The Business Value of Industrial IoT

Automation Alley Tech Takeover July 12th, 2017 Troy MI Michael King President, Data Analytics & IoT LHP Engineering Solutions http://LHPES.com

How the IIoT can Transform Business

- Welcome, Introductions, Level Setting
- Business Value of the Industrial Internet of Things
- Leveraging IIoT to meet Functional Safety standards
- How to Get Started on the IIoT Journey
- Technology Demonstrations

LHP Engineering Solutions

At a Glance

Co-founded in 2001

Headquarters in Columbus, IN

- Engineering Services and Technology Integrator
- Industries: Automotive (and adjacencies), Industrial, Medical, Commercial
- **Expertise**: Embedded Control Systems, Model Based Design, Platform Development Systems, Communications, Internet of Things, Telematics, Data Analytics
- **Technology**: Rapid Prototyping, Remote diagnostics, Data Logger, Engineering Telematics, HIL Systems, Load Boxes, Custom Wire Harness

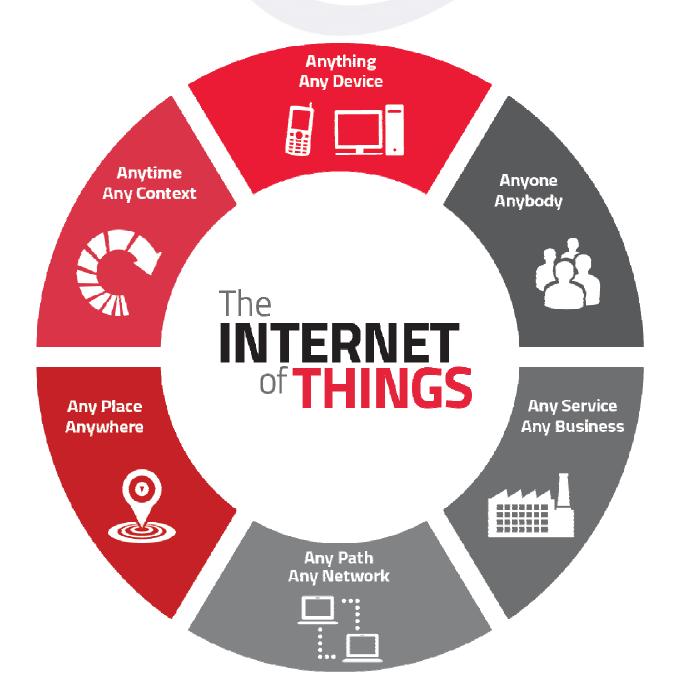
LHP Locations

- Also: Wuhan, China Juarez, Mexico Windsor, Ontario
- 425+ Employees World Wide

LHP Engineering Solutions

LHP Customer Portfolio

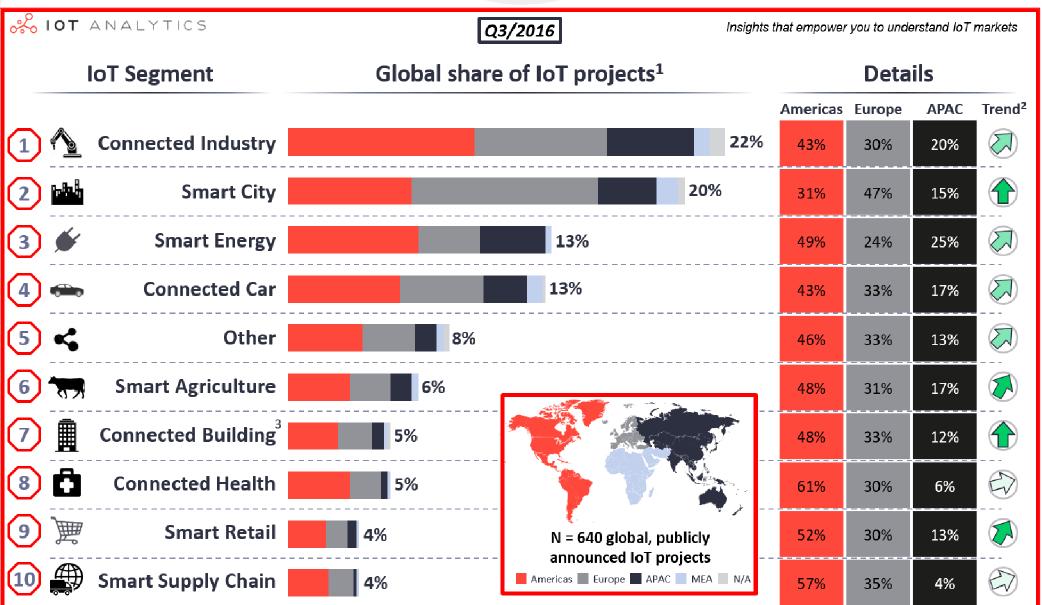
The LHP IoT Advantage



LHP has extensive expertise **Transforming Engineering & Product Data Into Knowledge**

We have the ability to **integrate electronics, sensors, telematics,** and equipment field usage applications into holistic **IoT systems.** We enable business decision making through the use of complex **data analytics**.

