
Implementation of the CAN-FD Protocol in the
Fuzzing Tool beSTORM

Ryosuke Nishimura∗, Ryo Kurachi†, Kazumasa Ito‡, Takashi Miyasaka‡, Masaki Yamamoto†, Miwako Mishima∗

∗ Graduate School of Engineering,
Gifu University,

Japan
u3126028@edu.gifu-u.ac.jp

miwako@gifu-u.ac.jp

† Graduate School of Information Science,
Naogya University,

Japan
kurachi@nces.is.nagoya-u.ac.jp

myamamoto@nagoya-u.jp

‡ Aiuto, Ltd.,
Japan

k.ito@t-aiuto.jp
t.miyasaka@t-aiuto.jp

Abstract—With the growth of ECUs that are mounted in au-
tomobiles, the transmission capacity of Controller Area Network
(CAN), which is currently used by most on-vehicle networks,
is becoming insufficient, and therefore CAN With Flexible Data
Rate (CAN-FD), presented by Bosch GmbH, is viewed as a next-
generation standard. Recently, the number of attacks on ECUs
connected to CAN has been increasing, and from the viewpoint of
CAN security there has been much discussion of safety. However,
with regard to CAN-FD, which is an expansion of CAN, although
a discussion of safety is needed, that has hardly happened. This
paper reports on an implementation that uses the generic fuzzing
tool beSTORM to investigate the vulnerability of the CAN-FD
protocol. We also aim at practical application by measuring the
transmission time for beSTORM test data and by estimating the
time required for CAN-FD fuzzing tests.

I. INTRODUCTION

Today there are dozens of electronic control units (ECUs)
mounted for every automobile in existence [1], and they
implement a variety of functions by exchanging the data stored
in the ECUs by using on-vehicle control network protocols
such as those of the Controller Area Network (CAN) [2], Local
Interconnect Network (LIN) [3], and FlexRay [4]. In particular,
CAN has grown to the point that one or more CAN busses
are used in every vehicle sold today, and it can be called a de
facto standard.

Recently, there have been many reports of attacks where un-
planned operation occurred as the result of spoofing messages
inserted onto the CAN bus by connecting an improper device
[5], [6]. Most of the attacks were implemented by analyzing
the contents of messages to be transmitted on the CAN bus
and then inserting forged CAN messages on the CAN bus
with improper frequency or improper timing. In response to
this, there have been attempts [7] in the automobile industry
to attach a message authentication code (MAC) to the CAN
payload in order to guarantee message completeness. However,
the CAN message payload is limited to a maximum of 8 bytes,
so it is difficult to attach a sufficient MAC to the payload. Also,
in the CAN specification the maximum transmission rate is 1
Mbps, which is becoming an insufficient transmission capacity,
and for these reasons CAN With Flexible Data Rate (CAN

FD) [8] has been presented as a protocol that expands the
transmission capacity of CAN.

CAN-FD is a protocol that was presented in 2012 by Bosch
GmbH, and is now being drawn up as an international standard
by ISO11898 [8]. Two characteristics of the CAN-FD protocol
are that it continually traces the mechanisms for arbitrating
frame systems and transmission rights that are compatible
with CAN, and that the payload length has been expanded
to 64 bytes. It is also a protocol that can realize higher
transmission efficiency than that of CAN because some of the
fields included in the expanded payload have their transmission
rates raised to a maximum of 8 Mbps.

A. Background of the Current Research

There has already been research related to methods of
evaluating the vulnerability of ECUs, and Bayer et al. [9]
present an evaluation method for the vulnerability of on-
vehicle control systems, with evaluation levels. The evaluation
levels presented in [9] show the evaluation level of the ECU
based on various evaluation methods such as fuzzing tests and
penetration tests.

Matsumoto et al. [10] propose a fuzzing test method that
uses CAN, and they experimented on an actual machine
from the three viewpoints of the transmission of unused
IDs, transmission with high frequency, and transmission of
erroneously generated messages. They indicated in particular
that testing for erroneously generated messages is important
for CAN.

Bayer et al. [11] designed a fuzzing test tool for CAN and
showed that it is possible to execute a fuzzing test on“UDS
on CAN” in realistic time.

