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Introduction

—Jerry Held

Companies have invested an estimated $3–4 trillion in IT over the
last 20-plus years, most of it directed at developing and deploying
single-vendor applications to automate and optimize key business
processes. And what has been the result of all of this disparate activ‐
ity? Data silos, schema proliferation, and radical data heterogeneity.

With companies now investing heavily in big data analytics, this
entropy is making the job considerably more complex. This com‐
plexity is best seen when companies attempt to ask “simple” ques‐
tions of data that is spread across many business silos (divisions,
geographies, or functions). Questions as simple as “Are we getting
the best price for everything we buy?” often go unanswered because
on their own, top-down, deterministic data unification approaches
aren’t prepared to scale to the variety of hundreds, thousands, or
tens of thousands of data silos.

The diversity and mutability of enterprise data and semantics should
lead CDOs to explore—as a complement to deterministic systems—
a new bottom-up, probabilistic approach that connects data across
the organization and exploits big data variety. In managing data, we
should look for solutions that find siloed data and connect it into a
unified view. “Getting Data Right” means embracing variety and
transforming it from a roadblock into ROI. Throughout this report,
you’ll learn how to question conventional assumptions, and explore
alternative approaches to managing big data in the enterprise. Here’s
a summary of the topics we’ll cover:
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Chapter 1, The Solution: Data Curation at Scale
Michael Stonebraker, 2015 A.M. Turing Award winner, argues
that it’s impractical to try to meet today’s data integration
demands with yesterday’s data integration approaches. Dr.
Stonebraker reviews three generations of data integration prod‐
ucts, and how they have evolved. He explores new third-
generation products that deliver a vital missing layer in the data
integration “stack”—data curation at scale. Dr. Stonebraker also
highlights five key tenets of a system that can effectively handle
data curation at scale.

Chapter 2, An Alternative Approach to Data Management
In this chapter, Tom Davenport, author of Competing on Analyt‐
ics and Big Data at Work (Harvard Business Review Press), pro‐
poses an alternative approach to data management. Many of the
centralized planning and architectural initiatives created
throughout the 60 years or so that organizations have been
managing data in electronic form were never completed or fully
implemented because of their complexity. Davenport describes
five approaches to realistic, effective data management in
today’s enterprise.

Chapter 3, Pragmatic Challenges in Building Data Cleaning Systems
Ihab Ilyas of the University of Waterloo points to “dirty, incon‐
sistent data” (now the norm in today’s enterprise) as the reason
we need new solutions for quality data analytics and retrieval on
large-scale databases. Dr. Ilyas approaches this issue as a theo‐
retical and engineering problem, and breaks it down into sev‐
eral pragmatic challenges. He explores a series of principles that
will help enterprises develop and deploy data cleaning solutions
at scale.

Chapter 4, Understanding Data Science: An Emerging Discipline for
Data-Intensive Discovery

Michael Brodie, research scientist at MIT’s Computer Science
and Artificial Intelligence Laboratory, is devoted to understand‐
ing data science as an emerging discipline for data-intensive
analytics. He explores data science as a basis for the Fourth
Paradigm of engineering and scientific discovery. Given the
potential risks and rewards of data-intensive analysis and its
breadth of application, Dr. Brodie argues that it’s imperative we
get it right. In this chapter, he summarizes his analysis of more
than 30 large-scale use cases of data science, and reveals a body

vi | Introduction



of principles and techniques with which to measure and
improve the correctness, completeness, and efficiency of data-
intensive analysis.

Chapter 5, From DevOps to DataOps
Tamr Cofounder and CEO Andy Palmer argues in support of
“DataOps” as a new discipline, echoing the emergence of
“DevOps,” which has improved the velocity, quality, predictabil‐
ity, and scale of software engineering and deployment. Palmer
defines and explains DataOps, and offers specific recommenda‐
tions for integrating it into today’s enterprises.

Chapter 6, Data Unification Brings Out the Best in Installed Data
Management Strategies

Former Informatica CTO James Markarian looks at current data
management techniques such as extract, transform, and load
(ETL); master data management (MDM); and data lakes. While
these technologies can provide a unique and significant handle
on data, Markarian argues that they are still challenged in terms
of speed and scalability. Markarian explores adding data unifi‐
cation as a frontend strategy to quicken the feed of highly
organized data. He also reviews how data unification works with
installed data management solutions, allowing businesses to
embrace data volume and variety for more productive data
analysis.
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CHAPTER 1

The Solution: Data Curation
at Scale

—Michael Stonebraker, PhD

Integrating data sources isn’t a new challenge. But the challenge has
intensified in both importance and difficulty, as the volume and
variety of usable data—and enterprises’ ambitious plans for analyz‐
ing and applying it—have increased. As a result, trying to meet
today’s data integration demands with yesterday’s data integration
approaches is impractical.

In this chapter, we look at the three generations of data integration
products and how they have evolved, focusing on the new third-
generation products that deliver a vital missing layer in the data
integration “stack”: data curation at scale. Finally, we look at five key
tenets of an effective data curation at scale system.

Three Generations of Data Integration
Systems
Data integration systems emerged to enable business analysts to
access converged datasets directly for analyses and applications.

First-generation data integration systems—data warehouses—
arrived on the scene in the 1990s. Major retailers took the lead,
assembling, customer-facing data (e.g., item sales, products, custom‐
ers) in data stores and mining it to make better purchasing deci‐
sions. For example, pet rocks might be out of favor while Barbie
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dolls might be “in.” With this intelligence, retailers could discount
the pet rocks and tie up the Barbie doll factory with a big order. Data
warehouses typically paid for themselves within a year through bet‐
ter buying decisions.

First-generation data integration systems were termed ETL (extract,
transform, and load) products. They were used to assemble the data
from various sources (usually fewer than 20) into the warehouse.
But enterprises underestimated the “T” part of the process—specifi‐
cally, the cost of the data curation (mostly, data cleaning) required to
get heterogeneous data into the proper format for querying and
analysis. Hence, the typical data warehouse project was usually sub‐
stantially over-budget and late because of the difficulty of data inte‐
gration inherent in these early systems.

This led to a second generation of ETL systems, wherein the major
ETL products were extended with data cleaning modules, additional
adapters to ingest other kinds of data, and data cleaning tools. In
effect, the ETL tools were extended to become data curation tools.

Data curation involves five key tasks:

1. Ingesting data sources
2. Cleaning errors from the data (–99 often means null)
3. Transforming attributes into other ones (for example, euros to

dollars)
4. Performing schema integration to connect disparate data sour‐

ces
5. Performing entity consolidation to remove duplicates

In general, data curation systems followed the architecture of earlier
first-generation systems: they were toolkits oriented toward profes‐
sional programmers (in other words, programmer productivity
tools).

While many of these are still in use today, second-generation data
curation tools have two substantial weaknesses:

Scalability
Enterprises want to curate “the long tail” of enterprise data.
They have several thousand data sources, everything from com‐
pany budgets in the CFO’s spreadsheets to peripheral opera‐
tional systems. There is “business intelligence gold” in the long
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tail, and enterprises wish to capture it—for example, for cross-
selling of enterprise products. Furthermore, the rise of public
data on the Web is leading business analysts to want to curate
additional data sources. Data on everything from the weather to
customs records to real estate transactions to political campaign
contributions is readily available. However, in order to capture
long-tail enterprise data as well as public data, curation tools
must be able to deal with hundreds to thousands of data sources
rather than the tens of data sources most second-generation
tools are equipped to handle.

Architecture
Second-generation tools typically are designed for central IT
departments. A professional programmer will not know the
answers to many of the data curation questions that arise. For
example, are “rubber gloves” the same thing as “latex hand pro‐
tectors”? Is an “ICU50” the same kind of object as an “ICU”?
Only businesspeople in line-of-business organizations can
answer these kinds of questions. However, businesspeople are
usually not in the same organizations as the programmers run‐
ning data curation projects. As such, second-generation systems
are not architected to take advantage of the humans best able to
provide curation help.

These weaknesses led to a third generation of data curation prod‐
ucts, which we term scalable data curation systems. Any data cura‐
tion system should be capable of performing the five tasks noted
earlier. However, first- and second-generation ETL products will
only scale to a small number of data sources, because of the amount
of human intervention required.

To scale to hundreds or even thousands of data sources, a new
approach is needed—one that:

1. Uses statistics and machine learning to make automatic deci‐
sions wherever possible

2. Asks a human expert for help only when necessary

Instead of an architecture with a human controlling the process with
computer assistance, we must move to an architecture with the
computer running an automatic process, asking a human for help
only when required. It’s also important that this process ask the right

Three Generations of Data Integration Systems | 3



human: the data creator or owner (a business expert), not the data
wrangler (a programmer).

