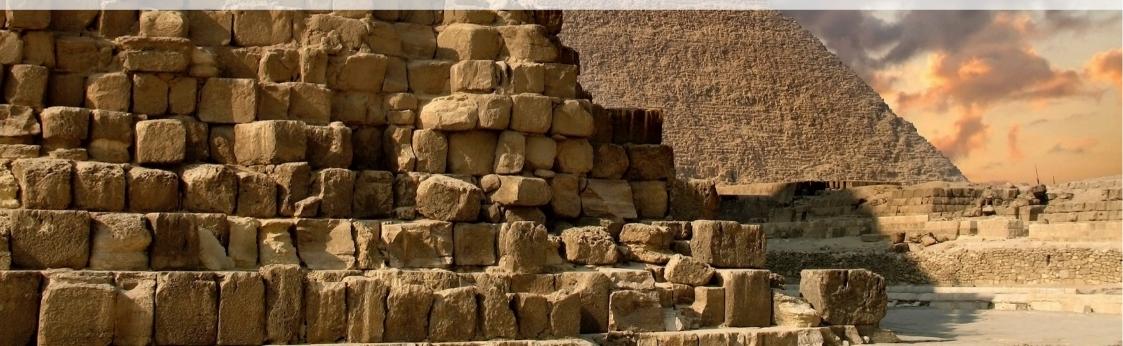
Real-world consistency explained A short introduction

Uwe Friedrichsen (codecentric AG) – EA Connect Day – Berlin, 6. October 2016



Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

About this talk ...

Past

RDBMS

- "One database to rule them all"
- Good all-rounder
 - Rich schema
 - Rich access patterns
- Designed for scarce resources
 - Storage, CPU, Backup are expensive
 - Network is slow
- Shared database
 - Replication was expensive
 - Licenses were expensive
 - Operations were expensive
 - Easy integration model
 - "Strange attractor"
 - Accidental central integration hub
 - Data spaghetti

- Atomicity
- Consistency
- Isolation
- Durability
- Great programming model
 - No temporal inconsistencies
 - No anomalies
 - Easy to reason about
- But reality often is different!
 - ACID does not necessarily mean "serializability"
 - Databases often run at lower consistency levels
 - Anomalies happen
 - Most developers are not aware of it

ACID

ANSI SQL

Anomalies

- Dirty write (P0): w1[x] w2[x] (c1 or a1)
- Dirty read (P1): •
- Fuzzy read (P2): •
- •

Isolation levels

V V _L	$[\Lambda] \dots \mathbb{V} \cong [\Lambda] \dots (\mathbb{C} \boxplus \mathbb{C} \square \mathbb{C} \square$	L)
w1	[x]r2[x](c1 or a1))

- r1[x]...w2[x]...(c1 or a1)
- Phantom read (P3): r1[P]...w2[y in P]...(c1 or a1)

	Dirty write	Dirty read	Fuzzy read	Phantom read
Read uncommitted	Not possible	Possible	Possible	Possible
Read committed	Not possible	Not possible	Possible	Possible
Repeatable read	Not possible	Not possible	Not possible	Possible
Serializable	Not possible	Not possible	Not possible	Not possible

Extended anomaly model

- Dirty write (P0):
- Dirty read (P1):
- Lost update (P4):
- Lost cursor u. (P4C): rc1[x]...w2[x]...wc1[x]...c1.
- Fuzzy read (P2):
- Phantom read (P3):
- Read skew (A5A):
- Write skew (A5B):

- w1[x]...w2[x]...(c1 or a1) w1[x]...r2[x]...(c1 or a1)
- r1[x]...w2[x]...w1[x]...c1
 - r1[x]...w2[x]...(c1 or a1)
- P3): r1[P]...w2[y in P]...(c1 or a1)
 - r1[x]...w2[x]...w2[y]...c2...r1[y]...(c1 or a1)
 - r1[x]...r2[y]...w1[y]...w2[x]...(c1 and c2 occur)