However, as far as we know, although existing research
mentions fuzzing tests of CAN, there is no mention of fuzzing
tests of CAN-FD. Therefore, with this paper we have designed
and evaluated a fuzzing test tool that supports CAN-FD. The
test tool that we have designed is implemented by integrating
the existing fuzzing tool beSTORM with a CAN-FD interface
that we developed. This paper evaluates the execution time for
a fuzzing test in order to show the usability of the fuzzing tool
that has been designed.

B. The organization of this paper

The following is the structure of the remainder of this paper.
First, section II gives an overview of the CAN and CAN-
FD protocols that will be the object of the fuzzing. Then,
section IV explains the characteristics of the existing fuzzing
tool beSTORM and gives an overview of the fuzzing tool
that we have developed. Section III explains the fuzzing test
method using the developed fuzzing tool, section V measures
and discusses the processing time required for the fuzzing test,
and finally section VI summarizes the paper.

II. CAN AND CAN-FD

To address the fact that the CAN transmission capacity
cannot handle message sizes that are expected to grow in
the future, various protocols such as FlexRay, CAN+ [12],
and Scalable CAN [13] have been presented. Among these,
CAN-FD is seen as the next-generation standard to replace
CAN. This section gives overviews of the CAN and CAN-FD
protocols, and explains their differences.

A. Controller Area Network(CAN)

CAN, which currently is used by many on-vehicle networks,
is a bus-type serial communication protocol developed by
Bosch GmbH. It has been made a standard by ISO11898
ISO:CAN, and is used not just by automobiles but also for
example by airplanes and manufacturing robots.

The CAN communication path comprises two wires, and
has a level that must always be either the dominant level or
the recessive level based on the potential difference. Even if
noise is mixed in there is almost no change in the potential
difference between the wires, so it has excellent anti-noise
characteristics.

In CAN, all of the nodes connected to the bus can transmit
messages, and broadcast communication is performed. If two
or more nodes simultaneously start transmission, arbitration
is performed from the first bit of the field that is called the
ID of the CAN message, and the node that had continuously
transmitted the dominant level for the longest time obtains
transmission rights, and nodes that have not obtained trans-
mission rights transition to reception operation from the next
bit.

Next we explain the data frame (Figure 1) used for test data
when performing a fuzzing test.

A data frame is a frame that is used for transmitting
and receiving messages. There is a standard format and an
expanded format in which the ID field is expanded. This
section explains the standard format.

The data frame is mainly composed of (1) the ID field, (2)
a control field, (3) a data field, and (4) a CRC sequence. Each
of their roles is as follows:

• (1) ID Field: Contains the CAN-ID. As already men-
tioned, this is used for arbitration when there is a frame
collision.

S
O
F

ID r1
ID
E

r0
DLC DATA CRC

�
�
�
��
�
��
�
�	
�

A
C
K

�
�
�
�
�
��
�
�	
�

EOF IFS

1 11 1 1 1 4
0…64 15

1 1 7 3

��� ��� ������

Fig. 1. Traditional CAN Data Frame.

• (2) Control Field: Contains reserved bits r1 and r0, each
of which is fixed dominant, and a DLC (data length code)
that specifies the length of the data field.

• (3) Data Field: Stores the data being transmitted.
According to the DLC (data length code) in the control
field, it can specify a message having 0 to 8 bytes, in
units of 1 byte.

• (4) CRC Sequence: This stores a 15-bit CRC (cyclic
redundancy check) symbol for the bit sequence from SOF
through the data field.

B. Controller Area Network(CAN) with Flexible Data-Rate

1) Characteristics of CAN-FD: CAN-FD is a serial com-
munication protocol based on CAN, and it has the following
two characteristics.

1) In addition to the 0 to 8 bytes of CAN, it can expand
the payload length to 12, 16, 20, 24, 32, 48, or 64 bytes.

2) In on-vehicle CAN the communication rate is limited to
500 kbps but, from the second half of the control field
through the CRC sequence, modulation is performed by
switching the division ratio, so that it can be accelerated
to 8 Mbps.