Obviously, enterprises differ in the required accuracy of curation, so
third-generation systems must allow an enterprise to make trade-
offs between accuracy and the amount of human involvement. In
addition, third-generation systems must contain a crowdsourcing
component that makes it efficient for business experts to assist with
curation decisions. Unlike Amazon’s Mechanical Turk, however, a
data curation crowdsourcing model must be able to accommodate a
hierarchy of experts inside an enterprise as well as various kinds of
expertise. Therefore, we call this component an expert sourcing sys‐
tem to distinguish it from the more primitive crowdsourcing sys‐
tems.

In short, a third-generation data curation product is an automated
system with an expert sourcing component. Tamr is an early exam‐
ple of this third generation of systems.

Third-generation systems can coexist with second-generation sys‐
tems that are currently in place, which can curate the first tens of
data sources to generate a composite result that in turn can be cura‐
ted with the “long tail” by the third-generation systems. Table 1-1
illustrates the key characteristics of the three types of curation sys‐
tems.

Table 1-1. Evolution of three generations of data integration systems

First generation
1990s

Second generation
2000s

Third generation
2010s

Approach ETL ETL+ data cura-
tion

Scalable data cura-
tion

Target data environment(s) Data ware-
houses

Data warehouses
or Data marts

Data lakes and
self-service data
analytics

Users IT/program-
mers

IT/programmers Data scientists,
data stewards,
data owners, busi-
ness analysts
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First generation
1990s

Second generation
2000s

Third generation
2010s

Integration philosophy Top-down/
rules-based/IT-
driven

Top-down/rules-
based/IT-driven

Bottom-up/
demand-based/
business-driven

Architecture Programmer
productivity
tools (task
automation)

Programming
productivity tools
(task automation
with machine
assistance)

Machine-driven,
human-guided
process

Scalability (# of data
sources)

10s 10s to 100s 100s to 1000s+

To summarize: ETL systems arose to deal with the transformation
challenges in early data warehouses. They evolved into second-
generation data curation systems with an expanded scope of offer‐
ings. Third-generation data curation systems, which have a very dif‐
ferent architecture, were created to address the enterprise’s need for
data source scalability.

Five Tenets for Success
Third-generation scalable data curation systems provide the archi‐
tecture, automated workflow, interfaces, and APIs for data curation
at scale. Beyond this basic foundation, however, are five tenets that
are desirable in any third-generation system.

Tenet 1: Data Curation Is Never Done
Business analysts and data scientists have an insatiable appetite for
more data. This was brought home to me about a decade ago during
a visit to a beer company in Milwaukee. They had a fairly standard
data warehouse of sales of beer by distributor, time period, brand,
and so on. I visited during a year when El Niño was forecast to dis‐
rupt winter weather in the US. Specifically, it was forecast to be wet‐
ter than normal on the West Coast and warmer than normal in New
England. I asked the business analysts: “Are beer sales correlated
with either temperature or precipitation?” They replied, “We don’t
know, but that is a question we would like to ask.” However, temper‐
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ature and precipitation data were not in the data warehouse, so ask‐
ing was not an option.

The demand from warehouse users to correlate more and more data
elements for business value leads to additional data curation tasks.
Moreover, whenever a company makes an acquisition, it creates a
data curation problem (digesting the acquired company’s data).
Lastly, the treasure trove of public data on the Web (such as temper‐
ature and precipitation data) is largely untapped, leading to more
curation challenges.

Even without new data sources, the collection of existing data sour‐
ces is rarely static. Insertions and deletions in these sources generate
a pipeline of incremental updates to a data curation system. Between
the requirements of new data sources and updates to existing ones,
it is obvious that data curation is never done, ensuring that any
project in this area will effectively continue indefinitely. Realize this
and plan accordingly.

One obvious consequence of this tenet concerns consultants. If you
hire an outside service to perform data curation for you, then you
will have to rehire them for each additional task. This will give the
consultants a guided tour through your wallet over time. In my
opinion, you are much better off developing in-house curation com‐
petence over time.

Tenet 2: A PhD in AI Can’t be a Requirement for Success
Any third-generation system will use statistics and machine learning
to make automatic or semiautomatic curation decisions. Inevitably,
it will use sophisticated techniques such as T-tests, regression, pre‐
dictive modeling, data clustering, and classification. Many of these
techniques will entail training data to set internal parameters. Sev‐
eral will also generate recall and/or precision estimates.

These are all techniques understood by data scientists. However,
there will be a shortage of such people for the foreseeable future,
until colleges and universities begin producing substantially more
than at present. Also, it is not obvious that one can “retread” a busi‐
ness analyst into a data scientist. A business analyst only needs to
understand the output of SQL aggregates; in contrast, a data scien‐
tist is typically familiar with statistics and various modeling techni‐
ques.
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As a result, most enterprises will be lacking in data science expertise.
Therefore, any third-generation data curation product must use
these techniques internally, but not expose them in the user inter‐
face. Mere mortals must be able to use scalable data curation prod‐
ucts.

Tenet 3: Fully Automatic Data Curation Is Not Likely to
Be Successful
Some data curation products expect to run fully automatically. In
other words, they translate input data sets into output without
human intervention. Fully automatic operation is very unlikely to be
successful in an enterprise, for a variety of reasons. First, there are
curation decisions that simply cannot be made automatically. For
example, consider two records, one stating that restaurant X is at
location Y while the second states that restaurant Z is at location Y.
This could be a case where one restaurant went out of business and
got replaced by a second one, or the location could be a food court.
There is no good way to know which record is correct without
human guidance.

Second, there are cases where data curation must have high reliabil‐
ity. Certainly, consolidating medical records should not create
errors. In such cases, one wants a human to check all (or maybe just
some) of the automatic decisions. Third, there are situations where
specialized knowledge is required for data curation. For example, in
a genomics application one might have two terms: ICU50 and
ICE50. An automatic system might suggest that these are the same
thing, since the lexical distance between the terms is low; however,
only a human genomics specialist can make this determination.

For all of these reasons, any third-generation data curation system
must be able to ask the right human expert for input when it is
unsure of the answer. The system must also avoid overloading the
experts that are involved.

Tenet 4: Data Curation Must Fit into the Enterprise
Ecosystem
Every enterprise has a computing infrastructure in place. This
includes a collection of database management systems storing enter‐
prise data, a collection of application servers and networking sys‐
tems, and a set of installed tools and applications. Any new data
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curation system must fit into this existing infrastructure. For exam‐
ple, it must be able to extract data from corporate databases, use leg‐
acy data cleaning tools, and export data to legacy data systems.
Hence, an open environment is required wherein callouts are avail‐
able to existing systems. In addition, adapters to common input and
export formats are a requirement. Do not use a curation system that
is a closed “black box.”

Tenet 5: A Scheme for “Finding” Data Sources Must Be
Present
A typical question to ask CIOs is, “How many operational data sys‐
tems do you have?” In all likelihood, they do not know. The enter‐
prise is a sea of such data systems, linked by a hodgepodge set of
connectors. Moreover, there are all sorts of personal datasets,
spreadsheets, and databases, as well as datasets imported from pub‐
lic web-oriented sources. Clearly, CIOs should have a mechanism
for identifying data resources that they wish to have curated. Such a
system must contain a data source catalog with information on a
CIO’s data resources, as well as a query system for accessing this cat‐
alog. Lastly, an “enterprise crawler” is required to search a corporate
intranet to locate relevant data sources. Collectively, this represents a
schema for “finding” enterprise data sources.

Taken together, these five tenets indicate the characteristics of a
good third-generation data curation system. If you are in the market
for such a product, then look for systems with these features.
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CHAPTER 2

An Alternative Approach to Data
Management

—Thomas H. Davenport

For much of the 60 years or so that organizations have been manag‐
ing data in electronic form, there has been an overpowering desire
to subdue it through centralized planning and architectural initia‐
tives.

These initiatives have had a variety of names over the years, includ‐
ing the most familiar: “information architecture,” “information engi‐
neering,” and “master data management.” Underpinning them has
been a set of key attributes and beliefs:

• Data needs to be centrally controlled.
• Modeling is an approach to controlling data.
• Abstraction is a key to successful modeling.
• An organization’s information should all be defined in a com‐

mon fashion.
• Priority is on efficiency in information storage (a given data ele‐

ment should only be stored once).
• Politics, ego, and other common human behaviors are irrelevant

to data management (or at least not something that organiza‐
tions should attempt to manage).

Each of these statements has at least a grain of truth in it, but taken
together and to their full extent, I have come to believe that they
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simply don’t work as the foundation for data management. I rarely
find business users who believe they work either, and this dissatis‐
faction has been brewing for a long time. For example, in the 1990s I
interviewed a marketing manager at Xerox Corporation who had
also spent some time in IT at the same company. He explained that
the company had “tried information architecture” for 25 years, but
got nowhere—they always thought they were doing it incorrectly.

Centralized Planning Approaches
Most organizations have had similar results from their centralized
architecture and planning approaches.

Not only do centralized planning approaches waste time and money,
but they also drive a wedge between those who are planning them
and those who will actually use the information and technology.
Regulatory submissions, abstract meetings, and incongruous goals
can lead to months of frustration, without results.

