
1

v

WHITE PAPER

How to Manage Microsoft Teams:
An Admin Guide

Author: Greg Jones

2

Contents

Native Management of Microsoft Teams 3
 The Configuration 3
 PowerShell 3
 Install the Teams PowerShell Module 3
 Connect PowerShell to the Tenant 3
 Show Available Cmdlets 4
 New Team PowerShell Options 5
 Create the Team 6
 Add Members and Channels 6
 Modify Settings 7
 Remove the Team 7
 Scripting the Team Creation 7
 Using the Graph API 8
 Create the Group and Add Members 8
 Create the Team with Settings 9
 Add the Channel 10
 A Single Call? 11
 Conclusion 11
Teams Templates 12
 What are Teams Templates? 12
 Before Teams Templates: Using Existing Teams as a Template 12
 Base Templates 16
 Properties Supported by Teams Templates 16
 PowerShell and Templates 16
 Graph API and Templates 17
 Application Permissions 17
 User Permissions with Advanced Requests Using the Standard Template 15
 Takeaways from API Testing 21
Delegating Teams Creation 21
 Azure AD Roles for Delegation 21
 The Teams Service Administrator Role 23
 How Does This Work? 23
 Granular Delegated Administration 25
 The Use Case 25
 The Solution 25
 The Result 28
Conclusion 29

3

Native Management of Microsoft Teams

There are now three ways to manage Microsoft Teams natively. The first is through
the Microsoft 365 Admin Center. This will allow you to manage the users and
groups associated with the Teams and you will also have a link in the Admin Center
to get to the Teams Admin Center. This won’t be covered here except to mention
that if you are a Global Admin you have full rights. If not, you will need to be
added to the “Teams Service Administrator” role in AAD. The other 2 options that
will be covered here will be management via PowerShell and via the Graph API.

The configuration
For both methods, we will be creating the “UK Finance Team” with a “Regulatory
Compliance” channel with members allowed to create and update channels, but
not allowed to delete them. Users will also not be allowed to add or remove apps.

PowerShell
Let’s deal with PowerShell first since it is a more common approach for
administration.

Install the Teams PowerShell Module
The first step in managing Teams via PowerShell is to install the Teams Cmdlets
module. Running PowerShell as an Administrator, you will need to run the following
and allow install from the untrusted repo as well as installing the NuGet package:

Connect PowerShell to the Tenant
The next step is to connect to Teams in the tenant. This can be done with the
following script.

Install-Module -Name MicrosoftTeams

4

Voila…you are connected to Microsoft Teams as long as you have the appropriate
rights.

Show Available Cmdlets
You can now run Get-Command -Module MicrosoftTeams to list the available
cmdlets.

$UserCredential = Get-Credential
Connect-MicrosoftTeams -Credential $UserCredential

5

New Team PowerShell Options
For this example, we will create a new Team. If we look at the results of a Get-
Help New-Team -Full, you can see the syntax of the command as well as the
parameters.

6

Create the Team
We can create the new team.
New-Team -DisplayName “UK Finance Team” -AccessType Private -Description
“This Team is for UK Finance”

This will provide us with the GroupID for the Team so we know the cmdlet was
successful. The Team is created, but is does not have membership, channels, or
settings.

Add Members and Channels
To do this we can run Add-TeamUser, New-TeamChannel and a host of Set-Team
other settings that aren’t covered here, but you can find more details of these in
the Microsoft documentation.

A member has been added to the Team, and a new channel has been created. You
will notice that the channel has an ID associated with it that will be needed for the
management of that channel.

Add-TeamUser -GroupId 4a07317c-c860-47db-9a85-00113764d528 -User user@domain.onmi-
crosoft.com

New-TeamChannel -GroupId 4a07317c-c860-47db-9a85-00113764d528 -DisplayName “Regula-
tory Compliance”

Id DisplayName Description
-- ----------- -----------
19:77e332ebe56c494181372e509b44251c@thread.skype Regulatory Compliance

https://docs.microsoft.com/en-us/powershell/module/teams/set-team?view=teams-ps

7

Modify Settings
I mentioned I would not cover all the settings cmdlets, but I will briefly cover the
TeamMemberSettings as an example because I want my users to create channels
but not delete them, and I also do not want them to add/remove Apps. I can run
Set-TeamMemberSettings to do this.