Extended isolation level model

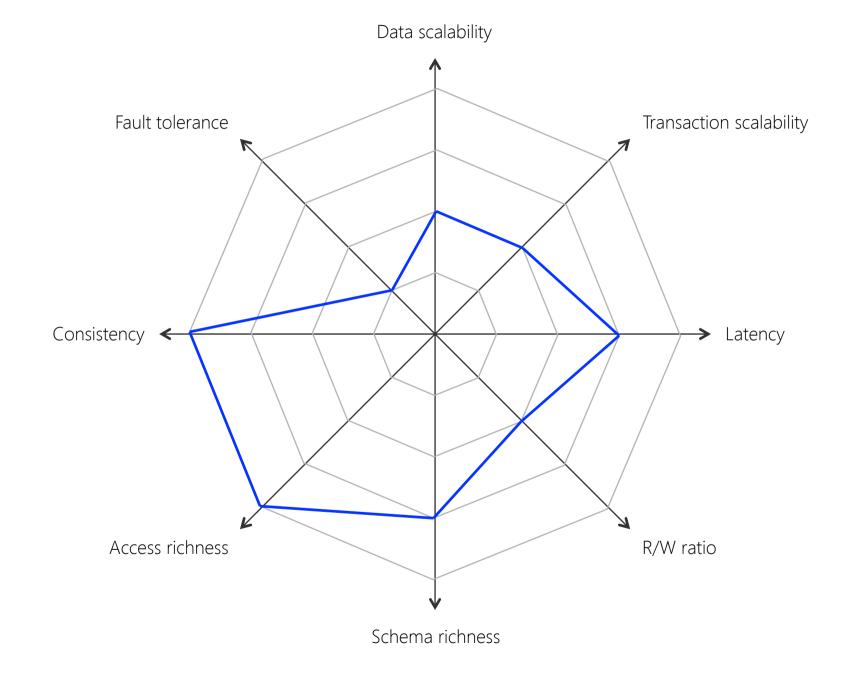
Isolation level	Dirty write	Dirty read	Cursor lost update	Lost update	Fuzzy read	Phantom read	Read skew	Write skew
Read uncommitted	Not possible	Possible	Possible	Possible	Possible	Possible	Possible	Possible
Read committed	Not possible	Not possible	Possible	Possible	Possible	Possible	Possible	Possible
Cursor stability	Not possible	Not possible	Not possible	Sometimes possible	Sometimes possible	Possible	Possible	Sometimes possible
Repeatable read	Not possible	Not possible	Not possible	Not possible	Not possible	Possible	Not possible	Not possible
Snapshot	Not possible	Not possible	Not possible	Not possible	Not possible	Sometimes possible	Not possible	Possible
Serializable	Not possible	Not possible	Not possible	Not possible	Not possible	Not possible	Not possible	Not possible

Default & maximum isolation levels

Database	Default	Maximum			
Actian Ingres 10.0/10S [1]	S	S			
Aerospike [2]	RC	RC			
Akiban Persistit [3]	SI	SI			
Clustrix CLX 4100 [4]	RR	RR			
Greenplum 4.1 [8]	RC	S			
IBM DB2 10 for z/OS [5]	CS	S			
IBM Informix 11.50 [9]	Depends	S			
MySQL 5.6 [12]	RR	S			
MemSQL 1b [10]	RC	RC			
MS SQL Server 2012 [11]	RC	S			
NuoDB [13]	CR	CR			
Oracle 11g [14]	RC	SI			
Oracle Berkeley DB [7]	S	S			
Oracle Berkeley DB JE [6]	RR	S			
Postgres 9.2.2 [15]	RC	S			
SAP HANA [16]	RC	SI			
ScaleDB 1.02 [17]	RC	RC			
VoltDB [18]	S	S			
RC: read committed, RR: repeatable read, SI: snapshot isola-					
tion, S: serializability, CS: cursor stability, CR: consistent read					

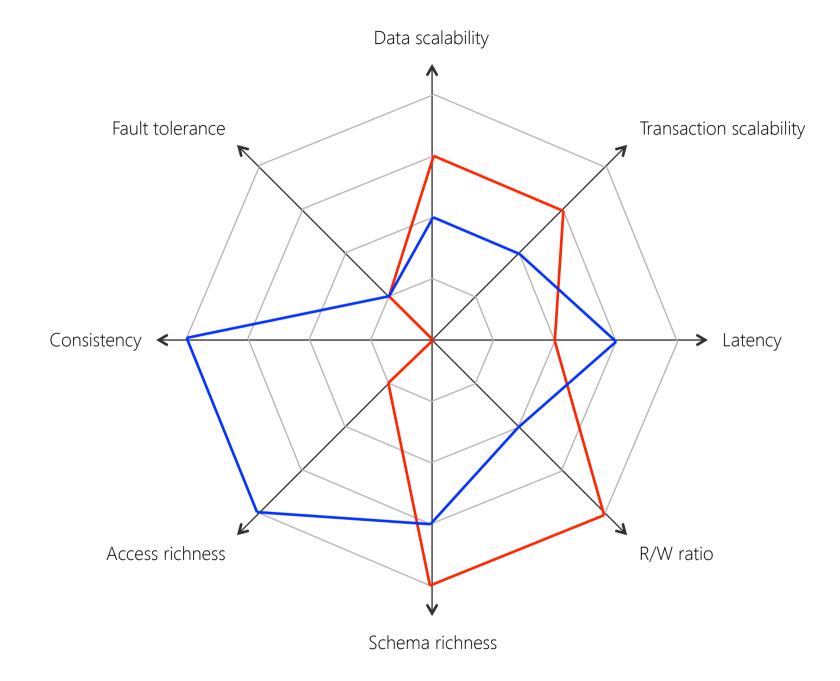
Table 1: Default and maximum isolation levels for ACID and NewSQL databases as of January 2013.