The complexity and detail of centralized planning approaches often
mean that they are never completed, and when they are finished,
managers frequently decide not to implement them. The resources
devoted to central data planning are often redeployed into other IT
projects of more tangible value. If by chance they are implemented,
they are typically hopelessly out of date by the time they go into
effect.

As an illustration of how the key tenets of centralized information
planning are not consistent with real organizational behavior, let’s
look at one: the assumption that all information needs to be com‐
mon.

Common Information
Common information—agreement within an organization on how
to define and use key data elements—is a useful thing, to be sure.
But it’s also helpful to know that uncommon information—informa‐
tion definitions that suit the purposes of a particular group or indi‐
vidual—can also be useful to a particular business function, unit, or
work group. Companies need to strike a balance between these two
desirable goals.
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After speaking with many managers and professionals about com‐
mon information, and reflecting on the subject carefully, I formula‐
ted “Davenport’s Law of Common Information” (you can Google it,
but don’t expect a lot of results). If by some strange chance you
haven’t heard of Davenport’s Law, it goes like this:

The more an organization knows or cares about a particular busi‐
ness entity, the less likely it is to agree on a common term and
meaning for it.

I first noticed this paradoxical observation at American Airlines
more than a decade ago. Company representatives told me during a
research visit that they had 11 different usages of the term “airport.”
As a frequent traveler on American Airlines planes, I was initially a
bit concerned about this, but when they explained it, the prolifera‐
tion of meanings made sense. They said that the cargo workers at
American Airlines viewed anyplace you can pick up or drop off
cargo as the airport; the maintenance people viewed anyplace you
can fix an airplane as the airport; the people who worked with the
International Air Transport Authority relied on their list of interna‐
tional airports, and so on.

Information Chaos
So, just like Newton being hit on the head with an apple and discov‐
ering gravity, the key elements of Davenport’s Law hit me like a
brick. This was why organizations were having so many problems
creating consensus around key information elements. I also formu‐
lated a few corollaries to the law, such as:

If you’re not arguing about what constitutes a “customer,” your
organization is probably not very passionate about customers.

Davenport’s Law, in my humble opinion, makes it much easier to
understand why companies all over the world have difficulty estab‐
lishing common definitions of key terms within their organizations.

Of course, this should not be an excuse for organizations to allow
alternative meanings of key terms to proliferate. Even though there
is a good reason why they proliferate, organizations may have to
limit—or sometimes even stop—the proliferation of meanings and
agree on one meaning for each term. Otherwise they will continue
to find that when the CEO asks multiple people how many employ‐
ees a company has, he/she will get different answers. The prolifera‐
tion of meanings, however justifiable, leads to information chaos.
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But Davenport’s Law offers one more useful corollary about how to
stop the proliferation of meanings. Here it is:

A manager’s passion for a particular definition of a term will not be
quenched by a data model specifying an alternative definition.

If a manager has a valid reason to prefer a particular meaning of a
term, he/she is unlikely to be persuaded to abandon it by a complex,
abstract data model that is difficult to understand in the first place,
and is likely never to be implemented.

Is there a better way to get adherence to a single definition of a
term?

Here’s one final corollary:
Consensus on the meaning of a term throughout an organization is
achieved not by data architecture, but by data arguing.

Data modeling doesn’t often lead to dialog, because it’s simply not
comprehensible to most nontechnical people. If people don’t under‐
stand your data architecture, it won’t stop the proliferation of mean‐
ings.

What Is to Be Done?
There is little doubt that something needs to be done to make data
integration and management easier. In my research, I’ve conducted
more than 25 extended interviews with data scientists about what
they do, and how they go about their jobs. I concluded that a more
appropriate title for data scientists might actually be “data plumb‐
ers.” It is often so difficult to extract, clean, and integrate data that
data scientists can spend up to 90% of their working time doing
those tasks. It’s no wonder that big data often involves “small math”
—after all the preparation work, there isn’t enough time left to do
sophisticated analytics.

This is not a new problem in data analysis. The dirty little secret of
the field is that someone has always had to do a lot of data prepara‐
tion before the data can be analyzed. The problem with big data is
partly that there is a large volume of it, but mostly that we are often
trying to integrate multiple sources. Combining multiple data sour‐
ces means that for each source, we have to determine how to clean,
format, and integrate its data. The more sources and types of data
there are, the more plumbing work is required.
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So let’s assume that data integration and management are necessary
evils. But what particular approaches to them are most effective?
Throughout the remainder of this chapter, I’ll describe five
approaches to realistic, effective data management:

1. Take a federal approach to data management.
2. Use all the new tools at your disposal.
3. Don’t model, catalog.
4. Keep everything simple and straightforward.
5. Use an ecological approach.

Take a Federal Approach to Data Management
Federal political models—of which the United States is one example
—don’t try to get consensus on every issue. They have some laws
that are common throughout the country, and some that are allowed
to vary from state to state or by region or city. It’s a hybrid approach
to the centralization/decentralization issue that bedevils many large
organizations. Its strength is its practicality, in that it’s easier to get
consensus on some issues than on all of them. If there is a downside
to federalism, it’s that there is usually a lot of debate and discussion
about which rights are federal, and which are states’ or other units’
rights. The United States has been arguing about this issue for more
than 200 years.

While federalism does have some inefficiencies, it’s a good model for
data management. It means that some data should be defined com‐
monly across the entire organization, and some should be allowed to
vary. Some should have a lot of protections, and some should be rel‐
atively open. That will reduce the overall effort required to manage
data, simply because not everything will have to be tightly managed.

Your organization will, however, have to engage in some “data argu‐
ing.” Hashing things out around a table is the best way to resolve key
issues in a federal data approach. You will have to argue about which
data should be governed by corporate rights, and which will be
allowed to vary. Once you have identified corporate data, you’ll then
have to argue about how to deal with it. But I have found that if
managers feel that their issues have been fairly aired, they are more
likely to comply with a policy that goes against those issues.
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Use All the New Tools at Your Disposal
We now have a lot of powerful tools for processing and analyzing
data, but up to now we haven’t had them for cleaning, integrating,
and “curating” data. (“Curating” is a term often used by librarians,
and there are typically many of them in pharmaceutical firms who
manage scientific literature.) These tools are sorely needed and are
beginning to emerge. One source I’m close to is a startup called
Tamr, which aims to help “tame” your data using a combination of
machine learning and crowdsourcing. Tamr isn’t the only new tool
for this set of activities, though, and I am an advisor to the company,
so I would advise you to do your own investigation. The founders of
Tamr (both of whom have also contributed to this report) are Andy
Palmer and Michael Stonebraker. Palmer is a serial entrepreneur
and incubator founder in the Boston area.

Stonebraker is the database architect behind INGRES, Vertica,
VoltDB, Paradigm4, and a number of other database tools. He’s also
a longtime computer science professor, now at MIT. As noted in his
chapter of this report, we have a common view of how well-
centralized information architecture approaches work in large
organizations.

In a research paper published in 2013, Stonebraker and several co-
authors wrote that they had tested “Data-Tamer” (as it was then
known) in three separate organizations. They found that the tool
reduced the cost of data curation in those organizations by about
90%.

I like the idea that Tamr uses two separate approaches to solving the
problem. If the data problem is somewhat repetitive and predictable,
the machine learning approach will develop an algorithm that will
do the necessary curation. If the problem is a bit more ambiguous,
the crowdsourcing approach can ask people who are familiar with
the data (typically the owners of that data source) to weigh in on its
quality and other attributes. Obviously the machine learning
approach is more efficient, but crowdsourcing at least spreads the
labor around to the people who are best qualified to do it. These two
approaches are, together, more successful than the top-down
approaches that many large organizations have employed.

A few months before writing this chapter, I spoke with several man‐
agers from companies who are working with Tamr. Thomson Reu‐
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ters is using the technology to curate “core entity master” data—cre‐
ating clear and unique identities of companies and their parents and
subsidiaries. Previous in-house curation efforts, relying on a handful
of data analysts, found that 30–60% of entities required manual
review. Thomson Reuters believed manual integration would take
up to six months to complete, and would identify 95% of duplicate
matches (precision) and 95% of suggested matches that were, in fact,
different (recall).

Thomson Reuters looked to Tamr’s machine-driven, human-guided
approach to improve this process. After converting the company’s
XML files to CSVs, Tamr ingested three core data sources—factual
data on millions of organizations, with more than 5.4 million
records. Tamr deduplicated the records and used “fuzzy matching”
to find suggested matches, with the goal of achieving high accuracy
rates while reducing the number of records requiring review. In
order to scale the effort and improve accuracy, Tamr applied
machine learning algorithms to a small training set of data and fed
guidance from Thomson Reuters’ experts back into the system.

