Reprocessing external ultrasound probes used to guide invasive procedures

Introduction

External ultrasound probes are used in a multitude of procedures including diagnostic wound and trauma scans, invasive procedures (e.g. biopsies, injections and drainages) and in surgery (Figure 1). The expansion of ultrasound has brought immense clinical benefit to patients but has also generated some potential infection prevention challenges which need to be addressed. It is essential to adequately reprocess ultrasound probes prior to patient use, and the framework governing this reprocessing is the universally accepted Spaulding classification system.

The Spaulding Classification System

The Spaulding classification is the framework for medical device reprocessing used by the US Food and Drug Administration (FDA), Centers for Disease Control and Prevention (CDC), Association for the Advancement of Medical Instrumentation (AAMI) and many other organizations.1-6 A medical device is assigned a category based on the site of patient contact, and this defines the reprocessing requirements.

If external probes used to guide invasive procedures contact sterile tissue or the bloodstream at the needle insertion site, the probe is critical according to the Spaulding classification (Box 1).

Box 1: Definitions of critical devices under the Spaulding classification.

“Critical devices are devices that are introduced directly into the bloodstream or which contact a normally sterile tissue or body-space during use.” – FDA

“Critical devices are those that are introduced directly into the human body, either into or in contact with the bloodstream or other normally sterile areas of the body.” – AAMI

USA & Canada.
Nanosonics, Inc.
7205 E 87th Street,
Indianapolis,
IN 46256 USA
T: 1-844-TROPHON
1-844-876-7466
W: www.nanosonics.us
E: info@trophon.com

Nanosonics Limited
(Headquarters)
14 Mars Road, Lane Cove
NSW 2066, Australia
T: +61 2 8063 1600
E: info@nanosonics.com.au
1. U/G liver biopsy
2. U/G extra visceral abdominal mass biopsy
3. U/G chest mass biopsy
4. U/G bone biopsy
5. U/G fine needle aspiration of thyroid nodules
6. U/G superficial lymph node biopsy
7. U/G liver biopsy
8. U/G extra visceral abdominal mass biopsy
9. U/G chest mass biopsy
10. U/G bone biopsy
11. U/G fine needle aspiration of thyroid nodules
12. U/G superficial lymph node biopsy
13. U/G liver biopsy
14. U/G extra visceral abdominal mass biopsy
15. U/G chest mass biopsy
16. U/G bone biopsy
17. U/G fine needle aspiration of thyroid nodules
18. U/G superficial lymph node biopsy
19. U/G liver biopsy
20. U/G extra visceral abdominal mass biopsy
21. U/G chest mass biopsy
22. U/G bone biopsy
23. U/G fine needle aspiration of thyroid nodules
24. U/G superficial lymph node biopsy
25. U/G liver biopsy
26. U/G extra visceral abdominal mass biopsy
27. U/G chest mass biopsy
28. U/G bone biopsy
29. U/G fine needle aspiration of thyroid nodules
30. U/G superficial lymph node biopsy
31. U/G liver biopsy
32. U/G extra visceral abdominal mass biopsy
33. U/G chest mass biopsy
34. U/G bone biopsy
35. U/G fine needle aspiration of thyroid nodules
36. U/G superficial lymph node biopsy
37. U/G liver biopsy
38. U/G extra visceral abdominal mass biopsy
39. U/G chest mass biopsy
40. U/G bone biopsy
41. U/G fine needle aspiration of thyroid nodules
42. U/G superficial lymph node biopsy
43. U/G liver biopsy
44. U/G extra visceral abdominal mass biopsy
45. U/G chest mass biopsy
46. U/G bone biopsy
47. U/G fine needle aspiration of thyroid nodules
48. U/G superficial lymph node biopsy
49. U/G liver biopsy
50. U/G extra visceral abdominal mass biopsy
51. U/G chest mass biopsy
52. U/G bone biopsy
53. U/G fine needle aspiration of thyroid nodules
54. U/G superficial lymph node biopsy
55. U/G liver biopsy
56. U/G extra visceral abdominal mass biopsy
57. U/G chest mass biopsy
58. U/G bone biopsy
59. U/G fine needle aspiration of thyroid nodules
60. U/G superficial lymph node biopsy
61. U/G liver biopsy
62. U/G extra visceral abdominal mass biopsy
63. U/G chest mass biopsy
64. U/G bone biopsy
65. U/G fine needle aspiration of thyroid nodules
66. U/G superficial lymph node biopsy
67. U/G liver biopsy
68. U/G extra visceral abdominal mass biopsy
69. U/G chest mass biopsy
70. U/G bone biopsy

Figure 1 – Non-exhaustive list of procedures involving the use of ultrasound where the probe risks contact with sterile tissue or the bloodstream. These procedures are performed across departments including radiology, OB/GYN/MFM, emergency, cardiology, operating rooms, adult intensive care units and vascular clinics. U/G = ultrasound guided.
Critical ultrasound probes require sterilization.1-6 If sterilization is not possible, the CDC offers a concession that the ultrasound probe can undergo high level disinfection and be used with a sterile sheath (Box 2).5

Box 2: CDC guideline for disinfection and sterilization in healthcare facilities (2008).

“If sterilization is not possible, at a minimum the probe should be high-level disinfected and covered with a sterile probe cover.”5

Sheath Use

The use of a protective barrier does not change the classification of the probe and merely acts as another mechanism to reduce infection risk (Box 3).5,6

Box 3: Federal guidelines on sheath use.

“Do not use a lower category of disinfection or cease to follow the appropriate disinfectant recommendations when using probe covers because these sheaths and condoms can fail.” – CDC5

“For clinical applications of a semi-critical or critical nature (e.g., intraoperative, transrectal, transvaginal, transesophageal, or biopsy procedures), labeling should recommend, when appropriate, the use of sterile, legally marketed probe sheaths. Note that the use of sheaths does not change the type of reprocessing that is recommended after each use.” – FDA6

The classification of an ultrasound probe as a non-critical device is limited to use in external scans across healthy, intact, unbroken skin (e.g., routine transabdominal scans).

Conclusion

Facilities should review their ultrasound guided intraoperative and percutaneous procedures in light of the Spaulding classification. Where contact with sterile tissue can occur, the probe should be sterilized or be high level disinfected and used with a sterile sheath according to FDA, CDC guidelines and AAMI standards.

References