The Global Explosion of IoT

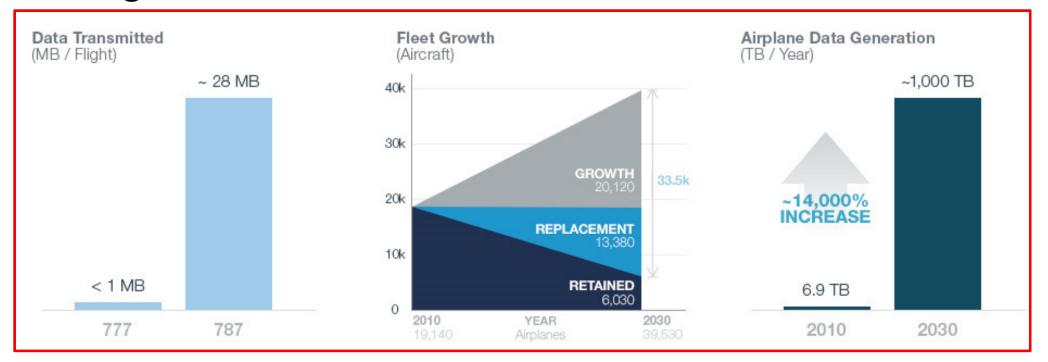

The Internet of Things: Annual Economic Impact by 2025

IoT – Global Investments

1. Based on 640+ publicly known enterprise IoT projects. (Not including consumer IoT projects e.g., Wearables, Smart Home) 2. Trend based on IoT Analytics's Q2/2016 IoT Employment Statistics Tracker 3. Not including Consumer Smart Home Solutions Source: IoT Analytics 2016 Global overview of 640 enterprise IoT use cases (August 2016)

The Business Value of IoT

- Revenue through increased pricing leverage for existing products and services – "Smart" products imply higher value content and enable integration with customer, and higher margin pricing
- **Revenue through connected solutions** Connected products typically drive consulting services and provide opportunities to partner on higher value offerings.
- Revenue through expanded service agreements Through remote diagnostics and data analytics, "Gold Care" full service agreements can be offered over and above existing service offerings.
- **Revenue through monetization of Data** Real-Time market insights from customers and products can be highly marketable assets


The Business Value of IoT

- Lower warranty exposure/accruals through data-driven models Replace outdated warranty accrual models with real-time, actuals based warranty valuation, reducing audit risk
- Lower service costs through predictive maintenance Leverage Machine Learning and Predictive Analytics to enable dynamic scheduling, sequencing, and coordination of service events.
- Lower inventory, order to cash cycles through proactive service monitoring – Employ Remote Diagnostic to identify potential service events, automating inventory movements to reduce spares inventory
- Increase asset utilization across manufacturing base Identify bottlenecks, improve operational efficiencies through Remote Monitoring and Data Analytics

Revenue through expanded service agreements

The Digital Airline

Connecting information from airplanes via technology for smarter airline operations.

Today's airplanes generate a lot of data. A digital airline instantly transforms that data - generated during flight, on the ground and in the hangar - into quick, informed actions. Information management and analytics solutions provide insights on efficiency by tracking critical airline operations data.

Use Case: Boeing Gold Care

Revenue through expanded service agreements

The Digital Airline

Fleet engineering solutions cover engineering and planning activities associated with managing the technical performance of the airplane. For example, Boeing can manage an airline's maintenance programs, monitor on-time performance and/or track airplane configuration.

Fleet material solutions can include spare parts planning, ordering, supplier management, and component repair and overhaul, unlocking customer resources, reducing costs and improving efficiency.

Fleet integrated solutions unite the strengths of both engineering and material management solutions with Boeing's extensive knowledge base and a carefully selected global network of leading MRO providers that offer both base and line maintenance.

24/7 Customer Support	Parts Solutions	Maintenance and Engineering Solutions	Flight Operation Solutions
Field Services	Parts	Maintenance and Engineering	Training & Resourcing
Fleet Health	Parts Support	Maintenance Execution	Simulator Services
Operations Centers	Procurement Efficiency	Modifications	Fuel Optimization
Technical Experts	Fleet Material Solutions	Technical Content Management	Flight Optimization
Instant On-Line Access	Business Consulting	Maintenance Optimization	Airspace Optimization
	Business Consulting	Fleet Engineering Solutions	Business Consulting
		Business Consulting	

http://www.boeing.com/commercial/services/overview/#/goldcare

Use Case: JoyGlobal

Accelerating time to value through Remote Monitoring and Analytics

JOYGLOBAL

Joy Mining is a worldwide leader in highproductivity mining solutions that manufactures and markets original equipment and aftermarket parts and services for the mining industries.

BENEFITS:

- Anticipated equipment failures & efficiently responded to problems reducing equipment downtime
- Optimized mining processes with new analytics to reduce the cost of resources & increased production
- Managed the overall mining operation on behalf of the mine owner
- Transition from pay per product to pay per tonnage of earth mined

Use Case: ELEKTA

Increase productivity through Predictive Maintenance

\$750 million company develops sophisticated, state-of-the-art tools and treatment planning systems for radiation therapy, radiosurgery, and brachytherapy.

Used machine data & predictive analytics on usage patters and life-cycle of the systems to execute real-time predictive maintenance.