The “big pharma” company Novartis is also using Tamr. Novartis
has many different sources of biomedical data that it employs in
research processes, making curation difficult. Mark Schreiber, then
an “informatician” at Novartis Institutes for Biomedical Research
(he has since moved to Merck), oversaw the testing of Tamr going
all the way back to its academic roots at MIT. He is particularly
interested in the tool’s crowdsourcing capabilities, as he wrote in a
blog post:

The approach used gives you a critical piece of the workflow bridg‐
ing the gap between the machine learning/automated data
improvement and the curator. When the curator isn’t confident in
the prediction or their own expertise, they can distribute tasks to
your data producers and consumers to ask their opinions and draw
on their expertise and institutional memory, which is not stored in
any of your data systems.

I also spoke with Tim Kasbe, the COO of Gloria Jeans, which is the
largest “fast fashion” retailer in Russia and Ukraine. Gloria Jeans has
tried out Tamr on several different data problems, and found it par‐
ticularly useful for identifying and removing duplicate loyalty pro‐
gram records. Here are some results from that project:

We loaded data for about 100,000 people and families and ran our
algorithms on them and found about 5,000 duplicated entries. A
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portion of these represented people or families that had signed up
for multiple discount cards. In some cases, the discount cards had
been acquired in different locations or different contact informa‐
tion had been used to acquire them. The whole process took about
an hour and did not need deep technical staff due to the simple and
elegant Tamr user experience. Getting to trustworthy data to make
good and timely decisions is a huge challenge this tool will solve for
us, which we have now unleashed on all our customer reference
data, both inside and outside the four walls of our company.

I am encouraged by these reports that we are on the verge of a
breakthrough in this domain. But don’t take my word for it—do a
proof of concept with one of these types of tools.

Don’t Model, Catalog
One of the paradoxes of IT planning and architecture is that those
activities have made it more difficult for people to find the data they
need to do their work. According to Gartner, much of the roughly
$3–4 trillion invested in enterprise software over the last 20 years
has gone toward building and deploying software systems and appli‐
cations to automate and optimize key business processes in the con‐
text of specific functions (sales, marketing, manufacturing) and/or
geographies (countries, regions, states, etc.). As each of these idio‐
syncratic applications is deployed, an equally idiosyncratic data
source is created. The result is that data is extremely heterogeneous
and siloed within organizations.

For generations, companies have created “data models,” “master data
models,” and “data architectures” that lay out the types, locations,
and relationships of all the data that they have now and will have in
the future. Of course, those models rarely get implemented exactly
as planned, given the time and cost involved. As a result, organiza‐
tions have no guide to what data they actually have in the present
and how to find it. Instead of creating a data model, they should cre‐
ate a catalog of their data—a straightforward listing of what data
exists in the organization, where it resides, who’s responsible for it,
and so forth.

One reason why companies don’t create simple catalogs of their data
is that the result is often somewhat embarrassing and irrational.
Data is often duplicated many times across the organization. Differ‐
ent data is referred to by the same term, and the same data by differ‐
ent terms. A lot of data that the organization no longer needs is still
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hanging around, and data that the organization could really benefit
from is nowhere to be found. It’s not easy to face up to all of the
informational chaos that a cataloging effort can reveal.

Perhaps needless to say, however, cataloging data is worth the trou‐
ble and initial shock at the outcome. A data catalog that lists what
data the organization has, what it’s called, where it’s stored, who’s
responsible for it, and other key metadata can easily be the most val‐
uable information offering that an IT group can create.

Cataloging Tools
Given that IT organizations have been more preoccupied with mod‐
eling the future than describing the present, enterprise vendors
haven’t really addressed the catalog tool space to a significant degree.
There are several catalog tools for individuals and small businesses,
and several vendors of ETL (extract, transform, and load) tools have
some cataloging capabilities built into their own tools. Some also tie
a catalog to a data governance process, although “governance” is
right up there with “bureaucracy” as a term that makes many people
wince.

At least a few data providers and vendors are actively pursuing cata‐
log work, however. One company, Enigma, has created a catalog for
public data, for example. The company has compiled a set of public
databases, and you can simply browse through its catalog (for free if
you are an individual) and check out what data you can access and
analyze. That’s a great model for what private enterprises should be
developing, and I know of some companies (including Tamr, Infor‐
matica, Paxata, and Trifacta) that are developing tools to help com‐
panies develop their own catalogs.

In industries such as biotech and financial services, for example, you
increasingly need to know what data you have—and not only so you
can respond to business opportunities. Industry regulators are also
concerned about what data you have and what you are doing with it.
In biotech companies, for example, any data involving patients has
to be closely monitored and its usage controlled, and in financial
services firms there is increasing pressure to keep track of custom‐
ers’ and partners’ “legal entity identifiers,” and to ensure that dirty
money isn’t being laundered.

If you don’t have any idea of what data you have today, you’re going
to have a much tougher time adhering to the demands from regula‐

Don’t Model, Catalog | 17

http://enigma.io/
http://www.tamr.com
https://www.informatica.com/
https://www.informatica.com/
http://www.paxata.com/
http://www.trifacta.com/


tors. You also won’t be able to meet the demands of your marketing,
sales, operations, or HR departments. Knowing where your data is
seems perhaps the most obvious tenet of information management,
but thus far, it has been among the most elusive.

Keep Everything Simple and Straightforward
While data management is a complex subject, traditional informa‐
tion architectures are generally more complex than they need to be.
They are usually incomprehensible not only to nontechnical people,
but also to the technical people who didn’t have a hand in creating
them. From IBM’s Business Systems Planning—one of the earliest
architectural approaches—up through master data management
(MDM), architectures feature complex and voluminous flow dia‐
grams and matrices. Some look like the circuitry diagrams for the
latest Intel microprocessors. MDM has the reasonable objective of
ensuring that all important data within an organization comes from
a single authoritative source, but it often gets bogged down in dis‐
cussions about who’s in charge of data and whose data is most
authoritative.

It’s unfortunate that information architects don’t emulate architects
of physical buildings. While they definitely require complex dia‐
grams full of technical details, good building architects don’t show
those blueprints to their clients. For clients, they create simple and
easy-to-digest sketches of what the building will look like when it’s
done. If it’s an expensive or extensive building project, they may cre‐
ate three-dimensional models of the finished structure.

More than 30 years ago, Michael Hammer and I created a new
approach to architecture based primarily on “principles.” These are
simple, straightforward articulations of what an organization
believes and wants to achieve with information management; the
equivalent of a sketch for a physical architect. Here are some exam‐
ples of the data-oriented principles from that project:

• Data will be owned by its originator but will be accessible to
higher levels.

• Critical data items in customer and sales files will conform to
standards for name, form, and semantics.

• Applications should be processed where data resides.
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We suggested that an organization’s entire list of principles—includ‐
ing those for technology infrastructure, organization, and applica‐
tions, as well as data management—should take up no more than a
single page. Good principles can be the drivers of far more detailed
plans, but they should be articulated at a level that facilitates under‐
standing and discussion by businesspeople. In this age of digital
businesses, such simplicity and executive engagement is far more
critical than it was in 1984.

Use an Ecological Approach
I hope I have persuaded you that enterprise-level models (or really
models at any level) are not sufficient to change individual and
organizational behavior, with respect to data. But now I will go even
further and argue that neither models nor technology, policy, or any
other single factor is enough to move behavior in the right direction.
Instead, organizations need a broad, ecological approach to data-
oriented behaviors.

In 1997 I wrote a book called Information Ecology: Mastering the
Information and Knowledge Environment (Oxford University Press).
It was focused on this same idea—that multiple factors and inter‐
ventions are necessary to move an organization in a particular direc‐
tion with regard to data and technology management. Unlike
engineering-based models, ecological approaches assume that tech‐
nology alone is not enough to bring about the desired change, and
that with multiple interventions an environment can evolve in the
right direction. In the book, I describe one organization, a large UK
insurance firm called Standard Life, that adopted the ecological
approach and made substantial progress on managing its customer
and policy data. Of course, no one—including Standard Life—ever
achieves perfection in data management; all one can hope for is pro‐
gress.

In Information Ecology, I discussed the influence on a company’s
data environment of a variety of factors, including staff, politics,
strategy, technology, behavior and culture, process, architecture, and
the external information environment. I’ll explain the lesser-known
aspects of this model briefly.

Staff, of course, refers to the types of people and skills that are
present to help manage information. Politics refers primarily to the
type of political model for information that the organization
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employs; as noted earlier, I prefer federalism for most large compa‐
nies. Strategy is the company’s focus on particular types of informa‐
tion and particular objectives for it. Behavior and culture refers to
the particular information behaviors (e.g., not creating new data
sources and reusing existing ones) that the organization is trying to
elicit; in the aggregate they constitute “information culture.” Process
involves the specific steps that an organization undertakes to create,
analyze, disseminate, store, and dispose of information. Finally, the
external information environment consists of information sources
and uses an outside of organization’s boundaries that the organiza‐
tion may use to improve its information situation. Most organiza‐
tions have architectures and technology in place for data manage‐
ment, but they have few, if any, of these other types of interventions.

