The proposed method has 
the capability to handle uncertainties in receiver depth and 
water velocity, and 3D effects, which makes it practical to 
apply.  
 
Introduction 
 
A high resolution image requires a narrow wavelet, which 
can be translated into a broad spectrum in the frequency 
domain. This endeavor is constrained by the existence of 
both source and receiver ghosts, the reflection of up-going 
wave from the water surface in marine acquisitions. Ghosts 
closely follow the primaries in seismic data with opposite 
polarity. Interference between the ghosts and primaries 
enhances energy in some frequencies while attenuates 
energy in others, including the much desired low 
frequencies. 
  
Research to separate the ghost and primary can be tracked 
back decades ago (Jovanovich et al., 1983), but practical 
applications were much limited until recently substantial 
progress was made in both acquisition methods and 
processing algorithms. Implementations of slant cable 
(Soubaras, 2010, 2012) and dual depth streamer 
(Posthumus, 1993) take advantage of receiver notch 
diversity brought by the variable receiver depth. Multi-
sensor design, on the other hand, recovers lost information 
in the hydrophone with signals from other sensors, such as 
the geo-phones (Carlson et al., 2007). Though these 
acquisition-based methods are very successful, research of 
processing-based de-ghosting algorithms for conventional 
data acquisition receives great interest because of the 
obvious benefit from de-ghosting and wide availability of 
legacy data (Baldock et al., 2012; Robertsson et al., 2014; 
Telling et al., 2014; Wang et al., 2013; Zhou et al., 2012). 
 
Successful processing-based de-ghosting requires accurate 
knowledge of the ghost delay time, which is the time gap 
between the primary and ghost.  The ghost delay time is a 
function of the emerging angle of the up-going wave, 
receiver or source depth, and water velocity. The tau-p 

transform plays an important role in most de-ghosting 
algorithms (Masoomazadeh et al., 2013; Robertsson et al., 
2014; Telling et al., 2014; Wang et al., 2013). It 
decomposes wave field into local plane wave which has a 
uniform emerging angle everywhere along the streamer.  
But because of the sparse sampling in the cross-line 
direction and high cost of an inversion based 3D tau-p 
transform, most current algorithms utilize 2D tau-p 
transform. 
 
There are many reasons that can cause a 2D de-ghosting 
algorithm go wrong. The 3D effect, such as reflections 
from off-plane events, results in time variant ghost delay 
time even for the same 𝑝𝑥. The uncertainties in receiver 
depth due to bad weather and inaccuracy of water velocity 
are all very common in practice and may also leave ringing 
in the de-ghosted data. To be successful, a de-ghosting 
algorithm must adapt itself to these scenarios. Sometimes 
different algorithms are required for different data sets. 
 
WAZ and FAZ acquisitions pose additional challenges. 
Firstly, the slowness in the cross-line direction (𝑝𝑦) is 
mostly not zero, which invalidates the 2D assumption. 
Though this difficulty could be alleviated by using the real 
offset between the source and receivers in the tau-p 
transform and calculating the slowness in the radial 
direction (𝑝𝑟), the challenge is not solved. Secondly, the 
irregular offset distribution increases the cost of tau-p 
transform. Compounding the issue, guns are positioned to 
the side of some cables with substantial distance resulting 
in small offset changes as the azimuth approaches 90 
degree. Even a very small event dip can result in a very 
large slowness value because of the fine offset distribution. 
Last but not least, the source signature is directional. 
Sometimes, source brings in an inherent notch in the 
frequency spectrum close to the ghost notch and makes QC 
and de-ghosting more difficult. 
 
A natural choice to handle the 3D effect and irregular offset 
distribution is to design a time-variant de-ghosting 
algorithm, which can adaptively accomplish search and de-
ghost in small windows. Such a strategy requires a stable 
and robust search algorithm for the ghost delay time, since 
geology effect becomes prominent in small windows and 
many statistical methods lose their stability. A reliable tau-
p transform is also critical for the de-ghosting purpose to 
more accurately group energy with the same ghost delay 
time. 
 
Recently, an inversion based 3D tau-p transform method 
has been proposed and shown great results (Wang et al., 
2014; Wu et al., 2014). This method applies a sparse 
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Time variant de-ghosting 

constraint to reduce the computation cost and surpasses the 
limit set by sparse sampling in the cross-line direction. In 
this abstract, we propose an alternative algorithm to de-
ghost WAZ and FAZ data. We firstly design an adaptive 
ghost delay time searching algorithm and then use it to 
build a time-variant de-ghosting procedure. We also use a 
high resolution tau-p transform and accomplish de-ghosting 
in the tau-p domain. Our tests using synthetic and real data 
have shown the algorithm is very robust.  