2) Differences from CAN: In CAN-FD, the following three
bits are added to the CAN control field (6 bits), expanding the
control field to 9 bits (Figure 2).

• Extended Data Length (EDL): Tells whether the frame
format is CAN-FD or CAN.

• Bit Rate Switch (BRS): Tells whether modulation is to
be performed.

• Error State Indicator (ESI): Tells the error status of
the sending node.

S
O
F

ID r1
ID
E

E
D
L

r0 B
R
S

E
S
I

DLC DATA CRC

�
�
�
��
�
��
�
�	
�

A
C
K

�
�
�
�
�
��
�
�	
�

EOF IFS

1 11 1 1 1 1 1 1 4
0…512 17 or 21

1 1 7 3

�����������	��	
���������	����	
������ ��������

��� ��� ������

Fig. 2. CAN-FD Data Frame in non-ISO version.

In the CAN frame, if RTR is recessive and the data field is
removed then it is a remote frame. However, CAN-FD does
not have a remote frame, and the bit that corresponds to RTR
in the CAN frame becomes a reserved bit r1 that is fixed
dominant in CAN-FD.

3) CRC Sequence: In the CAN frame the CRC is 15 bits,
but in CAN-FD, in order to expand the payload, the CRC
sequence has been expanded to match it. If the payload is at
most 16 bytes then a 17-bit CRC sequence is attached, or if
the payload is more than 16 bytes then the CRC sequence is
21 bits.

III. CAN AND CAN-FD PROTOCOLS FOR BESTORM

A. beSTORM

beSTORM [14] is a fuzzing tool that runs on Windows,
developed by Beyond Security, Inc., and it is marketed in Japan
by AIUTO Co., Ltd. beSTORM has been introduced by many
organizations and companies in the world.

beSTORM supports internet protocols. It also supports
CAN, which is not an internet protocol, and to perform a
fuzzing test it is necessary to separately prepare an interface.
Therefore, for this research we developed an interface to
transmit test data from beSTORM to the CAN/CAN-FD bus.

Figure 3 shows the screen when a fuzzing test is being
executed by beSTORM. In Figure 3, (1) can show the start
time and elapsed time of the test, and the number of executed
test cases. (2) is a chart that shows the number of test
cases executed during each second and their average. When
completed, the number of test cases executed and the time
required for test completion are shown, and the test results
are reported.

(1) (2)

Fig. 3. Overview of beSTORM.

The following are the characteristics of beSTORM:
• All fuzzing data that includes the possibility of being a

vulnerability for the protocol being tested is generated,
and the tests are performed. A generation method for
efficient combination can be selected, to realize high-
speed testing.

• It is possible to define unique protocols (called modules)
with XML, so there is excellent expandability.

• It is possible to call one ’s own DLL (dynamic link
library).

• If an attack succeeds, a detailed report is recorded. This
report makes it easy to reproduce the attack.

B. Development of the CAN-FD Interface

With beSTORM it is necessary to define a protocol module
in order to perform fuzzing. It is assumed that the protocol
module will be described in the XML format. The necessary

fuzzing data is defined within the module, and it is possible
to transmit the fuzzing data created by beSTORM to the
target being evaluated by calling functions within a DLL.
Therefore, in this research, we defined a protocol module
for the CAN/CAN-FD protocol, and within it we created a
configuration for performing CAN/CAN-FD communication
through an external interface (hereafter, the CAN-FD inter-
face) by calling functions within a DLL.

The following was the method for designing the CAN-FD
interface:

1) In order to minimize the development scale, we used se-
rial communication for the interface between beSTORM
running on a PC and the CAN-FD interface.

2) There exist CAN-FD communication ports on the mar-
ket, but we used a CAN-FD controller IP mounted on an
FPGA board in order to introduce intentional forgeries
in the CAN-FD frames into the fuzzing.

3) The object of the development was CAN-FD, but we
designed it to also be able to support the CAN protocol.

Based on these assumptions, we used the following devices.
Note that from here on this paper may only mention CAN-FD,
but the CAN protocol is also supported.

• DE0-NANO: The FPGA board manufactured by Altera
Corporation. We mounted TOPPSER/ATK2 [15], which
is a real-time OS for an on-vehicle control system.

