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Laser in medicine represents the “poor 
cousin” of lasers in surgery but, in spite of 
its low profile, is potentially the medicine 
of the future.  Einstein formulated the 
hypothesis of the generation of laser 
in 1916 [1] but it was not until 1960 
that Maiman, in the Bell Laboratories, 
generated laser from ruby crystal (λ = 
694nm) [2].  A number of early studies 
initiated research on low-level laser 
therapy (LLLT) using this wavelength, 
both clinically and experimentally [3-5].   

One of the seminal studies from this 
period was that of Endre Mester, who 
treated non-healing chronic ulcers with 
ruby laser and found a remarkable rate 
of healing, especially of venous ulcers [6, 
7].   Mester’s study was the springboard 
for the continuing use of lasers for wound 
healing and research into mechanisms for 
the biological effects underpinning tissue 
repair commenced. Strong evidence 
for numerous effects on the cascade of 
cellular involvement in wound healing 
continue to be demonstrated [8-17].  
Somewhat disappointingly however, 
there is still variability in the outcomes 
of clinical studies and standard meta-
analyses cannot provide evidence of a 
strong effect [18-20].   

Nevertheless the trend is strong and 
Enwemeka has used a novel statistical 

technique to demonstrate a clinically useful 
benefit [21, 22].  Effects of laser irradiation 
(LI) in wound healing are especially dose 
sensitive and in this clinical domain, low 
doses of laser stimulate and high doses 
inhibit [23].  Understanding and applying 
the biphasic biological effects of laser on 
cells in tissue is critical to optimising the 
“dose” [24].  This is even more complex 
in an individual patient where variation in 
sensitivity to LI is a confounding factor in 
clinical studies.  

Alongside the use of lasers in wound 
healing, treatment of painful conditions was 
one of the other early clinical applications 
of LLLT [25-28].  Many different painful 
musculoskeletal conditions have been the 
subject of investigation and, in contrast 
to wound healing, the evidence base 
is now strong [29-32]. For example, a 
meta-analysis of LLLT in neck pain [33], 
established it as one of the most strongly 
evidence based of all treatments for neck 
pain. 

This has now been supported in the report 
assessing neck pain treatments, by the 
World Health Organisation Committee of 
the Decade of the Bone and Joint [34].  
Other painful conditions have accumulating 
evidence, such as tendinopathy [32], 
and lateral epicondylitis [32].  Analysis 
of laser parameters to identify optimal 

doses in addition to methodological 
assessment, have been critical to these 
meta-analyses, differentiating them 
from standard meta-analyses where no 
technological assessment is made [32, 35, 
36].  It appears that the balance between 
stimulatory and inhibitory effects of LLLT 
is not as critical in pain modulation as 
in tissue repair.  Importantly, the critical 
concept of “dose” is again emphasised in 
these studies. 

Various mechanisms for the pain relieving 
effects of LLLT have been proposed since 
the first clinical studies were performed.  
These have included the gate control 
theory [37], endorphin release [38-
40], serotonin increase [41, 42], neural 
inhibition [43-48] and anti-inflammatory 
effects [49-52], with these latter two 
effects the focus of intense investigation.
The anti-inflammatory effects of laser 
have now been well documented in many 
experimental studies as well as clinical 
studies [50, 53-57], demonstrating that 
these effects are of the same order of 
magnitude as anti-inflammatory drugs, and 
indeed more effective in some instances.  
In one of the most difficult areas of 
management, LLLT for the treatment of 
chemotherapy-induced oral mucositis is one 
of the most important recent applications, 
which should be introduced without delay 
into mainstream practice, as this condition 
carries significant morbidity [58].  