BENEFITS:

- >20% of service requests resolved remotely without the need for an onsite visit
- Increased system uptime and patient throughput
- Improved product design through machine reliability data analysis

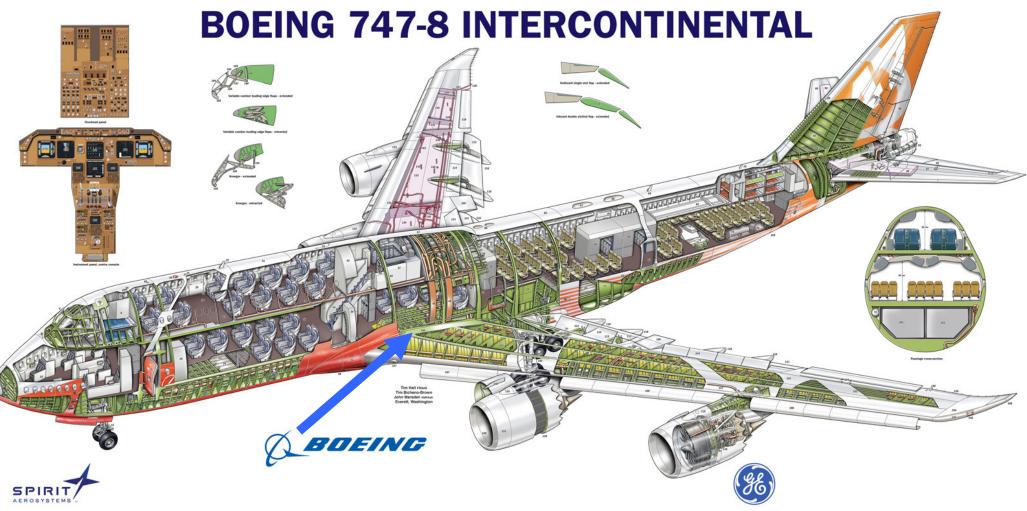
The Business Value for the Industrial IoT

- Global manufacturing companies spend on average \$215M-350M each year on utilities, and \$400-\$700M on facilities and equipment maintenance labor
- Inefficient manufacturing processes drive an average of 8.9% overtime costs
- Factory Managers have limited visibility of enterprise energy consumption, machine utilization, or operational efficiency
- Energy consumption improvements placed at lower priority due to lack of visibility, ownership at the manufacturing level
- Access to real time monitoring and utility information is often restricted
- Difficult to trace product warranty issues through the manufacturing

The Business Case for the Industrial IoT

- Operational Efficiency & Effectiveness:
 - Reduced throughput time from days to hours in shared manufacturing cell
 - Increased operational efficiency from 60% to 80% by removing bottlenecks
 - 3% reduction in facilities and equipment support labor costs

• Energy Management:

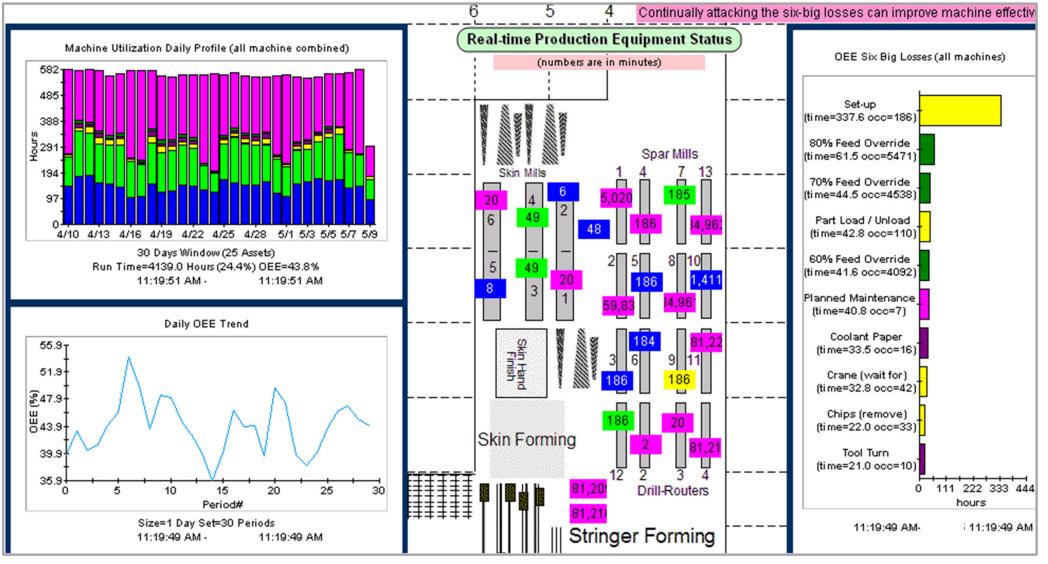

- Automated tracking & alert response system across an entire region
- 5% reduction in Utility consumption
- 1.4 year payback on investment

• Predictive Maintenance & Controls:

- Automated predictive maintenance schedule through the use of ML
- Integrated critical asset monitoring across multiple regions
- Reduced unplanned critical asset downtime by 10%

