

solutions for society, economy and environment

EuroCombis in Germany – "ecocombis" or "climate killers"

prognos

Stefan Eckert, Michael Faltenbacher thinkstep AG, Germany

Theresa Gutberlet, Alexander Labinsky, Hans-Paul Kienzler Prognos AG, Germany

Daimler Sindelfingen

37,000 employees300,000 vehicles/a1,700 delivery trucksper day

Why EuroCombis?

Load density of automotive parts 300 kg/pallet

Truck type	# pallet	Load	Payload	Utili-
	locations			zation
Semitrailer combination	34	10.2 t	25.0 t	41 %
Articulated train	38	11.4 t	22.1 t	52 %
EuroCombi (type 3)	53	15.9 t	17.4 t	91 %

Rule of thumb: 2 ECs replace 3 CTs

Potential for significant cost savings

Why this study?

- National field test
 - Focus on operational and road safety
 - Since January 1, 2017, ECs allowed on dedicated road network ("Positivnetz")
 - Limited assessment of environmental impacts
- Aim: Investigation of climate effects
 related to EC use

Intra- and intermodal shift towards ECs

- Suitability of goods for EC transport
- EC suitable transport volume
- Comparison of transport costs
- Impact on GHG emissions
 - Fuel and traction power consumption
 - GHG emission factors

Staged approach

Modal shift: Suitability of goods

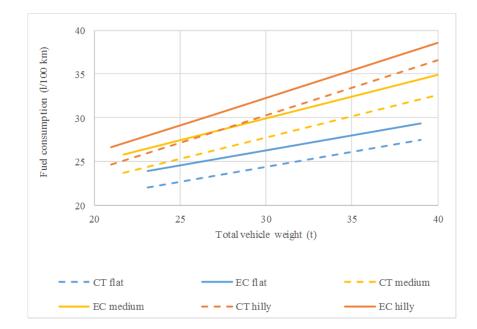
- Average pallet weight <330 kg
- Excluded: liquids, goods transported by special superstructures, hazardous goods
- Regular occurrence
- Shares for partly suitable goods classes

18.04.2018

Modal shift: EC suitable freight volume

- Single-relation/single-type of good
- Freight volume road and rail
- Starting and end point connected by dedicated road network
- 2nd scenario: non-restricted highway network and transport volume for 2030

Modal shift: Cost comparison

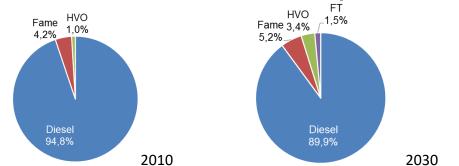

- Transport distances and volumes
- Specific transport costs
- Transport costs for each good and relation
- Cross-price elasticity approach

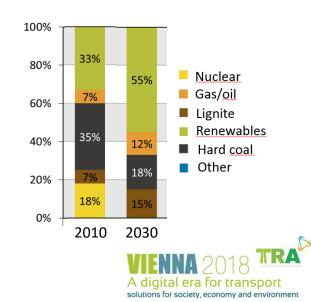
GHG balance: Fuel consumption

- Considerably too high compared to actual real-world consumption
- ECs not considered
- Derivation of new FCFs
 - Current operational data
 - Consumption simulations

GHG balance: Traction power consumption

- Modeling of standard trains
 - 23 wagons
 - 5 wagons laden with EC suitable goods, others with average load


 Electricity consumption per ton payload and km as a function of total train weight


GHG balance: GHG emission factors

$\,\circ\,$ Biodiesel share and composition

○ Energy mix for electricity generation

Results: Modal shift

	Scenario	EC suitable freight volume (m. t)	Shifted to ECs (m. t)
Intramodal (CT -> EC)	2010	100.00	8.91 (9 %)
	2030	415.00	41.60 (10 %)
Intermodal (rail -> EC)	2010	4.93	0.05 (1 %)
	2030	16.60	0.07 (<1 %)

 Opening of highway network increases EC suitable potential and shift

O Intermodal shift comparably low 18.04.2018

Results: GHG balance

	Change in GHG emissions (t CO_2e/a)		
	2010	2030	
Intramodal shift	-21,656	-113,428	
Intermodal shift	+337	+419	
Ratio inter-/intramodal shift	1.6 %	0.4 %	
Total inter- and intramodal	-21,319	-113,009	

 GHG balance in both scenarios clearly dominated by intramodal shift and related GHG reduction

Conclusions

\circ Individual trips

- Intramodal shift: GHG emission savings of up to 20 % possible
- Intermodal shift: GHG emissions more than threefold
- \circ Overall
 - Use of ECs limited to small fraction of freight transport (<1%)
 - Impact on GHG emissions small (<0.2 %)
- Limitations
 - Other EC types or cross-border transports not considered

solutions for society, economy and environment

Contact

Stefan Eckert

thinkstep AG stefan.eckert@thinkstep.com +49 711 341817-473