The capacity of LLLT to reduce 
inflammation is one of the most 
promising areas in medicine as the ease of 
application in primary care practice and 
safety, compared with NSAIDs, would 
make it an extremely cost-effective option 
for introduction to mainstream medicine.
Other mechanisms for pain relieving 
effects which focus on neural inhibition, 
also underlie the benefit where drug 
therapies are limited by side effects and 
lack of efficacy.   This is particularly so 
in chronic pain states, which is reaching 
epidemic proportions [59].  Specific anti-
nociceptor effects are strongly supported 
in the literature as is the capacity to 
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reduce acute pain following injury and  
to prevent the progression from acute 
to chronic pain in the short term.  Such 
“preventative” effects of “pre-emptive” 
treatment significantly reduced pain scores 
and drug intake when laser therapy was 
applied immediately post-operatively [60] 
and prevented recurrence of neck pain 
six months after treatment of an acute 
episode [61].  Neural inhibition may also 
have the capacity to reduce “wind up” as 
well as peripheral and central sensitisation 
by a cascade of effects from the peripheral 
nerve to the spinal cord and pain matrix 
[62].  These mechanisms are implicated in 
the progress of acute to chronic pain and 
induce long-term depression of pain in 
chronic pain states, such as fibromyalgia, 
which are very difficult to treat using 
conventional therapies.  

Wound healing and treatment of painful 
conditions have been studied for many 
years, however, the first decade of the 
twenty-first century has seen research 
into a range of applications that offer 
novel treatment options for a range of 
neurological conditions.

Laser therapy as an adjunct to peripheral 
nerve and spinal cord repair presents 
an option for management for the near 
future [63-67]; laser therapy to the 
scalp within 24 hours of stroke reduces 
disability by about 25%[68]; laser (and 
LED) therapy for traumatic brain injury 
[69, 70] and depression [71] are also in 
the early stages of clinical development 
and offer novel approaches for difficult 
to treat conditions.  Animal studies using 
models of myocardial infarction suggest 
another option for adjunctive treatment 
for minimising ischaemic damage [72]. 
Other areas at the frontier of research 
involves enhancement of stem cells 
viability [73-75] and enhancement of 
sperm motility [76, 77].

With all the potential of this therapy as 
well as the current evidence base for 
applications in pain and inflammation, 
one might ask why the notion that light 

might have a therapeutic potential in 
this new form is greeted with responses 
ranging from indifference to outright 
hostility, which was certainly the situation 
with the early literature [78].  There are 
many examples of currently applied light 
therapy such as the treatment of neonatal 
hyperbilirubinaemia, light therapy for 
psoriasis and seasonal affective disorder.  
The Nobel prize was won in 1903 by Neils 
Finsen for the treatment of tuberculosis with 
light.  One reason for the resistance may 
have come about because the adoption of 
LLLT in clinical practice initially outstripped 
the evidence base, in addition to a lack 
of understanding of any mechanisms for 
the effects.  This is very different from the 
introduction of drugs which undergo a 
series of experiments over many years from 
the Phase I laboratory based investigations 
to Phase III human clinical trials before 
finally, if at all, the drug becomes available 
to the public.  

With LLLT, the safety and ease of 
application, meant that manufacturers 
could make and sell the devices to a wide 
variety of health practitioners, particularly 
alternative medicine practitioners, who 
rapidly took to the devices.  The response 
of the medical profession was to attribute 
any benefits to placebo effects and 
therefore not attribute any credibility 
to LLLT.  Manufacturers continued to 
make what appeared to be outrageous 
claims, further confirming in the medical 
profession’s conservative and drug-
oriented view that LLLT, which did not 
even have a heating effect, could “do 
anything”.  

One of the problems in critiquing laser 
therapy studies comes from both inside 
and outside the field.  Firstly, many 
authors evaluating studies do not have the 
expertise to assess whether the technical 
aspects of the study fulfil the minimum 
criteria of effective dose and application, 
and conversely, those conducting studies 
either use inappropriate parameters or 
do not report them in sufficient detail to 
permit replication of the study.  Added 
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to this is the difficulty in measuring the 
precise “dose”, and, even then, there is 
debate about what is the correct “dose”.

In spite of these difficulties, there continues 
to be research into mechanisms of LLLT 
as well as clinical studies, which confirm 
significant benefit.  While problems exist, 
mostly relating to understanding dosage, 
there is no doubt that laser medicine offers 
the potential for benefit across a range 
of difficult-to-treat clinical conditions.  
Patients will be the beneficiaries of the 
acceptance of LLLT into mainstream 
medicine.  Laser Medicine is the energy 
medicine of the future.
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