 
A time variant de-ghosting algorithm 
 
Though mostly treated as negative one, the reflection 
coefficient at the water-air interface is actually a function 
of frequency, emerging angles, and wave conditions 
(Jovanovich et al., 1983). It decreases from low to high 
frequency, and as a result the ghost notch always becomes 
shallower in high frequency in real data. In this abstract, we 
use a Gaussian type function for the reflection coefficient, 
as 

𝑟(𝑓) = 𝑒−
1
𝜎2
𝑓2 ,                                (1) 

where 𝜎 is a positive number. This is a simplification of the 
formula used by Jovanovich that ignores the wave 
directions. In the frequency domain, the ghost operator then 
could be written as 

𝐺(𝑓) = 1 − 𝑟(𝑓)𝑒−𝑖2𝜋𝑓∆,                      (2) 

where ∆ is the true ghost delay time. We can easily find its 
impulse response in continuous time domain as 

𝑔(𝑡) = 𝛿(𝑡) − 𝜎√𝜋𝑒−𝜎𝜋
2(𝑡−∆)2 .               (3) 

 
When 𝜎 is very large, 𝑟(𝑓) is close to 1 and both the 
frequency domain operator and time domain pulse response 
converge to their calm water surface cases, respectively. 
Specifically, the ghost operator changes to 

𝐺(𝑓) = 1 − 𝑒−𝑖2𝜋𝑓∆ .                       (4) 
Figure 1 shows the wavelet and amplitude spectrum of a 
broad band wavelet without ghost and after applying a 
ghost operator. The sample time is 2ms and there is only 
very subtle difference between the two operators given by 
(3) and (4). 

 
Ghost can be eliminated in either frequency domain or time 
domain (Robertsson et al., 2014). In our tests, we apply the 
following de-ghosting operator in frequency domain, 

𝐹(𝑓) = 1
1−𝑟(𝑓)𝑒−𝑖2𝜋𝜋∆𝑎

.                            (5) 
We use ∆𝑎 to denote the actual delay time we use. In 
frequency domain, the de-ghosted data, denoted as 𝑃𝑑𝑑(𝑓),  
can then be written as 

a). b). c)      

d).   

Figure 1. Wavelet and spectrum with and without ghost. a) 
Input wavelet without a ghost; b) Ghosted wavelet using 
ghost operator in equation (4); c) Ghosted wavelet using 
ghost operator in equation (3); d) Amplitude spectrum of 
input wavelet (yellow), wavelet in b) (red), and wavelet in c) 
(green). The ghost delay time equals 20ms. In equation 3),  
the parameter 𝜎=240Hz, which is equivalent to about 1m of 
rms wave height.  
 

a).  

b).  

Figure 2. Effect of ∆𝑎 on de-ghosting. a) De-ghosted data 
with different ∆𝑎, from left to right, ∆𝑎 changes from 2ms to 
60ms. Perfect de-ghosting is achieved when ∆𝑎= ∆ (green 
arrow). When ∆𝑎= 0.5∆ (red arrow), the primary is followed 
by another peak with the same polarity and amplitude at 10ms 
in the de-ghosted data; b) The L1 norm of the de-ghosted 
data. The 𝑥 axis is the ratio ∆𝑎/∆. Curves of different 𝜎 are 
displayed in different color, with green for 𝜎=240Hz, which 
is the true value, red for 𝜎=480Hz, and blue for 𝜎=120Hz.  
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Time variant de-ghosting 

𝑃𝑑𝑑(𝑓) = 1−𝑟(𝑓)𝑒−𝑖2𝜋𝜋∆

1−𝑟(𝑓)𝑒−𝑖2𝜋𝜋∆𝑎
𝑃(𝑓),                   (6) 

where 𝑃(𝑓) is the true primary without ghost. The de-
ghosting operator compensates the ghost operator and 
recovers the primary accurately when both the delay time ∆ 
and 𝑟(𝑓) are known. Incorrect time delay ∆𝑎 causes ringing 
in the data. In frequency domain, it boosts energy in the 
wrong frequency and the total energy increases. This fact 
inspires us to use the total energy of de-ghosted data to 
search the true delay time ∆.  
 

Figure 2 demonstrates how the L1 norm of the de-ghosted 
data changes with ∆𝑎. The input signal is shown in Figure 
1c with 𝜎=240Hz, with ghost delay time equal to 20ms, 
and centered in a 2s time window. We scan ∆𝑎 from 2ms to 
60ms, equivalent from 0.1∆ to 3∆, a very large range. 
When ∆𝑎= ∆, the primary is correctly recovered. Larger ∆𝑎 
causes ringing and the L1 norm of 𝑃𝑑𝑑(𝑡) increases rapidly. 
Round-up appears after about 1.5∆ because of the limited 
window size, and causes “lion tail” in the L1 curve, but it 
does not affect the optimization. A local minimum occurs 
at 10ms, half of the real delay time, with the objective 
function about twice as much as the global minimum. 
 
