An 8-Week Course

Autonomous Electric Vehicle Bootcamp

June 12 to August 2 on the Purdue University campus in West Lafayette

Course Overview

The course will provide college students and recent grads with a practical introduction to the technologies in autonomous vehicles. The course is designed for engineering and technology students who are ready to expand their skills by designing, making, and testing a fully autonomous electric go-kart while applying the latest industry safety standards. The bootcamp will provide a look into how to manage a real-world working environment, including project management, team interactions, project reporting, and dealing with change. Students who complete this course will be ready to enter the emerging autonomous vehicle industry.

Course Highlights

- Embedded Systems
- Functional Safety ISO 26262 Standard Overview
- Controls Strategy Development using MATLAB/Simulink
- CAN Communications (J1939)
- ISO 26262 Tool classification and Qualification
- MES Embedded Coder Tool
- Moto-Tune Calibration Display Tool

Course Timeline

Week 1	Autonomous Vehicle Technology
	Overview, intro to electric motors,
	and Racios of Simulink

Week 2	Construct, analyze, and decode
	CAN Messages

Week 3 Functional Safety Overview Course

Week 4 Throttle Project using the MES Tool, Embedded Coder, along with the functional safety compliance tool,

Moto-Tune

Weeks 5-7 Use the Embedded Coder to develop

the autonomous features of the Go-Kart

Week 8 Demonstrate autonomous features of

the Go-Kart and lessons learned at a

demonstration day

To learn more: Ihpu.com/kart

An 8-Week Course

Autonomous Electric Vehicle Bootcamp

May 1 to June 21 in Columbus, Indiana

Course Overview

The course will provide college students and recent grads with a practical introduction to the technologies in autonomous vehicles. The course is designed for engineering and technology students who are ready to expand their skills by designing, making, and testing a fully autonomous electric go-kart while applying the latest industry safety standards. The bootcamp will provide a look into how to manage a real-world working environment, including project management, team interactions, project reporting, and dealing with change. Students who complete this course will be ready to enter the emerging autonomous vehicle industry.

Course Highlights

- Embedded Systems
- Functional Safety ISO 26262 Standard Overview
- Controls Strategy Development using MATLAB/Simulink
- CAN Communications (J1939)
- ISO 26262 Tool classification and Qualification
- MES Embedded Coder Tool
- Moto-Tune Calibration Display Tool

Course Timeline

Week 1	Autonomous Vehicle Technology
	Overview, intro to electric motors,
	and Basics of Simulink

Week 2 Construct, analyze, and decode CAN Messages

Week 3 Functional Safety Overview Course

Week 4 Throttle Project using the MES Tool, Embedded Coder, along with the

functional safety compliance tool, Moto-Tune

Weeks 5-7 Use the Embedded Coder to develop

the autonomous features of the Go-Kart

Week 8 Demonstrate autonomous features of

the Go-Kart and lessons learned at a

demonstration day

To learn more: Ihpu.com/kart