I now have my team created ‘mostly’ as I would like but it has taken me a while
and a lot of commands to do this. Let me delete the team.

Remove the Team
Remove-Team -GroupId 4a07317c-c860-47db-9a85-00113764d528

Scripting the Team Creation
Now I can script the entire thing like this with the groupid captured from the initial
creation.

That is a bit more straightforward, but it could still be easier. Microsoft has
impended a beta feature for now to easily create a team based on a template.
However, this will be covered later.

Set-TeamMemberSettings -GroupId 4a07317c-c860-47db-9a85-00113764d528 -AllowCreateUp-
dateChannels true -AllowDeleteChannels false -AllowAddRemoveApps false

$group = New-Team -DisplayName “UK Finance Team” -AccessType Private -Description “This
Team is for UK Finance”

Add-TeamUser -GroupId $group.GroupId -User “user@domain.onmicrosoft.com”

New-TeamChannel -GroupId $group.GroupId -DisplayName “Regulatory Compliance”

Set-TeamMemberSettings -GroupId $group.GroupId -AllowCreateUpdateChannels true -Al-
lowDeleteChannels false -AllowAddRemoveApps false

8

Using the Graph API

We can do the same thing via the Graph API with either user-level or application-
level permissions. If we look at the documentation you can see that, just like
PowerShell, there are different resources to create and modify Teams.

Create the Group and add Members
Using the same example but via Graph, I need to create the group before I can
create the Team, and the group needs to be an Office 365 Group. I will also add
my user as an owner and a member in this post.

POST https://graph.microsoft.com/v1.0/groups
Content-Type: application/json

{
 “description”: “This Team is for UK Finance”,
 “displayName”: “UK Finance Team”,
 “groupTypes”: [
 “Unified”
],
 “mailEnabled”: true,
 “mailNickname”: “operations2019”,
 “securityEnabled”: false,
 “owners@odata.bind”: [
 “https://graph.microsoft.com/v1.0/users/a103604b-0441-4e96-a599-9edd9bd1b271”
],
 “members@odata.bind”: [
 “https://graph.microsoft.com/v1.0/users/a103604b-0441-4e96-a599-9edd9bd1b271”
]
}

https://docs.microsoft.com/en-us/graph/api/resources/teams-api-overview?view=graph-rest-1.0

9

The important part of the response is the ID of the group. In this example it is:
“id”: “084e7e06-9d1c-42dc-b67d-2546fc283860”

Create the Team with Settings
With the Group ID we can now create the team along with our settings with a Put:
PUT https://graph.microsoft.com/v1.0/groups/084e7e06-9d1c-42dc-b67d-
2546fc283860/team
Content-type: application/json

{
 “memberSettings”: {
 “allowCreateUpdateChannels”: true,
 “allowDeleteChannels”: false,
 “allowAddRemoveApps”: false
 }
}

10

Add the Channel
Now we have a group with members and a team with settings, but we still don’t
have any Channels. We can now create the channel with a POST.
POST https://graph.microsoft.com/v1.0/teams/084e7e06-9d1c-42dc-b67d-
2546fc283860/channels
Content-type: application/json

{
 “displayName”: “Regulatory Compliance”,
 “description”: “This channel is for Regulatory Compliance”
}

11

A Single Call?
As you can see, there are a few steps involved to get what we want. So, the next
question is, how can we make this simpler? Can we create a Team with the Graph
API in a single process - like was done with the scripting in PowerShell? Well, we
can now in Beta endpoints using templates. But as I mentioned before, we’ll be
covering templates later.

Conclusion
You can see that whether you use PowerShell or the Graph, the Team is created
with the settings, members, and channels you have defined. I think it is also
interesting to do the creation this way to understand the underlying relationship
between workloads to create Teams.