• USB serial cable to connect beSTORM (PC) and DE0-
NANO: We developed the following two items in order
to make beSTORM support the CAN-FD protocol.

• CAN/CAN-FD Protocol Module: The following are the
contents of the CAN/CAN-FD protocol module. More
details about ”(b) Transmitted data definition” are found
in section 3.3.

– (a): Procedure for opening the COM port of the PC.
– (b): Transmitted data definition.
– (c): Procedure for closing the COM part of the PC.

• The Interface Between beSTORM and the CAN-
FD Bus: In order to transmit the data generated by
beSTORM to the CAN-FD bus we created a DLL for
communicating between beSTORM and DE0-NANO. By
calling this DLL in the CAN/CAN-FD protocol module
that is“Development Item 1”in Figure 4 it is possible
to transmit the test data generated by beSTORM to DE0
NANO via the USB serial cable. In DE0-NANO the
received data is converted into CAN-FD packets and
transmitted on the CAN-FD bus (“Development Items 2
and 3” in Figure 4).

C. CAN/CAN-FD Protocol Module

Figure 5 is a portion of the CAN-FD protocol module,
showing an example of the description of a data definition.
The defined content is shown as follows.

1) Call the function BSISend inside bestorm-de0-serial.dll
in order to transmit to DE0-NANO (lines 1-3).

DLL

(Development Item 2)

GUI

User

(2) Call interface

function in DLL

(3
 tra
n
s
m
it
re
q
u
e
s
t

o
f te
s
t d
a
ta

(
5
)

r
e
s
p
o
n
s
e

o
f

t
e
s
t

d
a
t
a

CAN Protocol Module (xml file)

(Development Item 1)

(4) Transmission

on CAN / CAN-FD
Test target ECUs

Interface

(Development Item 3)

Fig. 4. Overview of our developed test tool.

1: <SP Name="CAN Send"

2: Library="bestorm-de0-serial.dll"

3: Procedure="BSISend">

4: <S Name="Identifier">

5: <C Name="ID1" Value="01" />

6: <C Name="ID2" Value="02" />

7: </S>

8: <S Name="Config">

9: <EV Name="CAN-FD ID Format"

10: Value="06"

11: Description="CAN-FD ID Format" />

12: </S>

13: <S Name="Dlc">

14: <EV Name="Dlc" Value="08"

15: Description="CAN Dlc" />

16: </S>

17: <S Name="Data">

18: <B Name="Data1" Value="00" />

19: <B Name="Data2" Value="00" />

: :

25: <B Name="Data8" Value="00" />

26: </S>

27: </SP>

Fig. 5. Example of a xml module description.

2) Indicate the CAN-ID constants for the fuzzing data to
generate (in this case, fuzzing data for the CAN-IDs
“ 001”and“ 002”will be generated) (lines 4-7).

3) In this implementation the first bit is for a standard or
expanded ID, the second bit is the EDL, and the third bit
is the BRS. The specified value is“ 06”and indicates
the setting for a standard ID with CAN-FD and BRS
(lines 8-12).

4) In this case, the length of the payload of the generated
fuzzing data is a constant 8 bytes (lines 13-16).

5) Defines the payload. The substituted“00”is the default
value when fuzzing is not being performed (lines 17 27).

The ”B” elements used in the definition of the payload in
Figure 5 are the elements used when beSTORM generates
test data. In the example of Figure 5, for the two frames in
which the ID is“001”and“002”, beSTORM automatically
generates test data where the payload is 8 bytes.

The data generated by beSTORM is transmitted from the
COM port of the PC to DE0-NANO by the called function
inside the DLL using the format shown in Figure 6. In this
case, as shown in Figure 6, the content defined in Figure 5 is
serialized in byte order, with a frame header and an operation
code (OP code) at the start of the data, and a checksum
attached to the end of the data, and transmitted to the COM

port. This data is received in the DE0-NANO from the UART
port, converted to a CAN/CAN-FD frame, and transmitted to
the ECU that is the evaluation target. In Figure 6, the numbers
within the fields show the number of bytes.