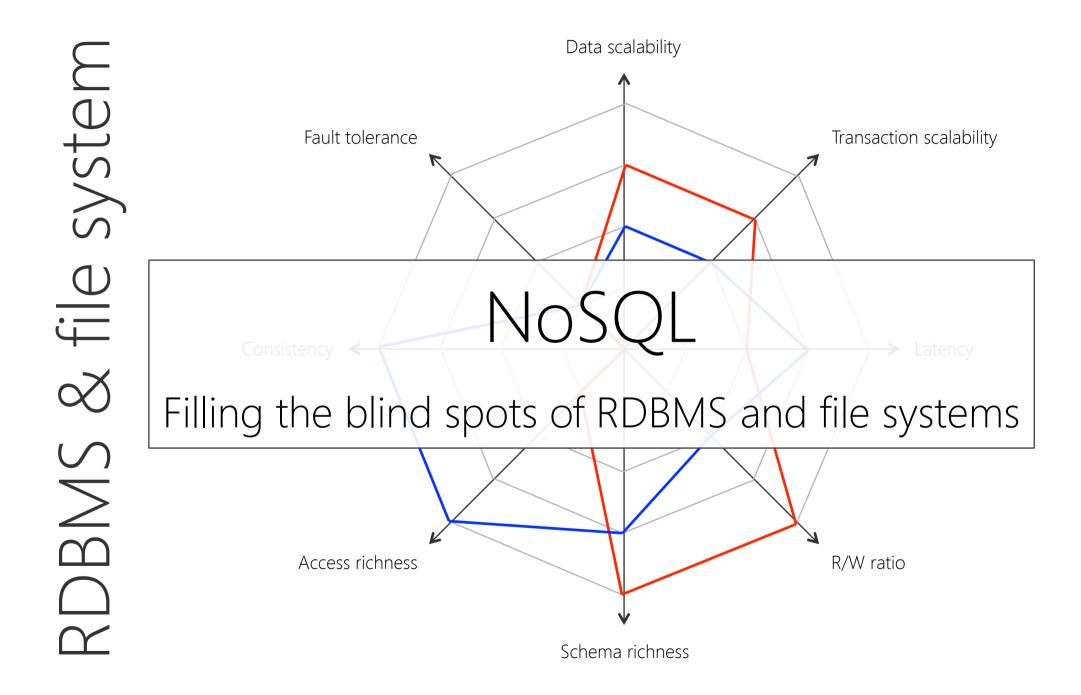
Wrap-up – Past

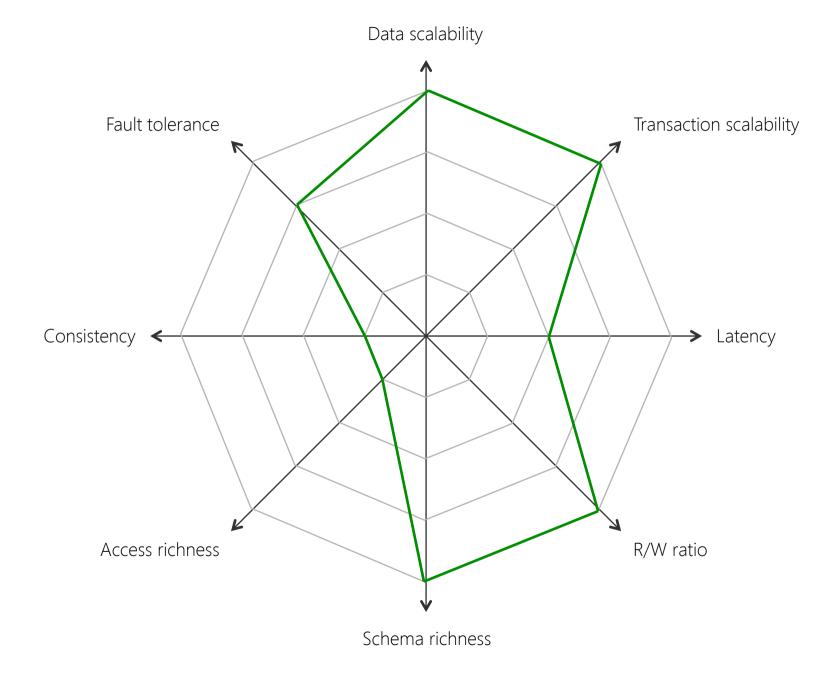

- The relational model is a good tradeoff
- ACID makes a developer's life easy
- Yet, we often live (unknowingly) with less than serializability

And if you go NoSQL ...