Side of Body Rib Chord

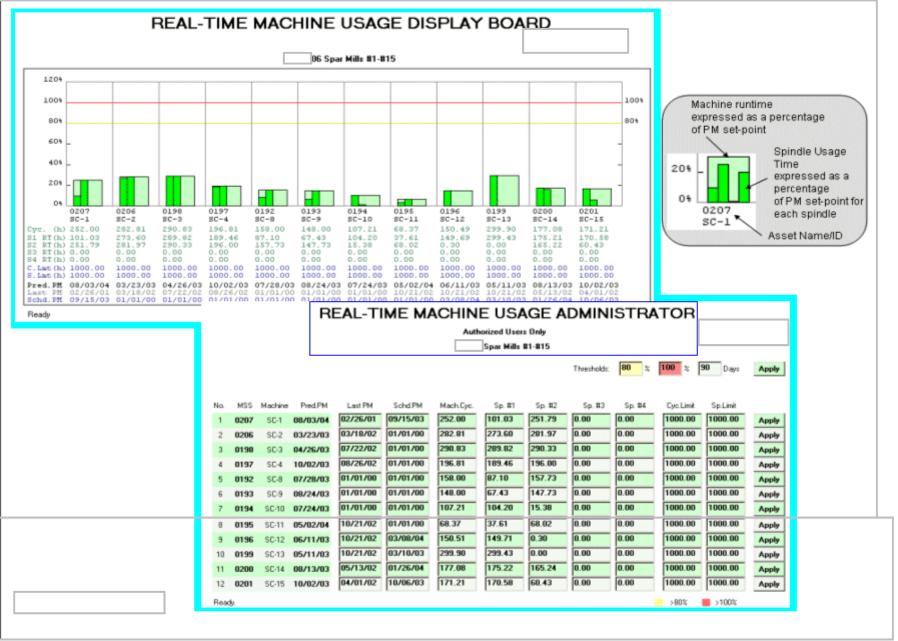
Sideways hingsing tacking	me. toyang 13 toxeeheel doors	28 Positive pressure ratef values - two		necirculating duct			85 Renovable light aloy leading edge		carboritize epop honeycomb	114 Spoller/speedbrake parets -	time per engines	deterting coupling	with a man thrust of £7,500%	757,0008 (343,400kg)	167 Stat tim switches	185 Finding nose
whether radax tocationr a						inward-spennigh	and glassifilitie tip - provision for	hydrautically actuated	standwith skin panels.	hydrautically achieted	122 System reservoir - 32 US gallons	132 Overwing litter capit - Your places		153 Retraction jack	168 Radio and autho panets	LBG Camber program link
glideshope aeriats	15 Passanger door 1 (type N).	27 Wing illumination light				36 Outer overhead stowage time	HF aerials	93 Pratt & Whitney Canada PW90120	505 Kummun leading edge	115 Envolue and rubber cables run from			145 tringrated drive generator on each		169 Multifunction control display	L87 Drive ann
more pressure buildhead	42h a Pflin Lontaining chutere	28 Remar "er" to an conditioning packs		50 New ourved stairs to upper deck				auxiliary power unit (MR2)	506 Detachable glassifilite lamitate to-	the control columns to the rear	3.000b delvery	gid (42,025 litres) calority	engine - 115/200 /6/ with at 400%		units (MCOU)	188 Drive program link
Outside temperature prof	otes - two 10 New attiptical window surrounds		42 Wing Suselage mainframes, built-up	85 Passanger door 3 (Type A).	aluminium alloys. 8.60xt stretch,	215 US gatore		94 APU av intel	207 Krunger in three sections, forms	quadrants and heat units via pulleys			246 Engine monitoring unit (EMU) box			LBB biller
Angle-of attack value - bo	oth sides 17 Section 41 has charges to none	Zanita	Regel and machined light alloy	#2in a 76in containing chutes	modified concerning spice partic	26 Unpressourised autor Lanks -	Inditioutle actuations in upper half.	95 APG exhaust, spector cooled	underside of sing shere related -	116 Main Tap structure - aluminum	slages, to air conditioning packs	(110.355 literal capacity	\$47 Electronic angine control (EEC) low	interlinked with main undercarriage	e 171 Multi-function displays - Wree	199 Find Invision
Plot heads (hep both aid	ideal - wheel well panel and bullyhead	29 Linner deck door (hose No.	43 Centre winghos changes make use of	52 Pressure-bearing calos Nor over	and the removal of door dis-	three with a castacity of \$15.1%	Lower part of rudder is double	96 APU housed in titanum	preumatically actuated)	horsecond won parent, fall alloy	124 Pro-cooley and air exhaust	LHS Tao AC driven booster pumps per	348 Hinged cost panets containing	187 Landra James	172 EICAS sovies	195 Entary actuator and other arm
etectrically heated	18 First class and with eight	d.2m x 70m, containing citudes.		unpressurised undertainings have		gallors (Nisi-option for a lourth	hinged - CFNP and the trailing edge	 Improof compariment 	108 Meriable samber leading edge flag.	ribs and spars; trailing fast has	126 Millian durit to engine intoler	mann Larin	support shull	238 Navgation and shride light - white	e 173 Undertarriage select lever	
Electrically heated, solly	safeground individual cabins	opens upwards and outwards		83 Auroran and honded to PVC one		wather Santo	of the rubber uses monolithic ribs.	97 Treos gas buttle fire extinguisher	11 sections each side -	glassifies traing edge		L36 lieve manifold, also in log-	149 Trustrevener translating cost -	lights on talplane	174 Lighting control panels	
Electrically heated, splica curved emdsorem panel	els 19 First class lautories - Ind-	30 Anti-cultinon beacon	producers. Additional values	finor panets	44 Economy section galleys	27 Passenger door 4 Choe Ri.	87 Continuous two spar taliplane		preumatically actuated, electrically	a 117 Wing man undercarcage support	126 Hot air delivery duct to	wingshin shringers	hydraulically actuated	359 Gasafire static discharge with:	176 EXAS disating select parted	