Header

2bytes

Operation

Code

1byte

CAN ID

4bytes

Config

1byte

DLC

1byte

Payload

0 � 64 bytes

Checksum

1byte

Fig. 6. Format of the Frames Sent to the UART.

IV. CAN-FD FUZZING TEST

In order to verify the usability of the fuzzing tool developed
in this research, we performed a measurement experiment of
the execution time of a fuzzing test. This section explains
the method of the measurement experiment performed in this
research.

A. Experimental Environment

In all experiments, we used a windows7 64bits machine
running on a 2.8GHz Pentium(R) Core i7 CPU processor with
8GB main memory.

In this experiment we connected the PCAN-USB FD to the
CAN-FD bus for debugging. The PCAN-USB FD is a USB
adaptor that can send and receive CAN messages on the CAN
or CAN-FD bus. Packets received by the PCAN USB FD can
be monitored with PCAN-View.

B. Experimental Method

The measurement experiment was performed by the fol-
lowing procedure. In this paper we call the CAN-FD message
generated by beSTORM the fuzzing data.

• Step1: The ID, DLC, and payload of the data to be sent
are defined in the module that defines CAN-FD, in order
to specify the fuzzing data.

• Step2: The module of Step 1 is read by beSTORM and
the test is executed.

• Step3: The packet transmitted on the bus is received by
using PCAN-USB FD. The received message is moni-
tored with PCAN-View.

• Step4: From the execution time displayed by beSTORM
and the time of reception of PCAN-View, the time to
receive the test data and the time required for the fuzzing
test are calculated.

The interface developed in this research and PCAN-USB
FD were connected as a test target ECU in Figure 7.

V. MEASUREMENT OF THE PROCESSING TIME AND

ANALYSIS OF THE RESULTS

Because the fuzzing test is time consuming method, we
must calculate the time required for the fuzzing test using
beSTORM. In this experiment we used two methods to per-
form the measurement experiment. Also, in this experiment
we only used standard IDs for the CAN-IDs.

• ”The first experiment method” measured the time re-
quired to transmit one item of fuzzing data.

TABLE I
PROCESSING TIME FOR ONE ITEM OF FUZZING DATA

Payload Size (bytes) 8 12 16 20 24 32 48 64
Average Transmission Time for One Item of Fuzzing Data (ms) 152.207 151.976 149.925 150.602 152.207 152.207 154.083 153.846

Transmission Time Obtained from Formula (1) (μ s) 103.5 119.5 135.5 154.0 170.0 202.0 266.0 330.0
Transmission Time Obtained from Formula (2) (μ s) 118.0 138.0 158.0 180.5 200.5 240.5 320.5 400.5

Maximum Transmission Time Overhead (ms) 152.104 151.856 149.789 150.448 152.037 152.005 153.817 153.516

Fig. 7. Overview of our evaluation environment.

• ”The second experiment metod” used tens of thousands
of fuzzing tests and measured the time required for the
total test.

A. Measurement of the Time Required to Transmit One Item
of Fuzzing Data

We transmitted 2,000 items of fuzzing data from beSTORM
and took the average to find the time required to transmit one
item of fuzzing data (Table I).

The processing required to transmit one item of fuzzing data
can be divided into the following three steps:

• (1): Generation of the fuzzing data by beSTORM.
• (2): Processing to transmit to the UART of DE0-NANO.

This is executed by the DLL that is called from the CAN
FD module.

• (3): Processing to convert the data received from the
UART into a CAN-FD packet and to transmit the packet
on the bus.

The CAN-FD transmission time depends on the number of
insertions of stuffing bits within the frames, and evaluations
generally use a minimum transmission time (BCTT) or a
maximum transmission time (WCTT). The minimum and
maximum transmission times defined in reference [16], found
by the following formulas, are shown.

BCTT (p) = 29tarb + (27 + 5�p− 16

64
�+ 8p)tdata (1)

WCTT (p) = 32tarb + (28 + 5�p− 16

64
�+ 10p)tdata (2)

Here, tarb is the transmission time for the ID field, tdata is
the transmission time for the data field, and p is the number
of bytes for the data size. In this experiment the ID field and
the data field were sent with the bit rates of 500 kbps and
2 Mbps, respectively, so tarb = 2(us) and tdata = 0.5(us).