I am not sure that these are now (or ever were) the only types of
interventions that matter, and in any case the salient factors will vary
across organizations. But I am quite confident that an approach that
employs multiple factors to achieve an objective (for example, to
achieve greater use of common information) is more likely to suc‐
ceed than one focused only on technology or architectural models.

Together, the approaches I’ve discussed in this chapter comprise a
common-sense philosophy of data management that is quite differ‐
ent from what most organizations have employed. If for no other
reason, organizations should try something new because so many
have yet to achieve their desired state of data management.
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CHAPTER 3

Pragmatic Challenges in Building
Data Cleaning Systems

—Ihab Ilyas

Acquiring and collecting data often introduces errors, including
missing values, typos, mixed formats, replicated entries of the same
real-world entity, and even violations of business rules. As a result,
“dirty data” has become the norm, rather than the exception, and
most solutions that deal with real-world enterprise data suffer from
related pragmatic problems that hinder deployment in practical
industry and business settings.

In the field of big data, we need new technologies that provide solu‐
tions for quality data analytics and retrieval on large-scale databases
that contain inconsistent and dirty data. Not surprisingly, develop‐
ing pragmatic data quality solutions is a challenging task, rich with
deep theoretical and engineering problems. In this chapter, we dis‐
cuss several of the pragmatic challenges caused by dirty data, and a
series of principles that will help you develop and deploy data clean‐
ing solutions.

Data Cleaning Challenges
In the process of building data cleaning software, there are many
challenges to consider. In this section, we’ll explore seven character‐
istics of real-world applications, and the often-overlooked chal‐
lenges they pose to the data cleaning process.
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1. Scale
One of the building blocks in data quality is record linkage and con‐
sistency checking. For example, detecting functional dependency
violations involves (at least) quadratic complexity algorithms, such
as those that enumerate all pairs of records to assess if there is a vio‐
lation (e.g., Figure 3-1 illustrates the process of determining that if
two employee records agree on the zip code, they have to be in the
same city). In addition, more expensive activities, such as clustering
and finding the minimum vertex, work to consolidate duplicate
records or to accumulate evidence of data errors. Given the com‐
plexity of these activities, cleaning large-scale data sets is prohibi‐
tively expensive, both computationally and in terms of cost. (In fact,
scale renders most academic proposals inapplicable to real-world
settings.) Large-scale blocking and hashing techniques are often
used to trade off the complexity and recall of detected anomalies, and
sampling is heavily used in both assessing the quality of the data and
producing clean data samples for analytics.

Figure 3-1. Expensive operations in record deduplication

2. Human in the Loop
Data is not born an orphan, and enterprise data is often treated as an
asset guarded by “data owners” and “custodians.” Automatic changes
are usually based on heuristic objectives, such as introducing mini‐
mal changes to the data, or trusting a specific data source over oth‐
ers. Unfortunately, these objectives cannot lead to viable deployable
solutions, since oftentimes human-verified or trusted updates are
necessary to actually change the underlying data.
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A major challenge in developing an enterprise-adoptable solution is
allowing only trusted fixes to data errors, where “trusted” refers to
expert interventions or verification by master data or knowledge
bases. The high cost involved in engaging data experts and the het‐
erogeneity and limited coverage of reference master data make trus‐
ted fixes a challenging task. We need to judiciously involve experts
and knowledge bases (reference sources) to repair erroneous data
sets.

Effective user engagement in data curation will necessarily involve
different roles of humans in the data curation loop: data scientists
are usually aware of the final questions that need to be answered
from the input data, and what tools will be used to analyze it; busi‐
ness owners are the best to articulate the value of the analytics, and
hence control the cost/accuracy trade-off; while domain experts are
uniquely qualified to answer data-centric questions, such as whether
or not two instances of a product are the same (Figure 3-2).

Figure 3-2. Humans in the loop

What makes things even more interesting is that enterprise data is
often protected by layers of access control and policies to guide who
can see what. Solutions that involve humans or experts have to
adhere to these access control policies during the cleaning process.
While that would be straightforward if these policies were explicitly
and succinctly represented to allow porting to the data curation
stack, the reality is that most of these access controls are embedded
and hardwired in various applications and data access points. To
develop a viable and effective human-in-the-loop solution, full
awareness of these access constraints is a must.
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3. Expressing and Discovering Quality Constraints
While data repairing is well studied for closed-form integrity con‐
straints formulae (such as functional dependency or denial con‐
straints), real-world business rules are rarely expressed in these
rather limited languages. Quality engineers often require running
scripts written in imperative languages to encode the various busi‐
ness rules (Figure 3-3). Having an extensible cleaning platform that
allows for expressing rules in these powerful languages, yet limiting
the interface to rules that are interpretable and practical to enforce,
is a hard challenge. What is even more challenging is discovering
these high-level business rules from the data itself (and ultimately
verifying them via domain experts). Automatic business and quality
constraints discovery and enforcement can play a key role in contin‐
ually monitoring the health of the source data and pushing data
cleaning activities upstream, closer to data generation and acquisi‐
tion.

Figure 3-3. Sample business rules expressed as denial constraints

4. Heterogeneity and Interaction of Quality Rules
Data anomalies are rarely due to one type of error; dirty data often
includes a collection of duplicates, business rules violations, missing
values, misaligned attributes, and unnormalized values. Most avail‐
able solutions focus on one type of error to allow for sound theoreti‐
cal results, or for a practical scalable solution. These solutions can‐
not be applied independently because they usually conflict on the
same data. We have to develop “holistic” cleaning solutions that
compile heterogeneous constraints on the data, and identify the
most problematic data portions by accumulating “evidence of
errors” (Figure 3-4).
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Figure 3-4. Data cleaning is holistic

5. Data and Constraints Decoupling and Interplay
Data and integrity constraints often interplay and are usually decou‐
pled in space and time, in three different ways. First, while errors are
born with the data, they are often discovered much later in applica‐
tions, where more business semantics are available; hence, con‐
straints are often declared and applied much later, and in multiple
stages in the data processing life cycle. Second, detecting and fixing
errors at the source, rather than at the application level, is important
in order to avoid updatability restrictions and to prevent future
errors. Finally, data cleaning rules themselves are often inaccurate;
hence, a cleaning solution has to consider “relaxing” the rules to
avoid overfitting and to respond to business logic evolution. Clean‐
ing solutions need to build on causality and responsibility results, in
order to reason about the errors in data sources. This allows for
identifying the most problematic data, and logically summarizing
data anomalies using predicates on the data schema and accompa‐
nying provenance information.

6. Data Variety
Considering only structured data limits the complexity of detecting
and repairing data errors. Most current solutions are designed to
work with one type of structured data—tables—yet businesses and
modern applications process a large variety of data sources, most of
which are unstructured. Oftentimes, businesses will extract the
important information and store it in structured data warehouse
tables. Delaying the quality assessment until after this information is
extracted and loaded into data warehouses becomes inefficient and
inadequate. More effective solutions are likely to push data quality
constraints to the information extraction subsystem to limit the
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amount of dirty data pumped into the business intelligence stack
and to get closer to the sources of errors, where more context is
available for trusted and high-fidelity fixes (Figure 3-5).

Figure 3-5. Iterative by design

7. Iterative by Nature, Not Design
While most cleaning solutions insist on “one-shot cleaning,” data
typically arrives and is handled incrementally, and quality rules and
schema are continuously evolving. One-shot cleaning solutions can‐
not sustain large-scale data in a continuously changing enterprise
environment, and are destined to be abandoned. The cleaning pro‐
cess is iterative by nature, and has to have incremental algorithms at
its heart. This usually entails heavy collection and maintenance of
data provenance (e.g., metadata that describes the sources and the
types of changes the data is going through), in order to keep track of
data “states.” Keeping track of data states allows algorithms and
human experts to add knowledge, to change previous beliefs, and
even to roll back previous actions.