Two one fighting put t	two 20 First class pates units	31 HTC antenna			44 Rear containertand height hold with a				actuated standty	bears - Marium	leading edge delicing spray			140 Control solution with Virt sadubers		
observer's seals	21 Section 42 changes include use of	e of 32 Mill 2 antenna (Mill 1 and 3	panning carries of gravity	venting panels	reparity of 3.15087-380.2m/1	28 In-Right attendant rent area (ORM)	advanced aluminium alloys and new	 100 Wing formion loss, feet splars 	509 Inner high speed allerin -	118 Glassifire Ray Inisis shroud	tube: from subscard of inner palos to	to 138 lievi surge tark	and image	and autoplice disangage suffiches	display (1970)	
Crew well area with burn	as new aturishant allow and insertion			\$5 Noti pertire his carry/lyingh has		79 Entry door to starry up to OFMI	monolitis; trailing edge rites	continuous riccl to tip, with centre	 Partnaulically actuated 	110 Engine support plon hung hunn	the lip	139 action, fueling lacketing marital	\$55 Engine namelie with fixed and	361 Adjustable rubber pedats with	177 UVS sample parents	
Crew lavelory	D80th body stretch and new door		46 Centre using tank, 17, 164 US gai		47 Cotional saturatianter	80 Rear Insolutions - Nur	88 Multi-rib and stringer, split skin	spar from mult to outer pylon	\$88 Outer insugent drooped By hu	strengthened chordwise rites		140 pertinane nourien	hinged couls	live brakes	178 Main ECKS (Alerling system)	
Crew exclusion function	2 star structural integration	24 Coneta				AL Peter closed								142 Engine-between and through response	179 Primary Sight displays (PTC)	
Electrical and avonius set		25 Louisvies		\$7 Section 44 of Austings charges.		82 Centre overhead attrange time.	for tarkage	boltom, mar panel continuous	SSS Outboard single slotted fags		nir 129 Cabin pressure-relief valves, in bulk		underlantage, low profile	selection levers	180 Maintenance and circuit breaker	
all of none undercarriage	phay 42m x 76m containing chutes	34 Lipper calor business seats	air debars	include use of 777 aluminium allows				142 Extruded channel section stringers -	h : 612 Countries southerd informent Rame	wing spars		142 Tank contents protes - 67 hold		of \$43 Specificate and sender lear	mentional service	
Fully sheering hydraulical	thy actuated 23 Extended forward cargo law -	37 Lipper ratio galley area		58 Main table business seat area			90 Surge and vent tank	Distant sealed for tarkage	553 hire Rep tracks and carriages -	121 Engine-shisen hydroulic pump	beirow aircraft - two	each aircraft		164 Trailing and leading might Nan-and		
forward retracting none g	gear - 3,0008* (99.3×5 capacity	36 Cable riser ducts to everhead				Invoice him - alreafters in foreated and		a 188 Monotifue adventures allow the	helmulcally actualed torque tube			\$43 Fuel loog/unsafeed manifold to	broken, milenighed to take new	Krueger selector lever	LB2 Colored stop	
retracts into unpressuring	sed 24 Cargo four ball transfer parel -	individual parasenger units	Rour in total		F2 Att turk cargo hold - capacity	main lidens uses advanced		ten 104 Rated wing ten - cartorifiere front	if they are angled gearbovers, and	supplies four separate and	42m a Him containing chutes	ergines via volves		\$45 Parking trate lever	LB3 Air slot	
resembed bay		20 New continuend calling and		60 Terrinal aintina LAN unit	\$1380/134.5mD	aluminum align	chards down	and may stars covered with	half screwincks			444 General Electric GEne 2007 engines			184 Convert served	
	binning over service	An over contrast, care and	41. Elementaria monta sinena	An include accession over man	3734-04/24-1	and control works	cards are	The set shart reserves and	the screekos	stational diversity and	THE DECEMBER DAMAGE COMMEN	The figure factor when the second	least the manual sectors and the	The other consistent spectrum.	The cover here.	