At this time we expected the CAN-FD transmission time to
require the maximum time, so we performed the evaluation
using the value calculated by Formula (2).

1) Analysis of the Processing Time: The processing during
times that are overhead corresponds to the time from when
DE0-NANO receives the data that was sent by beSTORM,
until it is converted into a CAN-FD packet. From Table I,
within the fuzzing data transmission time, we find the fraction
of the time that is overhead. If the payload size is 64 bytes then
the transmission time is 153.846 ms, so if the time requirement
for one fuzzing data transmission is Tfuzz then the fraction
of the overhead relative to the total transmission time is:

Tfuzz −WCTT (64)

Tfuzz
=

153.846− 0.4005

153.846
= 0.99 (3)

Therefore, we see that 99% of the time required for fuzzing
data transmission is overhead separate from the CAN FD
network transmission time. The overhead time breaks down
into the following three items:

1) Creation of fuzzing data by beSTORM and the process
of transmitting it to the UART

2) Transmission over the USB serial cable from beSTORM
to DE0-NANO.

3) The process of converting from the UART of DE0-
NANO into a CAN packet.

The processing flow for one generated fuzzing data item up
until transmission to the PCAN-USB FD.

beSTORM Interface

(DE0-NANO)

PCAN-USB FD

Generate

Fuzzing data

Transmit

a serial packet

Re-packing from Serial

to CAN frame

Transmit

a CAN-FD packet

t

Delay due to overhead

of fuzzing process.

Transmission time of

a CAN-FD frame.

0
 (

m
s)

Fig. 8. Process flow of our developed fuzzing tool.

In this experiment, the time required to generate fuzzing
data and the time until DE0-NANO receives the data could
not be measured, so we have not been able to determine
which process is the bottleneck. If the time required for (1)
above is the bottleneck then using a higher-speed PC would

be an improvement. Or, if the time required for (2) or (3)
is the bottleneck, then using a different high-speed interface
such as Ethernet to transmit the fuzzing data could be an
improvement. Table I also shows that the transmission time
for one item has almost no relationship to the payload size.
As mentioned above, 99% of the transmission time is spent in
processing prior to CAN-FD communication. The relationship
between transmission time and payload load shows that the
overhead time does not depend on the data length. Also,
CAN-FD performs modulation so that as the data length gets
longer the amount transmitted per unit time increases, and
that characteristic can also be given as a reason why the
transmission time does not increase even when the payload
gets longer.

B. Measurement of the Time Required for a Complete Fuzzing
Test

1) Measurement of the Processing Time: In order to find
the effect of the payload length on the time required for a test
we executed approximately 65,000 test cases for each of the
three payload lengths of 8, 32, and 64 bytes (Table II).

TABLE II
TRANSMISSION TIME PER 1 FUZZING DATA ITEM.

Payload Size (bytes) 8 32 64
Number of Fuzzing Data Items Generated 65787 65599 65567

Fuzzing Execution Time (hr:min:sec) 02:46:59 02:42:56 02:51:28
Average Number of Items Transmitted Per Minute 394 402 382

2) Analysis of Processing Time: As mentioned in section
V-A1, it is known that the transmission time per one fuzzing
data item does not depend on the payload length. Table
II shows that approximately 400 items of test data can be
transmitted per minute regardless of the payload length. In
an actual test it is expected that data of multiple payload
lengths will be combined and sent in large quantities. If a test
using 1,000,000 fuzzing data items were performed, in this
environment a test time of approximately 42 hours would be
required. For example, if one prepared a test environment with
10 machines, divided the test data into 10 parts, and executed
tests in parallel, the testing would complete in approximately 4
hours. It is believed that this estimate is realistic for an actual
testing environment. However, since 99% of the transmission
time is overhead time in our test environment, even higher
speeds can be expected. For example, if the overhead time
were reduced by only 30% then it would be possible to
complete the test in 30 hours, to improve the usability.