Building Adoptable Data Cleaning Solutions
With hundreds of research papers on the topic, data cleaning efforts
in industry are still pretty much limited to one-off solutions that are
a mix of consulting work, rule-based systems, and ETL scripts. The
data cleaning challenges we’ve reviewed in this chapter present real
obstacles in building cleaning platforms. Tackling all of these chal‐
lenges in one platform is likely to be a very expensive software engi‐
neering exercise. On the other hand, ignoring them is likely to pro‐
duce throwaway system prototypes.
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Adoptable data cleaning solutions can tackle at least a few of these
pragmatic problems by:

1. Having humans or experts in the loop as a first-class cleaning
process for training models and verification

2. Focusing on scale from the start, and not as an afterthought
(which will exclude most naïve brute-force techniques currently
used in problems like deduplication and schema mapping)

3. Realizing that curation is a continuous incremental process that
requires a mix of incremental algorithms and a full-fledged
provenance management system in the backend, to allow for
controlling and revising decisions long into the curation life
cycle

4. Coupling data cleaning activities to data consumption end-
points (e.g., data warehouses and analytics stacks) for more
effective feedback

Building practical, deployable data cleaning solutions for big data is
a hard problem that is full of both engineering and algorithmic chal‐
lenges; however, being programmatic does not mean being unprin‐
cipled.
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CHAPTER 4

Understanding Data Science:
An Emerging Discipline for Data-

Intensive Discovery

—Michael L. Brodie

Over the past two decades, Data-Intensive Analysis (DIA)—also
referred to as Big Data Analytics—has emerged not only as a basis
for the Fourth Paradigm of engineering and scientific discovery, but
as a basis for discovery in most human endeavors for which data is
available. Though the idea originated in the 1960s, widespread
deployment has occurred only recently, thanks to the emergence of
big data and massive computing power. Data-Intensive Analysis is
still in its infancy in its application and our understanding of it, and
likewise in its development. Given the potential risks and rewards of
DIA, and its breadth of application, it is imperative that we get it
right.

The objective of this new Fourth Paradigm is more than simply
acquiring data and extracting knowledge. Like its predecessor, the
scientific method, the objective of the Fourth Paradigm is to investi‐
gate phenomena by acquiring new knowledge, and to integrate it
with and use it to correct previous knowledge. It is now time to
identify and understand the fundamentals. In my research, I have
analyzed more than 30 large-scale use cases to understand current
practical aspects, to gain insight into the fundamentals, and to
address the fourth “V” of big data—veracity, or the accuracy of the
data and the resulting analytics.
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Data Science: A New Discovery Paradigm That
Will Transform Our World
Big data has opened the door to profound change—to new ways of
reasoning, problem solving, and processing that in turn bring new
opportunities and challenges. But as was the case with its predeces‐
sor discovery paradigms, establishing this emerging Fourth Para‐
digm and the underlying principles and techniques of data science
may take decades.

To better understand DIA and its opportunities and challenges, my
research has focused on DIA use cases that are at very large scale—in
the range where theory and practice may break. This chapter sum‐
marizes some key results of this research, related to understanding
and defining data science as a body of principles and techniques with
which to measure and improve the correctness, completeness, and effi‐
ciency of Data-Intensive Analysis.

Significance of DIA and Data Science
Data science is transforming discovery in many human endeavors,
including healthcare, manufacturing, education, financial modeling,
policing, and marketing [1][2]. It has been used to produce signifi‐
cant results in areas from particle physics (e.g., Higgs Boson), to
identifying and resolving sleep disorders using Fitbit data, to recom‐
menders for literature, theatre, and shopping. More than 50 national
governments have established data-driven strategies as an official
policy, in science and engineering [3] as well as in healthcare (e.g.,
the US National Institutes of Health and President Obama’s Preci‐
sion Medicine Initiative for “delivering the right treatments, at the
right time, every time to the right person”). The hope, supported by
early results, is that data-driven techniques will accelerate the dis‐
covery of treatments to manage and prevent chronic diseases that
are more precise and are tailored to specific individuals, as well as
being dramatically lower in cost.

Data science is being used to radically transform entire domains,
such as medicine and biomedical research—as is stated as the pur‐
pose of the newly created Center for Biomedical Informatics at Har‐
vard Medical School. It is also making an impact in economics [4],
drug discovery [5], and many other domains. As a result of its suc‐
cesses and potential, data science is rapidly becoming a subdiscipline
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of most academic areas. These developments suggest a strong belief
in the potential value of data science—but can it deliver?

The early successes and clearly stated expectations of data science
are truly remarkable; however, its actual deployment, like that of
many hot trends, is far less extensive than it might appear. Accord‐
ing to Gartner’s 2015 survey of Big Data Management and Analytics,
60% of the Fortune 500 companies claim to have deployed data sci‐
ence, yet less than 20% have implemented consequent significant
changes, and less than 1% have optimized its benefits. Gartner con‐
cludes that 85% of these companies will be unable to exploit big data
in 2015. The vast majority of deployments address tactical aspects of
existing processes and static business intelligence, rather than realiz‐
ing the power of data science by discovering previously unforeseen
value and identifying strategic advantages.

Illustrious Histories: The Origins of Data Science
Data science is in its infancy. Few individuals or organizations
understand the potential of and the paradigm shift associated with
data science, let alone understand it conceptually. The high rewards
and equally high risks, and its pervasive application, make it impera‐
tive that we better understand data science—its models, methods,
processes, and results.

Data science is inherently multidisciplinary. Its principal compo‐
nents include mathematics, statistics, and computer science—espe‐
cially areas of artificial intelligence such as machine learning, data
management, and high-performance computing. While these disci‐
plines need to be evaluated in the new paradigm, they have long,
illustrious histories.

Data analysis developed over 4,000 years ago, with origins in Baby‐
lon (17th–12th c. BCE) and India (12th c. BCE). Mathematical anal‐
ysis originated in the 17th c. around the time of the Scientific Revo‐
lution. While statistics has its roots in the 5th c. BCE and the 18th c.
CE, its application in data science originated in 1962 with John W.
Tukey [6] and George Box [7]. These long, illustrious histories sug‐
gest that data science draws on well-established results that took
decades or centuries to develop. To what extent do they (e.g., statisti‐
cal significance) apply in this new context?

Data science constitutes a new paradigm in the sense of Thomas S.
Kuhn’s scientific revolutions [8]. Data science’s predecessor para‐
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digm, the scientific method, was approximately 2,000 years in the
development, starting with Aristotle (384–322 BCE) and continuing
through Ptolemy (1st c. CE) and the Bacons (13th, 16th c. CE).
Today, data science is emerging following the ~1,000-year develop‐
ment of its three predecessor paradigms of scientific and engineer‐
ing discovery: theory, experimentation, and simulation [9]. Data sci‐
ence has been developing over the course of the last 50 years, but it
changed qualitatively in the late 20th century with the emergence of
big data—data whose volumes, velocities, and variety current tech‐
nologies, let alone humans, cannot handle efficiently. This chapter
addresses another characteristic that current technologies and theo‐
ries do not handle well—veracity.

What Could Possibly Go Wrong?
Do we understand the risks of recommending the wrong product,
let alone the wrong medical diagnoses, treatments, or drugs? The
risks of a result that fails to achieve its objectives may include losses
in time, resources, customer satisfaction, customers, and potentially
business collapse. The vast majority of data science applications face
such small risks, however, that veracity has received little attention.

Far greater risks could be incurred if incorrect data science results
are acted upon in critical contexts, such as drug discovery [10] and
personalized medicine. Most scientists in these contexts are well
aware of the risks of errors, and go to extremes to estimate and min‐
imize them. The announcement of the “discovery” of the Higgs
boson at CERN’s Large Hadron Collider (LHC) on July 4, 2012
might have suggested that the results were achieved overnight—they
were not. The results took 40 years to achieve and included data sci‐
ence techniques developed over a decade and applied over big data
by two independent projects, ATLAS and CMS, each of which were
subsequently peer-reviewed and published [11][12] with a further
year-long verification. To what extent do the vast majority of data
science applications concern themselves with verification and error
bounds, let alone understand the verification methods applied at
CERN? Informal surveys of data scientists conducted in my research
at data science conferences suggest that 80% of customers never ask
for error bounds.

The existential risks of applying data science have been called out by
world-leading authorities in institutions such as the Organisation
for Economic Co-operation and Development and in the artificial
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Intelligence (AI) [13][14][15][16] and legal [17] communities. The
most extreme concerns have been stated by the Future of Life Insti‐
tute, which has the objective of safeguarding life, developing opti‐
mistic visions of the future, and mitigating “existential risks facing
humanity” from AI.

Given the potential risks and rewards of DIA and its breadth of
application across conventional, empirical scientific and engineering
domains, as well as across most human endeavors, we had better get
this right! The scientific and engineering communities place high
trust in their existing discovery paradigms, with well-defined meas‐
ures of likelihood and confidence within relatively precise error esti‐
mates. Can we say the same for modern data science as a discovery
paradigm, and for its results? A simple observation of the formal
development of the processes and methods of its predecessors sug‐
gests that we cannot. Indeed, we do not know if, or under what con‐
ditions, the constituent disciplines—like statistics—may break
down.

Do we understand DIA to the extent that we can assign probabilistic
measures of likelihood to its results? With the scale and emerging
nature of DIA-based discovery, how do we estimate the correctness
and completeness of analytical results relative to a hypothesized dis‐
covery question? The underlying principles and techniques may not
apply in this new context.

In summary, we do not yet understand DIA adequately to quantify
the probability or likelihood that a projected outcome will occur
within estimated error bounds. While the researchers at CERN used
data science and big data to identify results, verification was ulti‐
mately empirical, as it must be in drug discovery [10] and other crit‐
ical areas until analytical techniques are developed and proven
robust.

