
The good 0(ld) days
Finding old bits of code in binaries in the hope of finding 0day

Thomas Dullien (“Halvar Flake”) -- Google Project Zero
thomasdullien@google.com

Software Supply Chains are complicated

● Including a third-party software component under liberal licenses is “free”
● Unprecedented economics:

○ You want to build X.
○ Many input parts for X are available, and for free!
○ Of course you will use them!

● Explosive innovation in IT in part driven by the vast quantities of
high-quality libraries under liberal licenses.

● “Software is eating the world, and a good part of it is open-source.”

Software Supply Chains are complicated

● Dependencies have further dependencies.

● Your third-party library may contain code from another third-party library.

● Enumerating dependencies is nontrivial.

3rd party library security is hard

● How do you monitor 3rd-party libraries for security fixes?

● Does the 3rd-party library even distinguish between security and
non-security fixes? If not, can you?

● How quickly can you update if a security flaw in a 3rd-party library is
identified?

Centralized libraries are high-value targets

● A flaw in a single, well-chosen open-source library can affect dozens of
products.

● Gold standard: Zlib (histrical example: CVE-2005-2096 - crash in zlib
through decompressing a PNG)

● Other libraries with high centrality: Unrar (one bug gives compromise of
almost all antivirus engines), libtiff (PDF rendering, browsers,
thumbnailers), compression libraries (Brotli) etc. etc.

Examples

Example: Font parser codebase ancestry

Unknown Codebase,
likely at Apple?

Adobe Reader
Cooltype.dll win32k.sys atmfd.dll

Adobe Reader
Cooltype.dll win32k.sys atmfd.dll

Security FixesSecurity Fixes

Example: Font parser codebase ancestry

Unknown Codebase,
likely at Apple?

Adobe Reader
Cooltype.dll win32k.sys atmfd.dll

Adobe Reader
Cooltype.dll win32k.sys atmfd.dll

Security FixesSecurity Fixes

Are fixes
ported?

Example: UnRAR

unrar 4.2.4 unrar 5.x

Windows
Defender

Sophos

...

Example: UnRAR

unrar 4.2.4 unrar 5.x

Windows
Defender

Sophos

Windows
Defender

Sophos

...

Security
Fixes

Security
Fixes

Example: UnRAR

unrar 4.2.4 unrar 5.x unrar 5.5.4

Windows
Defender

Sophos

Windows
Defender

Sophos

...

Security
Fixes

Security
Fixes

No upstreaming of
fixes!

Example: UnRAR

unrar
4.2.4 unrar 5.x unrar

5.5.4

Windows
Defender

Sophos

Windows
Defender

Sophos

...

Security
Fixes

Security
Fixes

McAfee

TrendMicro

ClamAV

GData

...

Detection in
binaries

Detection of libraries in binaries is difficult

● Compilers change over time
● The libraries themselves change over time
● Only “precise” way of detection: Common strings?

● Control-flow-graph & disassembly can change drastically …
○ due to compiler changes
○ due to compiler setting changes
○ due to library code changes
○ due to interaction of library code changes with compiler changes & settings changes

Related work

IDA’s FLIRT

● Byte signatures with wildcards & extra stack information.

MACHOKE

● Serialize CFG into a canonical string.
● Apply Murmurhash3 on this string.

● No concept of “similar but not equal”.
● Tries to achieve fuzzyness by not taking instructions into account at all.

GENIUS [Paper]

● Operates on “ACFG” (CFGs annotated with extra data like # of calls, string
constants etc.)

● Selects a “codebook” of representative graphs from groups of training
graphs (e.g. implementations of the same function) via spectral clustering.

● Associates each codebook-graph with a high-dimensional vector.

http://www.cs.ucr.edu/~heng/pubs/genius-ccs16.pdf

GENIUS [Paper]

● Incoming graph is compared to each representative codebook graph (via
calculating a bipartite graph matching), result vector in R^n is constructed
from this.