12

The next article in this series on Teams management will look at the creation
of Teams templates, which is currently in Beta. This method delivers a more
programmatic approach to Teams creation. Make sure you check back on the blog
to see the next installment.

Teams Templates
In a previous section, I walked through the creation of Microsoft Teams using
PowerShell and the Graph API. Both of those involve multiple steps to fully create
a Team. In that section I mentioned that Microsoft now has Teams Templates
in beta and that these templates can be used for a more streamlined process to
programmatically create Teams.

What are Teams Templates?
With the introduction of templates, we can now quickly create Teams based on
pre-defined templates yet still modify those templates to suit the customer needs
(at least via Graph). This is super helpful if you need to create similar Teams with
defined channels, members, settings, and apps. It avoids having to start from
scratch each time – saving a lot of time. It could also help avoid user error during
configuration, because as long as your base template is correctly set up, and you
select precisely what you want, you can’t go too far wrong!

Important note: Like everything in Microsoft 365, this feature is changing quickly.
While the information here is correct at the time of writing, it is likely to change
as Microsoft develops and adds to Teams templates. For the most up to date
information, and more details about this feature – check here.

Before Teams Templates: using existing Teams as a template
If you are looking to create a team with a similar style and configuration to an
existing team in your tenant, you can use the existing team as a template for the
new one. It’s a straightforward, but manual process. Here’s how to do it.

• In the ‘Teams’ section of the application, click on the ‘Join or create a team’
option.

https://docs.microsoft.com/en-us/MicrosoftTeams/get-started-with-teams-templates

13

• You will be asked whether you want to build a team from scratch or use an
existing Office 365 Group or team. Choose ‘Create from…An existing Office 365
group or team’.

• Next, click ‘Create Team’

14

• Then, you will be asked whether you want to create your new team from a team,
or an Office 365 group. Note: You will only be able to replicate an existing team
if you are an owner, or belong to that team.

15

• Whether you choose ‘Team’ or ‘Group’ you will be presented with your existing
options:

• From there, you can configure your new team with all of the pre-existing settings,
to save time, and ensure the correct people, apps, and channels are moved
over.

As you can see, this is an extremely simple process, but it is multi-step and highly
manual. It also requires time to configure any differing settings you need to add
from your existing team. So if you need to create teams regularly, this is not an
ideal, nor streamlined process. Enter Teams Templates.

This section explores how to use templates via PowerShell and the Graph. There is a
more limited selection of templates available for this method in PowerShell, which
we will highlight. As this feature is only in beta currently, we expect to see the
capabilities of both approaches increase for GA and beyond.

16

Base Templates
There are currently 8 base templates, with specific apps and properties for the
industries they relate to: Education, Retail, and Healthcare. There is also a standard
one, with no additional apps and properties. It is possible to build upon these
templates; however, some have properties that cannot be removed/changed. For
more information on these, you can take a look at the documentation.

Properties supported by Teams Templates
Here is a list of properties included by templates currently:
- Base template type
- Name
- Description
- Visibility (whether it is a private or public team)
- Team settings
- Auto-favorite channel
- Installed apps
- Pinned tabs

And here is a list of properties that aren’t supported yet:
- Team membership
- Team picture
- Channel settings
- Connectors
- Files and content

PowerShell and Templates
While it is possible to use all of these templates with the Microsoft Graph, at
the time of writing this, only 2 templates are available via PowerShell. Those are
Education – Class (EDU_Class) and Education – PLC (EDU_PLC).

As outlined in the documentation, “If you have an EDU license, you can use this
parameter to specify which template you’d like to use for creating your group.”

Unfortunately, I do not have an EDU license, so I am unable to provide any
guidance on those other than to say that they will fail if you do not have an EDU
license…

We will return to this topic when we are able to provide first-hand experience.

https://docs.microsoft.com/en-us/MicrosoftTeams/get-started-with-teams-templates
https://docs.microsoft.com/en-us/powershell/module/teams/New-Team?view=teams-ps

17

Graph API and Templates
The usage of Teams Templates via Graph API is supported with either user
delegated or application permissions. Either way, you will need access to Group.
ReadWrite.All. The only difference in user vs application is when using application-
level permissions you will need to specify a user as the owner.