Do We Understand Data Science?
Do we even understand what data science methods compute or how
they work? Human thought is limited by the human mind. Accord‐
ing to Miller’s Law [4], the human mind (short-term working mem‐
ory) is capable of holding on to less than 10 (7 +/– 2) concepts at
one time. Hence, humans have difficulty understanding complex
models involving more than 10 variables. The conventional process
is to imagine a small number of variables, and then abstract or
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encapsulate that knowledge into a model that can subsequently be
augmented with more variables. Thus, most scientific theories
develop slowly over time into complex models. For example, New‐
ton’s model of physics was extended over the course of three centu‐
ries, through Bohr, Einstein, Heisenberg, and more, up to Higgs—to
form the Standard Model of particle physics. Scientific discovery in
particle physics is wonderful, but it has taken over 300 years. Due to
its complexity, no physicist has claimed to understand the entire Stan‐
dard Model.

When humans analyze a problem, they do so with models with a
limited number of variables. As the number of variables increases, it
becomes increasingly difficult to understand the model and the
potential combinations and correlations. Hence, humans limit the
scale of their models and analyses—which are typically theory-
driven—to a level of complexity that they can comprehend.

But what if the phenomenon is arbitrarily complex or beyond
immediate human conception? I suspect that this is addressed itera‐
tively, with one model (theory) being abstracted as the base for
another more complex theory, and so on (standing on the shoulders
of those who have gone before), as the development of quantum
physics from the discovery of elementary particles. That is, once the
human mind understands a model, it can form the basis of a more
complex model. This development under the scientific method
scales at a rate limited by human conception, thus limiting the num‐
ber of variables and the complexity. This is error-prone, since phe‐
nomena may not manifest at a certain level of complexity. Models
correct at one scale may be wrong at a larger scale, or vice versa—a
model wrong at one scale (and hence discarded) may become cor‐
rect at a higher scale (a more complex model).

Machine learning algorithms can identify correlations between
thousands, millions, or even billions of variables. This suggests that
it is difficult or even impossible for humans to understand what (or
how) these algorithms discover. Imagine trying to understand such
a model that results from selecting some subset of the correlations
on the assumption that they may be causal, and thus constitute a
model of the phenomenon with high confidence of being correct
with respect to some hypotheses, with or without error bars.
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Cornerstone of a New Discovery Paradigm
The Fourth Paradigm—eScience supported by data science—is
paradigmatically different from its predecessor discovery para‐
digms. It provides revolutionary new ways [8] of thinking, reason‐
ing, and processing; new modes of inquiry, problem solving, and
decision making. It is not the Third Paradigm augmented by big
data, but something profoundly different. Losing sight of this differ‐
ence forfeits its power and benefits, and loses the perspective that it
is “a revolution that will transform how we live, work, and think”
[2].

Paradigm shifts are difficult to notice as they emerge. There are sev‐
eral ways to describe the trend. There is a shift of resources, from
(empirically) discovering causality (why the phenomenon occurs)—
the heart of the scientific method—to discovering interesting corre‐
lations (what might have occurred). This shift involves moving from
a strategic perspective driven by human-generated hypotheses
(theory-driven, top-down) to a tactical perspective driven by obser‐
vations (data-driven, bottom-up).

Seen at their extremes, the scientific method involves testing
hypotheses (theories) posed by scientists, while data science can be
used to generate hypotheses to be tested based on significant corre‐
lations among variables that are identified algorithmically in the
data. In principle, vast amounts of data and computing resources
can be used to accelerate discovery simply by outpacing human
thinking in both power and complexity.

Data science is rapidly gaining momentum due to the development
of ever more powerful computing resources and algorithms, such as
deep learning. Rather than optimizing existing processes, data sci‐
ence can be used to identify patterns that suggest unforeseen solu‐
tions.

However, even more compelling is the idea that goes one step
beyond the simple version of this shift—namely, a symbiosis of both
paradigms. For example, data science can be used to offer several
highly probable hypotheses or correlations, from which we select
those with acceptable error estimates that are worthy of subsequent
empirical analysis. In turn, empiricism can be used to pursue these
hypotheses until some converge and some diverge, at which point
data science can be applied to refine or confirm the converging
hypotheses, and the cycle starts again. Ideally, one would optimize
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the combination of theory-driven empirical analysis with data-
driven analysis to accelerate discovery to a rate neither on its own
could achieve.

While data science is a cornerstone of a new discovery paradigm, it
may be conceptually and methodologically more challenging than
its predecessors, since it involves everything included in its prede‐
cessor, paradigms—modeling, methods, processes; measures of cor‐
rectness, completeness, and efficiency—in a much more complex
context, namely that of big data. Following well-established develop‐
ments, we should try to find the fundamentals of data science—its
principles and techniques—to help manage the complexity and
guide its understanding and application.

Data Science: A Perspective
Since data science is in its infancy and is inherently multidiscipli‐
nary, there are naturally many definitions that emerge and evolve
with the discipline. As definitions serve many purposes, it is reason‐
able to have multiple definitions, each serving different purposes.
Most definitions of data science attempt to define why (its purpose),
what (constituent disciplines), and how (constituent actions of dis‐
covery workflows).

A common definition of data science is the activity of extracting
knowledge from data. While simple, this does not convey the larger
goal of data science or its consequent challenges. A DIA activity is
far more than a collection of actions, or the mechanical processes of
acquiring and analyzing data. Like its predecessor paradigm, the sci‐
entific method, the purpose of data science and DIA activities is to
investigate phenomena by acquiring new knowledge, and correcting
and integrating it with previous knowledge—continually evolving our
understanding of the phenomena, based on newly available data. We
seldom start from scratch. Hence, discovering, understanding, and
integrating data must precede extracting knowledge, and all at mas‐
sive scale—i.e., largely by automated means.

The scientific method that underlies the Third Paradigm is a body of
principles and techniques that provide the formal and practical
bases of scientific and engineering discovery. The principles and
techniques have been developed over hundreds of years, originating
with Plato, and are still evolving today, with significant unresolved
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issues such as statistical significance (i.e., P values) and reproduci‐
bility.

While data science had its origins 50 years ago with Tukey [16] and
Box [7], it started to change qualitatively less than two decades ago,
with the emergence of big data and the consequent paradigm shift
we’ve explored. The focus of this research into modern data science
is on veracity—the ability to estimate the correctness, completeness,
and efficiency of an end-to-end DIA activity and of its results.
Therefore, we will use the following definition, in the spirit of Pro‐
vost and Fawcett [5]:

Data science is a body of principles and techniques for applying
data-intensive analysis to investigate phenomena, acquire new
knowledge, and correct and integrate previous knowledge with
measures of correctness, completeness, and efficiency of the
derived results, with respect to some predefined (top-down) or
emergent (bottom-up) specification (scope, question, hypothesis).

Understanding Data Science from Practice
Methodology to Better Understand DIA
Driven by a passion for understanding data science in practice, my
year-long and ongoing research study has investigated over 30 very
large-scale big data applications—most of which have produced or
are daily producing significant value. The use cases include particle
physics; astrophysics and satellite imagery; oceanography; econom‐
ics; information services; several life sciences applications in phar‐
maceuticals, drug discovery, and genetics; and various areas of med‐
icine including precision medicine, hospital studies, clinical trials,
and intensive care unit and emergency room medicine.

The aim of this study is to investigate relatively well understood,
successful use cases where correctness is critical and the big data con‐
text is at massive scale; such use cases constitute less than 5% of all
deployed big data analytics projects. The focus is on these use cases,
as we do not know where errors (outside normal scientific and ana‐
lytical errors) may arise. There is a greater likelihood that estab‐
lished disciplines such as statistics and data management might
break at very large scale, where errors due to failed fundamentals
may be more obvious.
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The breadth and depth of the use cases revealed strong, significant
emerging trends, some of which are listed below. These confirmed
for some use case owners solutions and directions that they were
already pursuing, and suggested to others directions that they could
not have seen without the perspective of 30+ use cases.

DIA Processes
A Data-Intensive-Activity is an analytical process that consists of
applying sophisticated analytical methods to large data sets that are
stored under some analytical models (Figure 4-1). While this is the
typical view of data science projects or DIA use cases, this analytical
component of the DIA activity constitutes ∼20% of an end-to-end
DIA pipeline or workflow. Thus, currently it consumes ∼20% of the
resources required to complete a DIA analysis.

Figure 4-1. Conventional view of Data-Intensive Analysis

An end-to-end DIA activity (Figure 4-2) involves two data manage‐
ment processes that precede the DIA process, namely raw data
acquisition and curation and analytical data acquisition. Raw data
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acquisition and curation starts with discovering and understanding
data in data sources and ends with integrating and storing in a
repository curated data that represents entities in the domain of
interest, and metadata about those entities. Analytical data acquisi‐
tion starts with discovering and understanding data within the
shared repository and ends with storing the resulting information—
specific entities and interpretations—into an analytical model to be
used by the subsequent DIA process.

