
Real-world consistency explained

A short introduction

Uwe Friedrichsen (codecentric AG) – EA Connect Day – Berlin, 6. October 2016

@ufried

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

About this talk …

Past

RDBMS
 ACID

RDBMS

•  “One database to rule them all”

•  Good all-rounder

•  Rich schema

•  Rich access patterns

•  Designed for scarce resources

•  Storage, CPU, Backup are expensive

•  Network is slow

•  Shared database

•  Replication was expensive

•  Licenses were expensive

•  Operations were expensive

•  Easy integration model

•  “Strange attractor”

•  Accidental central integration hub

•  Data spaghetti

ACID

•  Atomicity

•  Consistency

•  Isolation

•  Durability

•  Great programming model

•  No temporal inconsistencies

•  No anomalies

•  Easy to reason about

•  But reality often is different!

•  ACID does not necessarily mean

“serializability”

•  Databases often run at lower

consistency levels

•  Anomalies happen

•  Most developers are not aware of it

ANSI SQL

Anomalies

•  Dirty write (P0):
 w1[x]...w2[x]...(c1 or a1)

•  Dirty read (P1):
 w1[x]...r2[x]...(c1 or a1)

•  Fuzzy read (P2):
 r1[x]...w2[x]...(c1 or a1)

•  Phantom read (P3): r1[P]...w2[y in P]...(c1 or a1)

Isolation levels

See [Ber+1995]

Dirty write
 Dirty read
 Fuzzy read
 Phantom read

Read uncommitted
 Not possible
 Possible
 Possible
 Possible

Read committed
 Not possible
 Not possible
 Possible
 Possible

Repeatable read
 Not possible
 Not possible
 Not possible
 Possible

Serializable
 Not possible
 Not possible
 Not possible
 Not possible

Extended anomaly model

•  Dirty write (P0):
w1[x]...w2[x]...(c1 or a1)

•  Dirty read (P1):
w1[x]...r2[x]...(c1 or a1)

•  Lost update (P4):
r1[x]...w2[x]...w1[x]...c1

•  Lost cursor u. (P4C):
rc1[x]...w2[x]...wc1[x]...c1.

•  Fuzzy read (P2):
r1[x]...w2[x]...(c1 or a1)

•  Phantom read (P3):
r1[P]...w2[y in P]...(c1 or a1)

•  Read skew (A5A):
r1[x]...w2[x]...w2[y]...c2...r1[y]...(c1 or a1)

•  Write skew (A5B):
r1[x]...r2[y]...w1[y]...w2[x]...(c1 and c2 occur)

see [Ber+1995]

Extended isolation level model

See [Ber+1995]

Isolation level
 Dirty
write

Dirty
read

Cursor
lost

update

Lost
update

Fuzzy
read

Phantom
read

Read
skew

Write
skew

Read
uncommitted

Not
possible
 Possible
 Possible
 Possible
 Possible
 Possible
 Possible
 Possible

Read
committed

Not
possible

Not
possible
 Possible
 Possible
 Possible
 Possible
 Possible
 Possible

Cursor

stability

Not
possible

Not
possible

Not
possible

Sometimes
possible

Sometimes
possible
 Possible
 Possible
 Sometimes

possible

Repeatable
read

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible
 Possible
 Not

possible

Not

possible

Snapshot

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Sometimes
possible

Not
possible
 Possible

Serializable

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Default & maximum isolation levels

See [Bai+2013a]

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S
RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read

Table 1: Default and maximum isolation levels for ACID
and NewSQL databases as of January 2013.

Read Committed by default, while three “NewSQL” data
stores only offered Read Committed isolation.

In our investigation, we found that many databases
claiming strong guarantees often offered weaker seman-
tics. One store with an effective maximum of Read Com-
mitted isolation claimed to provide “strong consistency
(ACID)” [2], while another claiming “100% ACID” and
“fully support[ed] ACID transactions” uses consistent
read isolation [13]. Moreover, snapshot isolation is often
labeled as “serializability” [14]. We have accompanied
our bibliographic references with additional detail, but it
is clear that these “ACID” guarantees rarely meet serial-
izability’s goal of automatically protecting data integrity
as set out by the database literature. This is especially
surprising given that these databases’ “stronger” seman-
tics are often thought to substantially differentiate them
from their “NoSQL” peers [30, 56, 58].

These results—and several discussions with database
developers and architects—indicate that weak isolation
models are viable alternatives for many applications.
There are applications that either work correctly with
these models or else work well enough to accept the
resulting anomalies in exchange for their performance
benefits [45]. A key challenge is that, while the litera-
ture provides reasonable taxonomy of the models, it con-
siders them in either a single-node context [43] or ab-
stractly [20, 26]—it is unclear which models are achiev-
able with high availability and which are not. Indeed,
most weak isolation levels today are implemented in an
unavailable manner.