The Value of IIoT: Predictive Maintenance

- Started with Remote Monitoring of high-speed machining cells
- To capture real time performance, machine systems, utilities subsystems, and additional sensors were integrated into OEE
- Spindle Deflection Rate was the key measurement to determining actual machine utilization
 - Spindle Deflection Rate could then be correlated to hand work hours, rejection tags, utility consumption, and machine downtime
- **Solution**: Developed an automated system for critical asset predictive maintenance systems using Machine Learning
- Results: 10% reduction in unplanned critical asset downtime and 6% reduction in facilities support labor costs

Use Case: High Speed Machining Center

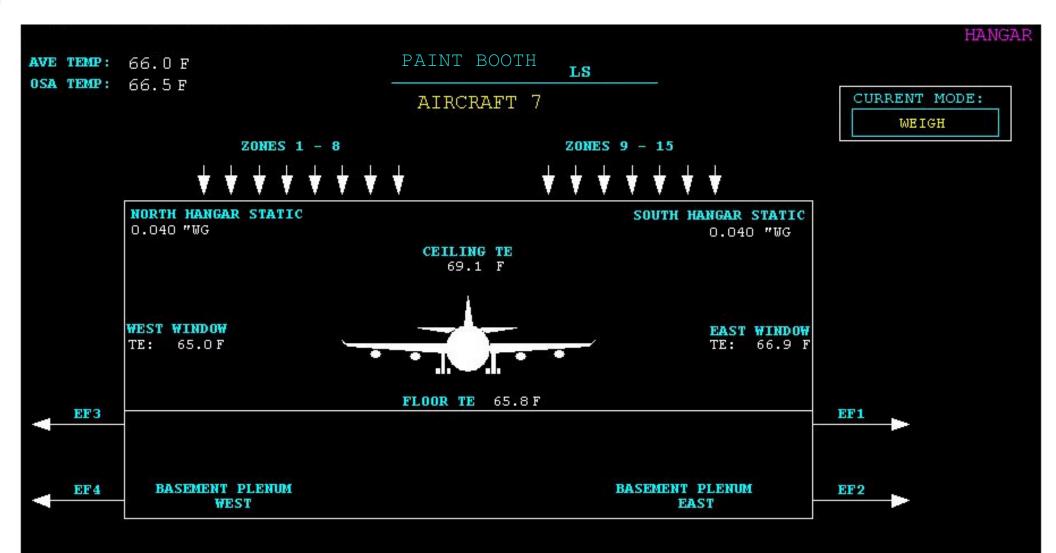
The Value of IIoT: Predictive Maintenance Machine Utilization Trend Analysis



Use Case: High Speed Machining Center

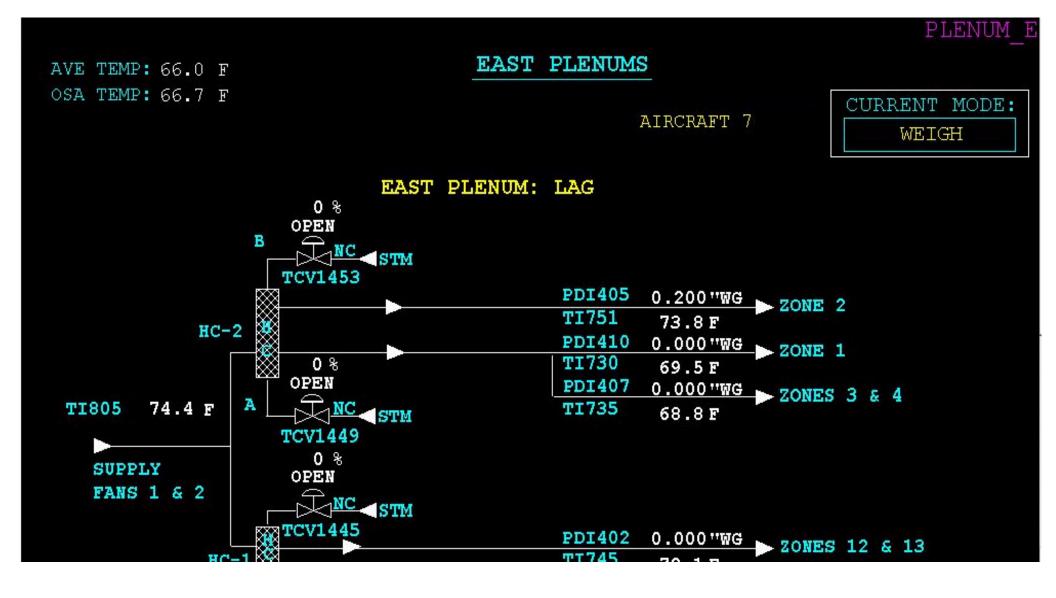
The Value of IIoT: Predictive Maintenance

Real Time Critical Asset Monitoring


The Value of IIoT: Predictive Maintenance

- Aircraft paint hangars act as both paint booth and scale
- Paint must be applied within specified building temperatures, air handling and weight allowances
- **Plenum Differential Rate** was the key measurement to predictive maintenance and unplanned downtime for the paint hangar
 - Paint cured outside tolerances can result in premature failure, which could lead corrosion of aircraft surfaces
- Solution: Real-time Plenum Differential Rates were dynamically combined with aircraft final assembly sequence to predict hangar maintenance downtime
- **Results:** Achieved 0% unplanned downtime in paint hangar plenums over 12 month period

Use Case: Aircraft Paint Hangar


The Value of IIoT: Predictive Maintenance Real Time Critical Asset Monitoring

Use Case: Aircraft Paint Hangar

The Value of IIoT: Predictive Maintenance Real Time Sub-System Monitoring

The Value of IIoT: Predictive Maintenance Predictive Maintenance & Controls System