Application Permissions
Application permissions are easily handled by adding in an owner. This is pretty
straightforward by using:

The following standard template request with application permissions results in the
team creation.

“owners@odata.bind”: [
 “https://graph.microsoft.com/beta/users/UserID”
]

18

User Permissions with Advanced Requests Using the Standard Template
As mentioned before, the payload is basically the same for user permissions
except for defining a user as an owner. In the following example, I will create my
UK Finance Team with the Regulatory Compliance Channel to set as a Favorite
by default. I will also create a UK Payroll Channel with a pinned link to the Payroll
company. As in the previous section on Native Management, we will be allowing
members to create and update channels, but not remove them. We are also
not going to allow removal of apps. Guests will not be able to create or delete
channels. Moderate content gifs will be allowed but stickers and memes will not
be allowed. Only owners will be allowed to delete messages and team and channel
mentions will be allowed.

19

{
 “template@odata.bind”: “https://graph.microsoft.com/beta/teamsTemplates(‘standard’)”,
 “visibility”: “Private”,
 “displayName”: “UK Finance Team”,
 “description”: “This Team is for UK Finance”,
 “channels”: [
 {
 “displayName”: “Regulatory Compliance”,
 “isFavoriteByDefault”: true,
 “description”: “This is a channel for Regulatory Compliance.”,
 “tabs”: [
 {
 “teamsApp@odata.bind”: “https://graph.microsoft.com/v1.0/appCatalogs/
teamsApps(‘com.microsoft.teamspace.tab.web’)”,
 “name”: “Regulatory Compliance Website”,
 “configuration”: {
 “contentUrl”: “https://en.wikipedia.org/wiki/Regulatory_compliance”
 }
 }
]
 }
],
 “memberSettings”: {
 “allowCreateUpdateChannels”: true,
 “allowDeleteChannels”: false,
 “allowAddRemoveApps”: false
 },
 “guestSettings”: {
 “allowCreateUpdateChannels”: false,
 “allowDeleteChannels”: false
 },
 “funSettings”: {
 “allowGiphy”: true,
 “giphyContentRating”: “Moderate”,
 “allowStickersAndMemes”: false,
 “allowCustomMemes”: false
 },
 “messagingSettings”: {
 “allowUserEditMessages”: false,
 “allowUserDeleteMessages”: false,
 “allowOwnerDeleteMessages”: true,
 “allowTeamMentions”: true,
 “allowChannelMentions”: true
 },
 “installedApps”: [
 {
 “teamsApp@odata.bind”: “https://graph.microsoft.com/v1.0/appCatalogs/
teamsApps(‘com.microsoft.teamspace.tab.vsts’)”
 }
]
}

To do this I simply post the following JSON to the beta teams endpoint.

20

In the Teams admin center, it looks like this:

Then in the Teams client we can see the pinned website and that the channel is a
favorite by default.

21

Takeaways from API Testing
As a positive, it is a huge time saving to be able to accomplish the creation of a
team with settings, channels, apps, etc…in a single payload. This eliminates most
of the need for a multi-step process and with the business specific templates it
only makes it easier.

I have noticed a few things from testing Teams creation based on Templates. The
first is I can only add a single owner during creation. This isn’t a huge deal, but it
would be a nice option to have multiple owners. The second is that I cannot add
owners at the time of the creation of the Team which still makes this a multi-step
process albeit much more streamlined than without the templates. Finally, it
does take some time for Teams to be created this way. The typical time between
submitting the payload and getting a successful response is typically between
3-8 seconds. As this is all still in beta I would anticipate a lot of these items to be
addressed before production or as a feature for post v1.

Next up, we will look at how to delegate teams creation.