● Similarity-search is performed using locality-sensitive hashing for
approximate nearest neighbors using the R^n vector.

http://www.cs.ucr.edu/~heng/pubs/genius-ccs16.pdf

GEMINI [Paper]

● GENIUS suffers from …
○ expensive pre-clustering (for the codebook generation)
○ relatively expensive search (many bipartite graph matchings against codebook)

● GEMINI addresses these problems using Deep Learning.

● Uses “structure2vec” method to compute an R^n embedding from a graph.

https://acmccs.github.io/papers/p363-xuAemb.pdf

GEMINI [Paper]

● Learn embedding from ACFGs to R^n using “structure2vec” (general
graph-to-embedding model)

● “Siamese architecture” (2 parallel runs of the embedding, minimize /
maximize resulting distance)

● Given input graph, calculating embedding into R^n is quick, lookup using
locality-sensitive hashing for ANN.

https://acmccs.github.io/papers/p363-xuAemb.pdf

GEMINI [Paper]

● Looks powerful.

● Not available publicly.

https://acmccs.github.io/papers/p363-xuAemb.pdf

Practical
considerations.

Motivation

● Reading MPEngine.dll, I recognized unrar code.

● Extensive experience with Adobe’s font parser & it’s heritage.

● “Can I build something that helps me find third-party libraries for my
practical day-to-day-work?”

Design
considerations

Automatically recognize & suggest libraries

● Given a function, I should be able to ask: “Does this look similar to anything
in my library of 3rd-party-libs?”

● Search should be resilient to small changes in both graph and assembly.

Single-machine setup

● The system should not require extensive setup.

● Should run on a single machine without requiring big databases or
distributed key-value stores in the background.

● The system should still allow quick lookup of O(million) stored library
functions.

Easy integration with other RE tools

● Tools need to be integrated with RE workflows.
● Vulnerability researchers have heterogeneous setups: IDA, Binary Ninja,

Radare2, Miasm, Hopper etc.

● Highly divergent extension APIs, philosophies etc.
● Solution: Compile to Python extension, should be easily accessible from all

tools that have a Python Interpreter.

Learning from data

● “Machine Learning” (e.g. automated use of statistical estimation) can help
extract useful information from lots of unstructured data.

● Both GENIUS and GEMINI use heavy-duty machine-learning algorithms.

● System under consideration should also allow improvement from data
(“learning”).

Inspectability of learnt results

● When the ML algorithm learns something, the results should be
“inspectable by an expert”.

● At least initially, I am quite happy to sacrifice accuracy in the search for
interpretability of results.

● As confidence in the system grows, I am happy to move to more
complicated/powerful ML models.

Easy sharing of results

● The primary means of communication is still “email” or “chat”.

● It should be easy to send a friend the “fingerprint” of a given function via
email or chat.

Implementation
details

SimHash to obtain compact hashes

● SimHash provides a method to calculate a “similarity-preserving” hash
from a set of feature hashes.

● Given two sets of features extracted from two functions, the SimHashes
calculated from the two sets will have low hamming distance if the set
similarity was high.

● Very nice properties: Our search index can be 128-bit hashes (compact!)