In practice, we mostly have a rough estimation of ∆, 
especially in the tau-p domain, and the search range can be 
much smaller than what is shown in Figure 2, mostly 
between  0.5∆ to 1.2∆. This makes the searching even more 
robust. We do not need an accurate estimation of 𝜎. It 
affects the shape of the objective function, but does not 
change the location of minimum. Figure 2b shows how the 
objective function changes with 𝜎. An additional search of 
𝜎 may be applied later to further improve the result. 

 
We have tested different criteria in the search of delay time, 
including auto-correlation, amplitude spectrum, and phase 
spectrum. These methods need enough data to reduce the 
influence from noise and geology, and become unstable for 
small windows. Wang et al. (2013) propose to search ∆ in 
the tau-p domain by minimizing an objective function 
which matches the primary and ghost. But it needs a set of 
mirror data, which is sometime not available or hard to 
obtain. Based on our observation, we suggest using the L1 
norm of  𝑃𝑑𝑑(𝑡) and solving the following optimization 
problem 

min∆𝑎𝑚𝑖𝑚<∆𝑎<∆𝑎𝑚𝑎𝑚�𝑃𝑑𝑑(𝑡)�
𝐿1

                     (7) 
 
where 𝑃𝑑𝑑(𝑡) is the de-ghosted data in time domain, and 
[∆𝑎𝑚𝑖𝑚,∆𝑎𝑚𝑎𝑥] is a range specified by the user. We use 
global search to avoid running into local minimums. Tests 
show L1 norm is more stable than L2 norm in real data. 

a)  b)   

Figure 4. A shot gather before and after de-ghosting from a FAZ acquisition. a) Input data before de-ghosting; b) After both source and 
receiver de-ghosting; c) Amplitude spectrum of the region in the green box of input (red) and de-ghosted data (green); d) Wavelet of water 
bottom before de-ghosting; e) Wavelet of water bottom after de-ghosting 

c)  

d)  

e)  

 
Figure 3. Gun-cable configuration. The acquisition 
utilizes 5 vessels. Only three are shown here because of 
limited space. The data used in this abstract is acquired 
using gun 3 and the cable in solid line. Cable length is 
about 8km, and the distance between the gun and cable 
is about 2400m. 
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Time variant de-ghosting 

Since the method is an adaptive method, the same strategy 
could be used for either source ghost, receiver ghost, or a 
combination. 
  
We take advantage of a high resolution tau-p transform and 
apply de-ghosting in the tau-p domain. Our high resolution 
tau-p transform separates energy with different emerging 
angles well and makes it feasible to search in small 
windows. It also provides estimation for a good initial 
value and range for search. 
 
Application in a FAZ acquisition 
 
We have applied our time variant de-ghosting method to a 
FAZ data set in the Gulf of Mexico. The acquisition has a 
staggered configuration as partially shown in Figure 3. 
Positions of the gun and the cable used in this example are 
also shown. The source depth is fixed at 10m and the cable 
is towed flat at 12m. The cross-line distance between the 
gun and cable is about 2.4km. Near the point where the 
azimuth is close to 90 degree, the smallest offset change 
from one receiver to a neighbor receiver is about 0.03m. 
The offset is regularized before tau-p transform. We also 
make sure the input could be honestly recovered by an 
inverse transform without losing weak events or steep 
events. 
 
Figure 4 shows a shot gather before and after de-ghosting 
on both source and receiver sides. Ghost energy is strongly 
attenuated. The high resolution tau-p transform separates 
the crossing events nicely and makes the adaptive de-
ghosting successful, including diffractions and crossing 
events. Amplitude spectrum further confirms the de-
ghosting results.  
 
An NMO is then applied and the stacked images are shown 

in Figure 5a and 5b for comparison. The amplitude spectra 
are also shown in Figure 5c. The de-ghosting results are 
obvious in both stacked images and the flattened spectrum. 
Much clearer details can be seen in the de-ghosted image. 
Though there is still some notch residual, it could be 
removed by using other statistical methods (Masoomazadeh 
et al., 2013). 
 
Conclusions and discussions 
 
Rather than a 3D tau-p transform, we use a high resolution 
2D tau-p transform. To compensate the 3D effect in WAZ 
and FAZ data, we propose the use of the L1 norm of the de-
ghosted data as a search criterion for the ghost delay time 
in small windows. On this basis, we build a time variant de-
ghosting procedure. This strategy turns out to be very 
successful. Our method can also be used in NAZ data with 
uncertainties in receiver depth or with mild 3D effect.  
 
The search for ghost delay time is accomplished in small 
windows. In each window, the variance of delay time must 
be limited. Otherwise, ringing or some other artifacts will 
appear and force the de-ghosting to be less aggressive. 
Thus, a good method to group events according to their 
emerging angles is critical. In extreme cases, more 
sophisticated algorithms are still needed to achieve 
satisfactory results. 
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a) b) c)  

Figure 5. Comparison of stacked image before and after de-ghosting. a) Input data; b) After de-ghosting on both source and receiver sides; c) 
Amplitude spectrum from the region in the green box. Spectrum for the input data is show in red, while spectrum for the de-ghosted data is 
shown in green. 
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