Delegating Teams Creation
Earlier in this guide, I covered standard creation of teams via PowerShell and Graph
API. Next, I tested out a new method for creating Teams that is still in beta, known
as Teams Templates. Finally, we’re going to wrap up with the most fundamental
aspect: delegating teams creation. Because no matter which approach you use for
creating or replicating Teams, you need to have the ability to do so. This is achieved
with either the permissions granted by the Global Admin Role, Graph API user or
application permissions, or delegation through Azure AD roles - which is what this
section will cover.

Azure AD Roles for Delegation
Just to briefly cover delegation with pre-defined AAD roles, simply navigate to
Azure AD and then under “Manage” you will see “Roles and administrators”.

22

This is where you will find your various admin roles: License administrator, Billing
Administrator, Global Admin, etc… Towards the bottom of that list you will see 4
roles specifically for Teams.
Those roles are:

The use case for today is delegation of management, so we will be using the Teams
Service Administrator Role. To delegate rights, I can simply add the user I want to
manage Teams into this role.

Role name Function

Teams Communications Administrator Manage calling and meetings features

Teams Communications Support
Engineer

Troubleshoot communications issues
with advanced tools

Teams Communications Support
Specialist

Troubleshoot communications issues
with basic tools

Teams Service Administrator Manage the Microsoft Teams service,
and manage and create Office 365
Groups

23

The Teams Service Administrator Role
The first thing I look at when trying to understand the rights granted with a role is
to look at the description of that role. This will give me a basic description as well
as the role permissions (read/write), and any additional read permissions.

The text for the Teams Service Admin role reads as follows.

“Users in this role can manage all aspects of the Microsoft Teams workload via the
Microsoft Teams & Skype for Business admin center and the respective PowerShell
modules. This includes, among other areas, all management tools related to
telephony, messaging, meetings, and the teams themselves. This role also grants
the ability to manage O365 groups.”

This role is helpful for a lot of reasons. If I have a dedicated Skype for Business
person who is transitioning to Teams, this is a great role. It is also great for a
dedicated admin/engineer for Teams. I can limit their actions to all things Teams,
increasing my overall service security.

How does this work?
Once I add the member to the role, they will now see the admin icon in their apps.

24

In the Microsoft 365 admin center they will have the following view even though
they have just the Teams Service Admin role.

This role will have a full view of the admin center but will only have access to view/
modify Users and Groups. This is full access to users and groups. My delegated
admin will have the ability now to add Office 365 licenses to users, reset passwords,
and do a range of admin tasks for Teams. As Groups and Teams are highly
integrated, this role also has full access to create groups and modify members/
owners. This includes security groups which really don’t have a relation to Teams
administration. In the admin section it also gives me access to the Teams admin
center which I can also just access at https://admin.teams.microsoft.com

Within the Teams admin center, you have full access to manage Teams as one
would expect. This includes access to all teams that have been created and
creation of new teams. You can see/update devices, locations, meeting policies,
assigned meeting policies, voice settings, and org-wide settings. As stated in
the description of the role ‘Everything in the Microsoft Teams admin center and
associated PowerShell controls’… aka full Teams management.

https://admin.teams.microsoft.com/

25

Granular Delegated Administration
The delegation model above is as far as you can go with native roles for Teams. It
provides administration segregation from other Microsoft workloads but doesn’t
provide the granularity that role-based access controls in a workload like Exchange
Online provide. To be fair, Exchange RBAC has had a long time to evolve and
Teams is still relatively new. Teams also spans workloads, so it makes reasonable
sense that granular native delegations will be difficult to implement.

The Use Case
CEO: “My North America sales team needs to be able to create and modify teams
for their department. It is crucial that there is not a delay for new Team creation
and Team membership as this has a potential impact to revenue.”

The Solution
I *could* grant my VP of NA Sales membership in the native Teams Service
Administrator Role. As we have discussed, this would fulfil the use case the CEO
has defined. However, if your VP on NA Sales is like mine, you probably don’t
want them to have access to telephony, org level settings, or access to ALL the
company’s Teams. This is contrary to a policy of least-privileged access.