45-01 Hangar	Primary	Secondary	Total	Alarm Status	Mode
Filter Box 1	0.000 н20	0.000 нго	0.000 нго	NA	
Filter Box 5	0.000 нго	0.000 нго	0.000 нго	NA	
Filter Box 6	0.000 h20	0.000 нго	0.000 нго	NA	WEIGH
Filter Box 22	0.000 h20	0.000 нго	0.000 нго	NA	
45-03 Hangar	Primary	Secondary	Total	Alarm Status	Mode
Filter Box 13	0.000 нго	-0.01н20	-0.01н20	NA	
Filter Box 14	0.010н20	-0.01H20	0.000 н20	NA	OFF
Filter Box 26	-0.01H20	0.000 н20	-0.01нго	NA	Off
Filter Box 28	0.010н20	-0.01нго	0.000н20	NA	
45-04 Hangar	Primary	Secondary	Total		Mode
Filter Box 18			0.210H20	OK	
Filter Box 54			0.200н20	OK	PAINT
45-04 R/E Shop	Primary	Secondary	Total	Alarm Status	Mode
Filter Box 301			0.500н20	OK	PAINT
Filter Box 302			0.000 H20	NA	OFF
Filter Box 303			0.000 H20	NA	OFF

In Summary: The Business Value of IIoT

- Companies across the globe are investing heavily in IoT
- IoT is seen as both a business imperative and providing a competitive advantage
- Tangible, hard-dollar savings are driving Top & Bottom line results
 - Pricing, New Business Models, Data Monetization
 - Reduced Overtime, Maintenance, and Utility costs
 - Improved Asset Utilization, Material Yield, and Product Quality
- Results can be achieved locally and scaled globally
- IoT is driving change for today's Manufacturer
 - Convergence of Engineering, IT, and Business at all levels
 - Introducing new business models and paradigms

Automotive Functional Safety (ISO 26262)

Impact on Manufacturing

Automotive Functional Safety: Impact on Manufacturing

- Autonomous & Connected vehicles are driving significant technological complexity into software & mechatronic systems, increasing risks from systematic failures and random hardware failures
- Most OEM's are implementing ISO 26262 as the framework for safety-related electronics systems
- ISO 26262 certification is driving compliance, certification, and oversight into variety of technologies, applied at the various levels of the development process
- Compliance can have significant impact on Engineering & Manufacturing processes, systems, and organizations

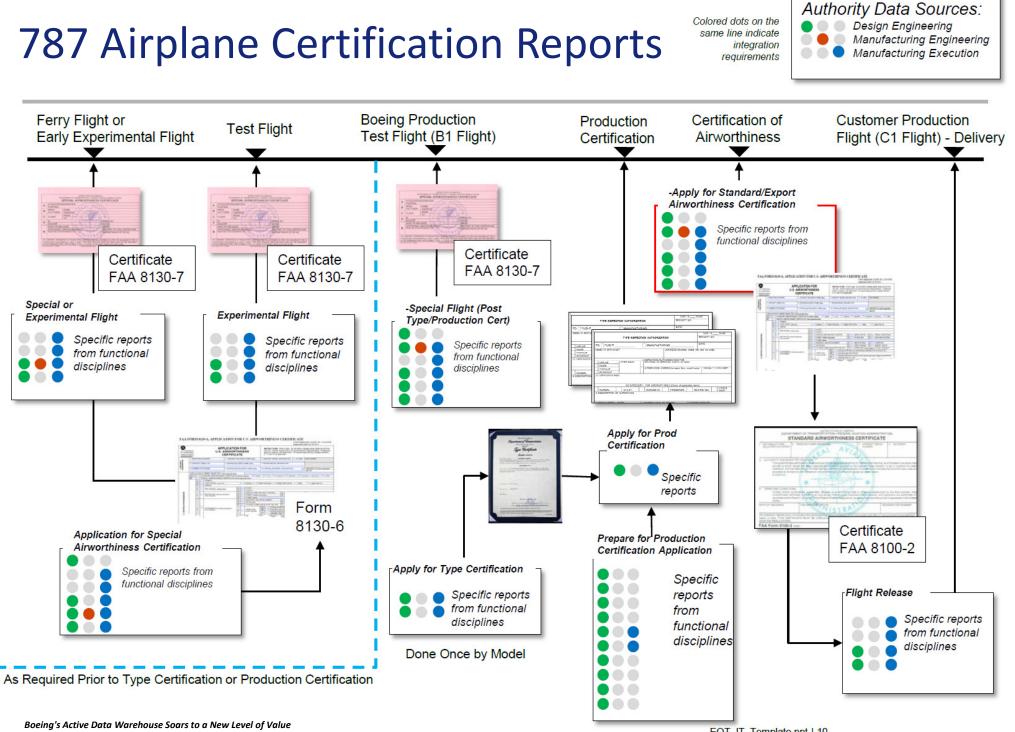
Automotive Functional Safety: What is ISO 26262?