https://en.wikipedia.org/wiki/SimHash

SimHash to obtain compact hashes

0xACAB00D

0xDEADF00D

0x12340101

0xDEADF00D

0xDEADF00D

0xDEAD12D

0xD12DF00D

0xDE43F00D

0xDEADF43D

0xADBEABAB

0xABDEABDE

0xDEADF00D

0xDEADF00D

0xDEADF00D

0xDEADF11D

0xDEADF00D

0xDEADFAAD

0xDEADF00D

0xDEADF00D

0xDEADF00D

0x12340101

0xDEADF00D

0xDEADF00D

0xDEAD12D

0xD12DF00D

0xDE43F00D

0xADBEABAB

0xABDEABDE

0xDEADF00D

0xDEADF00D

0xDEADF00D

0xDEADF11D

0xDEADF00D

0xDEADFAAD

0xDEADF00D

0xDEADF00D

0xDEADF10D

SimHash to obtain compact hashes

0xACAB00D

0xDEADF00D

0x12340101

0xDEADF00D

0xDEADF00D

0xDEAD12D

0xD12DF00D

0xDE43F00D

0xDEADF43D

0xADBEABAB

0xABDEABDE

0xDEADF00D

0xDEADF00D

0xDEADF00D

0xDEADF11D

0xDEADF00D

0xDEADFAAD

0xDEADF00D

0xDEADF00D

0xDEADF00D

0x12340101

0xDEADF00D

0xDEADF00D

0xDEAD12D

0xD12DF00D

0xDE43F00D

0xADBEABAB

0xABDEABDE

0xDEADF00D

0xDEADF00D

0xDEADF00D

0xDEADF11D

0xDEADF00D

0xDEADFAAD

0xDEADF00D

0xDEADF00D

0xDEADF10D

0x00000100

SimHash algorithm sketch

● Allocate array of N floats (if your input hashes have N bits)
● For every input hash, do:

○ If the bit input_hash[k] == 1, increment the float[k] by 1.0
○ If the bit input_hash[k] == 1, decrement the float[k] by 1.0

● Convert floats to bits again by assigning positive floats to “1” bits and
negative floats to “0” bits.

SimHash Illustration: Internal state after K steps

Floats are normally
distributed around
zero.

With every additional
processed feature,
they will wobble up or
down a little bit.

SimHash Illustration: Internal state after K steps

Floats are normally
distributed around
zero.

With every additional
processed feature,
they will wobble up or
down a little bit.

SimHash Illustration: Internal state after K steps

Floats are normally
distributed around
zero.

With every additional
processed feature,
they will wobble up or
down a little bit.

Only those that cross
the “zero” line will
change the resulting
hash.

Locality-sensitive hashes via permutation

● Similarity search in O(million) of hashes is doable, but O(million) is slow.

● Approximate nearest-neighbor search can be achieved using
locality-sensitive hashing.

● LSH: A family of hash functions where nearby points have a higher
probability of landing in the same hash bucket than far-away points.

Locality-sensitive hashes via permutation

● Easy for hashes (~bit-vectors): Simply take a random subset of bits.

● Pick random permutation. Permute all the bits, then take first N bits as
hash.

● Permute & take first N bits again for the next hash.

Locality-sensitive hashes via permutation

● 128-bitwise permutation can be had for ~65 cycles. (I used a cool
generator that generates C code for a given bitwise permutation:
http://programming.sirrida.de/calcperm.php)

http://programming.sirrida.de/calcperm.php

Learning good
weights from
example data.

SimHash with learnt weights

● SimHash uses +1 and -1 as weights.

● Not every feature has the same relevance - function prologues etc.

● How can we best “learn” good weights from examples?

● First, generate labeled examples: Lots of versions of the same function.

SimHash with learnt weights

● Can we optimize weights so that …
○ … pairs of similar functions get closer together and
○ … pairs of dissimilar functions get moved to be further apart?

● SimHash distance is Hamming Distance, which is discrete.

● Supervised Machine Learning usually means running optimization
algorithms on a differentiable loss function.

● We need something continuous to differentiate so we can “learn weights”.

SimHash with learnt weights

● Before we convert floats to bits again, we have float values for every k

● We can take two vectors of floats and run them component-wise through a
function that punishes “same sign” or “different sign”.

SimHash with learnt weights

Smooth step function: No gradient in the flats. Multiply with d(x,y) to slope the flat sections.

Automatic differentiation & minimization

● Many libraries exist to perform automatic differentiation & minimization.

● I wanted a pure C++ codebase, so instead of Python/TensorFlow or
Python/Keras or Julia I used a C++ library (SPII) for it.

● This makes using GPUs for training hard, so was probably not a great
decision.

Evaluating the
training results.

Questions we have:

1. Does the learning process improve our ability to detect variants of a
function we have trained on?

2. Does the learning process improve our ability to detect variants of a
function even if we have not seen a variant of it before?