At Quadrotech, we have created a solution to provide granular delegation to Office
365 workloads, Teams being one of those. Let me explain how we can meet the
CEO’s use case outside of native delegation.

The first thing we do is gather information about what teams exist in the tenant,
their settings, along with owners and members. We then allow an administrator
to “group” teams together for management. In this example, all NA Sales Teams
would be added into a “Teams Group” that will be delegated to the VP on NA
Sales. In this example I will create a new Teams Group for NA Sales.

https://www.quadrotech-it.com/
https://www.quadrotech-it.com/solutions/automated-office-365-administration-and-management/autopilot/
https://www.quadrotech-it.com/solutions/automated-office-365-administration-and-management/autopilot/

26

Once the grouping of the Teams is created. We can then delegate just the
management of those Teams to the VP of NA Sales. This way they can manage
their own Teams and add new Teams within their scope. This is done by creating
what we call “Authorization Policies” or “auth policies”. The auth policy in this case
is defined with who will be given access, also known as “Delegate to” (see image
below).

https://youtu.be/f8rUiHpDtZ0

27

Then we provide the “Actions” or the things we are allowing our delegated admin
the rights to do.

You’ll then define what they will have access to. In this case, the NA Teams
grouping. This is the “Managed Object.”

28

And then finally we can get really granular by defining precisely what the delegated
admin can do with users, groups, channels, and teams. In the example below,
I’ve allowed my delegated admin full read/write access to the user, group, and
channels. I then allowed the ability for that delegated admin to see the ‘Allow
Add/Remove Apps’ setting but not the ability to change it.

And here is the kicker. This doesn’t have to be all within a single tenant. It can be,
but in this example, I granted my NA Sales VP to Teams that existed in a second
tenant. The solution is not only extremely granular, but also very flexible.

The result
With this delegation, we enable the NA Sales team to manage their Teams, but
have restricted them to just their Teams. They do not have the ability to create
security groups, change user passwords, modify Teams that don’t belong to them,
nor the ability to modify any Teams workload settings. It is truly the ability to have
a least privilege access model when it comes to Teams as well as other Microsoft
Office 365 workloads. We have met the needs of our CEO use case outlined
earlier and not granted any additional access that would introduce risk to the
organization.

29

Conclusion
I hope this series has shed some light on a few areas of Teams management that
can become challenging. As we’ve seen and highlighted throughout, Teams is still
a relatively new service, with deep integrations between workloads. As a result,
management features are developing and improving alongside the tool itself. New
capabilities for both the end user and the admin are constantly appearing in the
service, and we expect to see further improvements made to features like Teams
Templates (currently in beta), and other features as time goes on.

Delegation is an area where there is still a lot of room for improvement. While it
might be sufficient for a smaller, or less complex environment, larger organizations
with more complex compliance or governance needs may need something that’s
more robust, granular, while being flexible to specific needs.

As we mentioned, Quadrotech has a powerful solution for delegated
administration and simple automation of regular Office 365 tasks, which can be
used across multiple tenants. If you would like to find out more about how you can
maximise efficiency while keeping your environment secure and compliant, contact
us now for a demo and personalised walkthrough.

Alternatively, why not take a look at what industry expert and Microsoft MVP
Dominik Hoefling thought when he took this tool for a spin. Download his detailed
technical review here.

https://www.quadrotech-it.com/request-a-demo/?utm_source=BWW&utm_medium=Teams%20resource&utm_campaign=BWW%20Q2%202019&utm_content=demo%20link
https://resources.quadrotech-it.com/technical-review-of-autopilot?_ga=2.140996530.1464595652.1554104668-2002643919.1532595386&utm_source=BWW&utm_medium=Teams%20resource&utm_campaign=BWW%20Q2%202019&utm_content=tech%20review
https://resources.quadrotech-it.com/technical-review-of-autopilot?_ga=2.140996530.1464595652.1554104668-2002643919.1532595386&utm_source=BWW&utm_medium=Teams%20resource&utm_campaign=BWW%20Q2%202019&utm_content=tech%20review