- ISO 26262 is a safety standard for automotive dealing with human safety
- This adaptation applies to all activities during the safety lifecycle of safety-related systems comprised of electrical, electronic and software components
- System safety is achieved through a number of safety measures, which are implemented in a variety of technologies (e.g. mechanical, hydraulic, pneumatic, electrical, electronic, programmable electronic) and applied at the various levels of the development process.

Where and how ISO 26262 is used?

- ISO 26262 has 10 parts such as:
 - Part 1. Vocabulary
 - Part 2. Organization Structure/Management
 - Part 3. Concepts and ASIL's
 - Part 4. Systems
 - Part 5. Hardware
 - Part 6. Software
 - Part 7. Production
 - Part 8. Supporting Processes
 - Part 9 & 10. Guidelines and examples

- Airline Industry Example: Accountability & Regulatory Compliance
- There are 4 major types of certification that must be achieved
 - A temporary certification to conduct test or experimental flights (the pink ticket)
 - A Certificate of Airworthiness that lives with the airplane for its life. (the blue ticket)
 - A Type Design Certificate that verifies the aircraft design is safe to operate (done once per model)
 - A Production Certificate that verifies the manufacturing of the airplane is safe (done once per model)
 - Probably the most significant operational set of reports are those that demonstrate the airplane was built correctly, according to engineering intent and the airplane is safe to fly



· · · · · · · · · · · · · · · · · · ·	(ent	AVIA	· Andrews	1-1000
provide to which the set	the same name		Colored of the loss	
Anna Anna ann Anna Anna Anna Anna Anna	State Statements			
and or some Twee Labor Property			100-645	or partial role

Lam Tran, Chief Architect, Boeing IT, Manufacturing & Quality Systems Presented at Teradata 2013 Partners Conference EOT_IT_Template.ppt | 10

Leveraging IIoT to Achieve Functional Safety Requirements

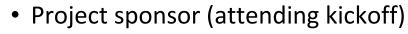
- Utilize IoT Platform for capturing and monitoring In-Process product testing and verification data
- Leverage Data Analytics to establish baseline quality & performance measures as well as on-going traceability of safety-related issues
- Deploy Data Analytics to provide "Proven-In-Use" verification of existing product safety
- Use the IoT Platform as an integration hub for as-built Engineering, Manufacturing process documentation
- Automotive Functional Safety provides an imperative for launching your IIoT initiatives

How to Get Started on Your Smart Factory IIoT Journey

How to Get Started on Your Smart Factory Journey

- Identify the Business Imperative
 - Use IIoT to help solve a mission critical problem
 - Quality, Predictive Maintenance, Labor utilization, etc.
- Start small, add value quickly, build proficiency
 - Keep Proof of Concept projects to 6 weeks or less
 - Mirror the shop floor experience
 - Build momentum, demonstrate value add
- Engage the Organization:
 - Build a cross-functional rapid-improvement team
 - Engage the shop floor employees
 - Grow the collective experience

Smart Factory IoT: Accelerated Improvement Workshop


Objectives

- Learn and align on concepts, use cases, and technologies
- Review use cases and brainstorm on opportunities
- Prioritize use cases and develop a roadmap
- Start the journey with a specific evaluation

Workshop Participants

- Manufacturing operations and IT management
- Continuous improvement and innovation leads
- Forward thinking resources:

Engineer

• Smart manufacturing experts

(Maintenance

Manager

Quality Manager

PTC & LHP

Customer

- Smart manufacturing sales
 - Analytics experts

Workshop Approach

Step 1 - Understand manufacturing environment

• Tour of the plant targeted for use and improvement of software systems

Step 2 - Review Smart Manufacturing Use Cases

• Evaluate potential use cases and value drivers associated with each use case

Step 3 - Identify and Prioritize Opportunities

• Consider justification, resources required and success measures

Step 4 – Evaluation Process Selection and Scoping

• Define evaluation process and success criteria, finalize team and timing

Typical starting points

• Asset health: increase asset utilization

- Predictive and prescriptive maintenance
- Machine vendor remote monitoring, diagnosis, and repair
- Visibility: rapid and informed decision making
 - Greater breadth, volume, and resolution of information
 - Benefit from Data Analytics
- Energy management: minimize energy cost
 - Peak demand charge avoidance, Energy usage optimization
- **Connected supply chain:** enable customer intimacy, increase quality
 - Digital thread through the supply base and product channel
 - Supplier and customer visibility and information exchange
- In-process product verification: link product quality to manufacturing
 - Integration of Electronic Controls and OnBoard Diagnostics systems

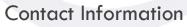
How to Get Started on Your Smart Factory Journey

Keep in mind – this will be a journey

- People
 - IIoT requires integration across the organization, and at all levels. This typically requires some amount of organizational change

• Process

• IIoT requires strong analytical capabilities and the ability to integrate data across multiple domains.


• Technology

• Expect gaps in IoT connectivity, device data measurement and capture systems, and existing business systems

LHP DATA ANALYTICS SOLUTIONS

Michael King

President, Data Analytics Solutions <u>Michael.King@LHPES.com</u> 812.341.8460

Technical and Analytics

James Roberts

Vice President, Data Analytics Solutions James.Roberts@LHPES.com 812.314.7921

Account Management

Paul Wright Director, Business Development Paul.Wright@LHPES.com 812.314.7920