3 Highly Available Transactions
The large number and prevalence of “weak ACID” guar-
antees suggests that, although we cannot provide serial-
izability with high availability, providing weaker guar-
antees still provides users with a useful programming in-
terface. In this section, we show that two major mod-
els: Read Committed and ANSI SQL Repeatable Read
are achievable in a highly available environment. This
paves the way for broader theoretical and design stud-
ies of Highly Available Transactions: multi-operation,
multi-object guarantees achievable with high availability.
We will sketch algorithms solely as a proof-of-concept
for high availability; further engineering is required to
improve and evaluate their performance.
Read Committed We first consider Read Committed
isolation—a particularly widely used isolation model in
our survey. Read Committed is often the lowest level of
isolation provided in a database beyond “No Isolation.”
It requires that transactions do not read uncommitted data
items, which would result in “Dirty Reads phenomena
(i.e., ANSI P1 [22] and Adya G1{a,b,c} [20]). In the ex-
ample below, T3 should never see a = 1, and, if T2 aborts,
T3 will never see a = 3:

T1 : wx(1) wx(2)
T2 : wx(3)
T3 : rx(a)

Read Committed is a useful property because it ensures
that transactions will not read intermediate versions of a
given data item or read data from transactions that will
eventually be rolled back (and thus will never have “ex-
isted” in the database).

Read Committed also disallows “Dirty Write” phe-
nomena (Adya’s G0 [20]), so the database will “consis-
tently” order writes from concurrent transactions . Effec-
tively, the database induces a total order on transactions,
and the replicas of the database should apply writes in
this order. For example, if T1, T2 commit, T3 can eventu-
ally only read a = b = 1 or a = b = 2:

T1 : wx(1) wy(1)
T2 : wx(2) wy(2)
T3 : rx(a) ry(b)

This is useful because it effectively guarantees cross-
item convergence, or eventual consistency. “Dirty Write”
occurs when a database chooses different “winning”
transactions across simultaneously written keys.

We can implement Read Committed isolation with
high availability. If servers never reveal dirty data to
clients, then clients will never experience “Dirty Read”
phenomena. To ensure this, servers should only serve
data that they are sure has been committed. Servers
can explicitly buffer incoming writes until they receive a
commit message from clients. Alternatively, clients can

3

Wrap-up – Past

•  The relational model is a good tradeoff

•  ACID makes a developer's life easy

•  Yet, we often live (unknowingly) with less than serializability

And if you go NoSQL ...

The 8 dimensions of storage

•  Data Scalability (amount of data)

•  Transaction Scalability (access rate)

•  Latency (response time considering scalability)

•  Read/Write Ratio (variability of r/w mix considering scalability)

•  Schema Richness (variability of data model)

•  Access Richness (variability of access patterns)

•  Consistency (data consistency guarantees)

•  Fault Tolerance (ability to handle failures gracefully)

Data scalability

Transaction scalability

Schema richness

Access richness
 R/W ratio

Consistency

Fault tolerance

Latency

Re
la

tio
na

l d
at

ab
as

e

Data scalability

Transaction scalability

Schema richness

Access richness
 R/W ratio

Consistency

Fault tolerance

Latency

Fi
le

 s
ys

te
m

Data scalability

Transaction scalability

Schema richness

Access richness
 R/W ratio

Consistency

Fault tolerance

Latency

RD
BM

S
&

 fi
le

 s
ys

te
m

Data scalability

Transaction scalability

Schema richness

Access richness
 R/W ratio

Consistency

Fault tolerance

Latency

RD
BM

S
&

 fi
le

 s
ys

te
m

NoSQL

Filling the blind spots of RDBMS and file systems

Data scalability

Transaction scalability

Schema richness

Access richness
 R/W ratio

Consistency

Fault tolerance

Latency

Ca
ss

an
dr

a

Data scalability

Transaction scalability

Schema richness

Access richness
 R/W ratio

Consistency

Fault tolerance

Latency

RD
BM

S-
FS

-C
as

sa
nd

ra

Wrap-up

•  ACID offers a great programming model

•  But ACID often does not mean serializability

•  Most databases do not use serializability

•  Understand the trade-offs of NoSQL DBs

And if you want the whole nine yards …

The full story

•  On YouTube

•  https://www.youtube.com/watch?v=WG3xKyldSK0

•  On slideshare

•  http://www.slideshare.net/ufried/  

realworld-consistency-explained

References

[Bai+2013a] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica,  
 "HAT, not CAP: Towards Highly Available Transactions", HotOS 2013

[Ber+1995] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,

 Patrick O'Neil, "A Critique of ANSI SQL Isolation Levels", Microsoft Research,

 Technical Report MSR-TR-95-51, June 1995

@ufried

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