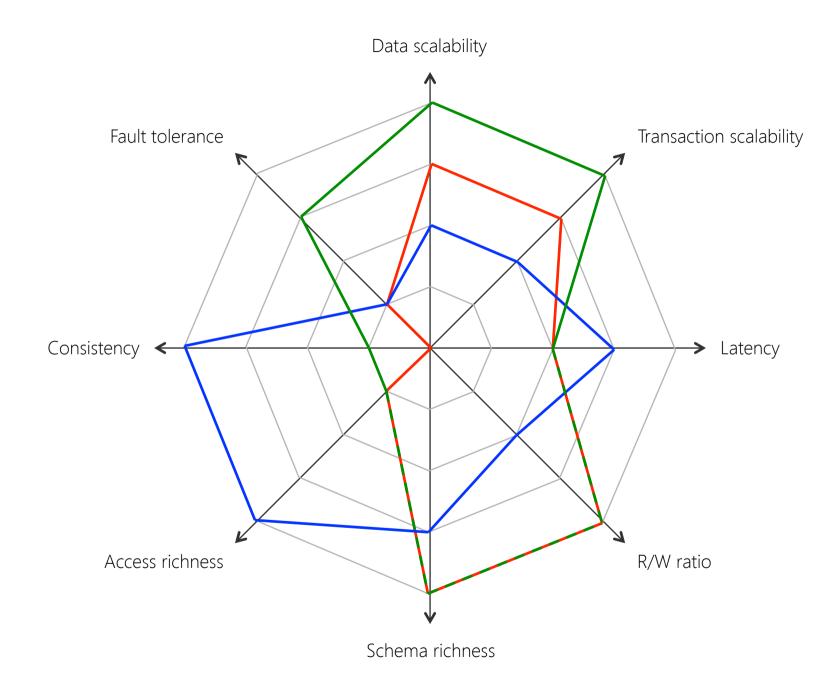
The 8 dimensions of storage


- Data Scalability (amount of data)
- Transaction Scalability (access rate)
- Latency (response time considering scalability)
- Read/Write Ratio (variability of r/w mix considering scalability)
- Schema Richness (variability of data model)
- Access Richness (variability of access patterns)
- Consistency (data consistency guarantees)
- Fault Tolerance (ability to handle failures gracefully)

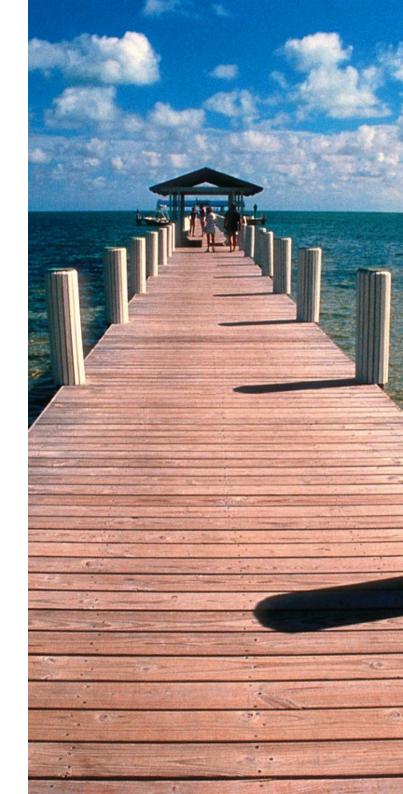




BMS & file system



Cassandra



assandra BMS-FS- \frown \sim

Wrap-up

- ACID offers a great programming model
- But ACID often does not mean serializability
- Most databases do not use serializability
- Understand the trade-offs of NoSQL DBs

And if you want the whole nine yards ...

The full story

- On YouTube
 - https://www.youtube.com/watch?v=WG3xKyldSK0
- On slideshare
 - http://www.slideshare.net/ufried/ realworld-consistency-explained

References

[Bai+2013a] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica, "HAT, not CAP: Towards Highly Available Transactions", HotOS 2013

[Ber+1995] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O'Neil, Patrick O'Neil, "A Critique of ANSI SQL Isolation Levels", Microsoft Research, Technical Report MSR-TR-95-51, June 1995

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