3. Are the results we get for (1) or (2) practically useful yet?

Different ways of splitting data for question 1 and 2

Difference in average distance for between similar and dissimilar pairs after N steps

T-SNE of untrained (left) and trained (right) hash distances

Current state

1. Difference-between-good-and-bad-pairs goes up significantly for functions
that we had variants for -- see graph (better separation).

2. Difference-between-good-and-bad-pairs goes up very slightly for functions
that we had no variants for (very slightly better separation).

Interfacing with
Python, IDA, Binja

Python Interface is very simple

git clone https://github.com/googleprojectzero/functionsimsearch

install only the python bindings

cd functionsimsearch

python ./setup.py install --user

Python

>>> import functionsimsearch

>>> fg = functionsimsearch.FlowgraphWithInstructions()

>>> fsh = functionsimsearch.SimHasher()

>>> fg.add_node(0x401000)

>>> fg.add_instructions(0x401000, (("push", ("ebp","")), ("mov", ("ebp", "esp")), ("sub", ("esp", "0x20"))))

>>> fg.to_json()

u'{"edges":[],"name":"CFG","nodes":[{"address":4198400,"instructions":[{"mnemonic":"push","operands":["ebp",""]},{"

mnemonic":"mov","operands":["ebp","esp"]},{"mnemonic":"sub","operands":["esp","0x20"]}]}]}'

>>> fsh.calculate_hash(fg)

(7763007128511167962L, 7763007128511167962L)

https://github.com/googleprojectzero/functionsimsearch

Python Interface is very simple

>>> index = functionsimsearch.SimHashSearchIndex(“/home/thomasdullien/searchindex”, False)

>>> # Add a function with a given SimHash to the index.

>>> index.add_function(hash[0], hash[1], file_id, address)

>>> # Query for the best 5 matches for a given function.

>>> results = index.query_top_N(hash[0], hash[1], 5)

>>> for r in results:

>>> number_of_identical_bits = r[0]

>>> file_id_of_result = r[1]

>>> address_of_result = r[2]

Experimental plugins for IDA and Binja exist

● Proof-of-concepts

● Only allow saving & search

● Only text output as UI at the moment

Problems &
Challenges

False positive requirements

● Scanning a single large binary can easily involve 60k+ queries.

● False positives are very wasteful of vuln-researcher time.

● False-discovery-rate needs to be somewhere below 0.0001 or even
0.00001.

● We are not there yet.

Small graphs

● Method fails spectacularly on small graphs.

● If a change in the graph is only 4 edges away from most other nodes, the
graphlets all change and mess up results.

● Different methods will be needed for small functions (context?)

Answer we have so far:

1. Does the learning process improve our ability to detect variants of a
function we have trained on? Yes, measurably.

2. Does the learning process improve our ability to detect variants of a
function even if we have not seen a variant of it before? Yes, but only
slightly. So not yet in practice.

3. Are the results we get for (1) or (2) practically useful yet? Not yet, due to
extremely strict false-positive / false-discovery requirements.

Some example
functions and
their distances.

Future directions

Reimplement the “learning” code

● Current learning code is implemented in C++.
● Auto-parallelization and GPU offload is made complicated.

● Great libraries for learning exist. This code needs to be rewritten.
○ TensorFlow
○ Keras
○ Most likely: Julia v1.0 (because I like the language)

More powerful ML models

● Our model is extremely simple.
● Features are never considered in their “interaction”, simple linear weights

for all features.
● Much stronger models exist:

○ DNN approach from Gemini.
○ Graph NN’s to learn graph structure.
○ RNN’s to learn better embeddings for instruction sequences.

Better features to go into the hash

● Current feature input is subgraphs (“graphlets”) and mnemonic tuples.
● Operands are discarded, string references too.

● Both should be included (they carry a lot of signal !)
● Only obstacle: A clean, cross-disassembler way of parsing constants out

of operands.

Questions?
https://github.com/googleprojectzero/functionsimsearch