VI. CONCLUSION

The paper has reported an implementation of fuzzing for
the CAN-FD protocol using beSTORM and has examined a
measurement experiment that was performed on the execution
time of a fuzzing test. With regard to the fuzzing execution
time, we learned that about 400 tests can be performed in
one minute, but as mentioned in section V-B2 it is possible
to make the tests run faster by eliminating the bottleneck in

the test data transmission time. An investigation of which
process is the bottleneck is a challenge for the future. Also,
in an actual test it would be necessary to evaluate whether the
response is as expected for each fuzzing data item that was
transmitted for testing. For that it is necessary to determine
the expected response value based on the CAN-FD network
design information and to build an environment for evaluating
the actual response value into beSTORM. These two points
remain as challenges for the future.

ACKNOWLEDGMENT

This work was supported by Ministry of Internal Affairs
and Communications (MIC) in Japan, Strategic Information
and Communications R&D Promotion Programme (SCOPE)
Grant Numbers 152106005. This work was supported by JSPS
KAKENHI Grant Number 16K16025.

REFERENCES

[1] Leohold, J.. Communication Requirements for Automotive Systems, 5th
IEEE Workshop on Factory Communication Systems, 2004.

[2] International Organization for Standardization, Road vehicles - Controller
area network (CAN) - Part 1: Data link layer and physical signaling,
ISO11898-1, 2003.

[3] International Organization for Standardization, Road vehicles - Local
Interconnect Network (LIN) - Part 1: General information and use case
definition, ISO/DIS 17987-1.

[4] International Organization for Standardization, Road vehicles - Commu-
nication on FlexRay - Part 1: General information and use case definition,
ISO 10681-1, 2010.

[5] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, xperimental
Security Analysis of a Modern Automobile, IEEE Symposium on Security
and Privacy, 2010.

[6] C. Valasek, C. Miller, ”Adventures in Automotive Networks and
Control Unit”, http://www.ioactive.com/pdfs/IOActive Adventures in
Automotive Networks and Control Units.pdf, 2014.

[7] Specification of Module Secure Onboard Communication (SecOC)
AUTOSAR Release 4.2.2, http://www.autosar.org/fileadmin/files/releases/
4-2/software-architecture/safety-and-security/standard/AUTOSAR
SWS SecureOnboardCommunication.pdf, 2014.

[8] International Organization for Standardization, “ Road Vehicles: Con-
troller Area Network (CAN), Part 1: Data Link Layer and Physical
Signaling” ISO11898-1, 2015.

[9] S. Bayer, T.Enderle, D.K. Oka, M. Wolf“ Security Crash Test - Prac-
tical Security Evaluations of Automotive Onboard IT Components”, In
Automotive - Safety & Security 2015, Stuttgart, Germany, April 2122,
2015.

[10] T. Matsumoto, Y. Kobayashi, Y. Tsuchiya, N. Yoshida, N. Morita, S.
Kayashima,“Methods of Fuzzing On-Vehicle ECUs Through CAN”,
Institute of Electronics, Information, and Communication Engineers,
SCIS 2015, 2015 (in Japanese).

[11] S. Bayer, A. Ptok,“Don ’t Fuss about Fuzzing; Fuzzing In-Vehicular
Networks”, In Embedded Security in Cars Conference (escar EU 2015),
Cologne, Nov. 1112, 2015.

[12] T. Ziermann, S. Wildermann, and J. Teich. CAN+: A new backward-
compatible Controller Area Network (CAN) protocol with up to 16x
higher data rates. In DATE, pages 1088-1093. IEEE, 2009.

[13] R. Kurachi, H. Takada, M. Nishimura, S. Horihata,“A New High-Speed
Bus Topology LAN Protocol Compatible with CAN”, SAE Technical
Paper 2011-01-1043, 2011, doi:10.4271/2011-01-1043.

[14] AIUTO Co., Ltd., beSTORM, http://www.bestorm.jp, 2015.
[15] TOPPERS Project, TOPPERS/ATK2, https://www.toppers.jp/atk2.html,

2015.
[16] U.D. Bordoloi, S. Samii,“The Frame Packing Problem for CAN-FD”,

IEEE Real-Time Systems Symposium (RTSS) 2014, pp.284-293, 2014.