Figure 4-2. End-to-end Data-Intensive Analysis workflow

Sophisticated algorithms, such as machine learning algorithms,
largely automate DIA processes, which have to be automated to pro‐
cess such large volumes of data using complex algorithms. Cur‐
rently, raw data acquisition and curation and analytical data acquisi‐
tion processes are far less automated, typically requiring 80% or
more of the total resources to complete.

This understanding leads us to the following definitions:
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Data-Intensive Discovery (DID)
The activity of using big data to investigate phenomena, to
acquire new knowledge, and to correct and integrate previous
knowledge. The “-Intensive” is added when the data is “at scale.”
Theory-driven DID is the application of human-generated sci‐
entific, engineering, or other hypotheses to big data. Data-
driven DID employs automatic hypothesis generation.

Data-Intensive Analysis (DIA)
The process of analyzing big data with analytical methods and
models.

DID goes beyond the Third Paradigm of scientific or engineer‐
ing discovery by investigating scientific or engineering hypothe‐
ses using DIA. A DIA activity is an experiment over data, thus
requiring all aspects of a scientific experiment—e.g., experimen‐
tal design, expressed over data (a.k.a. data-based empiricism).

DIA process (workflow or pipeline)
A sequence of operations that constitute an end-to-end DIA
activity, from the acquisition of the source data to the quanti‐
fied, qualified result.

Currently, ~80% of the effort and resources required for the entire
DIA activity are dedicated to the two data management processes—
areas where scientists/analysts are not experts. Emerging technolo‐
gies, such as those for data curation at scale, aim to flip that ratio
from 80:20 to 20:80, to let scientists do science and analysts do analy‐
sis. This requires an understanding of the data management pro‐
cesses and their correctness, completeness, and efficiency, in addi‐
tion to those of the DIA process. Another obvious consequence of
the present imbalance is that proportionally, 80% of the errors that
could arise in DIA may arise in the data management processes,
prior to DIA even starting.

Characteristics of Large-Scale DIA Use Cases
The focus of my research is successful, very large-scale, multiyear
projects with 100s–1,000s of ongoing DIA activities. These activities
are supported by a DIA ecosystem, consisting of a community of
users (e.g., over 5,000 scientists in the ATLAS and CMS projects at
CERN and similar numbers of scientists using the worldwide Can‐
cer Genome Atlas) and technology (e.g., science gateways, collec‐
tively referred to in some branches of science as networked science).
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Some significant trends that have emerged from the analysis of these
use cases are listed, briefly, below.

The typical view of data science appears to be based on the vast
majority (~95%) of DIA use cases. While they share some character‐
istics with those in this study, there are fundamental differences,
such as the concern for and due diligence associated with veracity.

Based on this study data, analysis appears to fall into three classes.
Conventional data analysis over “small data” accounts for at least
95% of all data analysis, often using Microsoft Excel. DIA over big
data has two subclasses: simple DIA, including the vast majority of
DIA use cases mentioned above, and complex DIA, such as the use
cases analyzed in this study, which are characterized by complex
analytical models and a corresponding plethora of analytical meth‐
ods. The models and methods are as complex as the phenomena
being analyzed.

The most widely used DIA tools for simple cases profess to support
analyst self-service in point-and-click environments, with some
claiming “point us at the data and we will find the patterns of inter‐
est for you.” This model is infeasible in the use cases analyzed, which
are characterized not only by being machine-driven and human-
guided, but by extensive attempts to optimize this man–machine
symbiosis for scale, cost, and precision (too much human-in-the-
loop leads to errors; too little leads to nonsense).

DIA ecosystems are inherently multidisciplinary (ideally interdisci‐
plinary), collaborative, and iterative. Not only does DIA (Big Data
Analytics) require multiple disciplines—e.g., genetics, statistics and
machine learning—but so too do the data management processes—
e.g., data management, domain and machine-learning experts for
data curation, statisticians for sampling, and so on.

In large-scale DIA ecosystems, a DIA is a virtual experiment [18].
Far from claims of simplicity and point-and-click self-service, most
large-scale DIA activities reflect the complexity of the analysis at
hand and are the result of long-term (months to years) experimental
designs. These designs necessarily involve greater complexity than
their empirical counterparts, to deal with scale, significance, hypoth‐
eses, null hypotheses, and deeper challenges, such as determining
causality from correlations and identifying and dealing with biases,
and often irrational human intervention.
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Finally, veracity is one of the most significant challenges and critical
requirements of all DIA ecosystems studied. While there are many
complex methods in conventional data science to estimate veracity,
most owners of the use cases studied expressed concern for ade‐
quately estimating veracity in modern data science. Most assume
that all data is imprecise, and hence require probabilistic measures
and error bars and likelihood estimates for all results. More basically,
most DIA ecosystem experts recognize that errors can arise across
an end-to-end DIA activity and are investing substantially in
addressing these issues in both the DIA process and the data man‐
agement processes, which currently require significant human guid‐
ance.

An objective of this research is to discover the extent to which the
characteristics of very large-scale, complex DIAs described here also
apply to simple DIAs. There is a strong likelihood that they apply
directly, but are difficult to detect—that is, that the principles and
techniques of DIA apply equally to simple and complex DIA.

Looking Into a Use Case
Due to the detail involved, there is not space in this chapter (or this
report) to fully describe a single use case considered in this study.
However, let’s look into a single step of a use case, involving a virtual
experiment conducted at CERN in the ATLAS project.

The heart of empirical science is experimental design. It starts by
identifying, formulating, and verifying a worthy hypothesis to pur‐
sue. This first complex step typically involves a multidisciplinary
team, called the collaborators for this virtual experiment, often from
around the world and for more than a year. We will consider the
second step, the construction of the control or background model
(executable software and data) that creates the background (e.g., an
executable or testable model and a given data set) required as the
basis within which to search (analyze) for “signals” that would rep‐
resent the phenomenon being investigated in the hypothesis. This
control completely excludes the data of interest. That is, the data of
interest (the signal region) is “blinded” completely so as not to bias
the experiment. The background (control) is designed using soft‐
ware that simulates relevant parts of the Standard Model of particle
physics, plus data from ATLAS selected with the appropriate signa‐
tures with the data of interest blinded.
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Over time, ATLAS contributors have developed simulations of
many parts of the Standard Model. Hence, constructing the model
required for the background involves selecting and combining rele‐
vant simulations. If there is no simulation for some aspect that is
required, then it must be requested or built by hand. Similarly, if
there is no relevant data of interest in the experimental data reposi‐
tory, it must be requested from a subsequent capture from the detec‐
tors when the LHC is next fired up in the appropriate energy levels.
This comes from a completely separate team running the (non-
virtual) experiment.

The development of the background is approximately a one-person-
year activity, as it involves the experimental design, the design and
refinement of the model (software simulations), the selection of
methods and tuning to achieve the correct signature (i.e., get the
right data), the verification of the model (observing expected out‐
comes when tested), and dealing with errors (statistical and system‐
atic) that arise from the hardware or process. The result of the back‐
ground phase is a model approved by the collaborative to represent
the background required by the experiment with the signal region
blinded. The model is an “application” that runs on the ATLAS
“platform” using ATLAS resources—libraries, software, simulations,
and data, drawing on the ROOT framework, CERN’s core modeling
and analysis infrastructure. It is verified by being executed under
various testing conditions.

This is an incremental or iterative process, each step of which is
reviewed. The resulting design document for the Top Quark experi‐
ment was approximately 200 pages of design choices, parameter set‐
tings, and results—both positive and negative! All experimental data
and analytical results are probabilistic. All results have error bars; in
particle physics they must be at least 5 sigma to be accepted. This
explains the year of iteration in which analytical models are adjus‐
ted, analytical methods are selected and tuned, and results are
reviewed by the collaborative. The next step is the actual virtual
experiment. This too takes months. Surprisingly, once the data is
unblinded (i.e., synthetic data is replaced in the region of interest
with experimental data), the experimenter—often a PhD candidate
—gets one and only one execution of the “verified” model over the
experimental data.

Hopefully, this portion of a use case illustrates that Data-Intensive
Analysis is a complex but critical tool in scientific discovery, used
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with a well-defined understanding of veracity. It must stand up to
scrutiny that evaluates whether the experiment—consisting of all
models, methods, and data with probabilistic results and error
bounds better than 5 sigma—is adequate to be accepted by Science
or Nature as demonstrating that the hypothesized correlation is
causal.

Research for an Emerging Discipline
The next step in this research to better understand the theory and
practice of the emerging discipline of data science, to understand
and address its opportunities and challenges, and to guide its devel‐
opment is given in its definition. Modern data science builds on
conventional data science and on all of its constituent disciplines
required to design, verify, and operate end-to-end DIA activities,
including both data management and DIA processes, in a DIA eco‐
system for a shared community of users. Each discipline must be
considered with respect to what it contributes to investigating phe‐
nomena, acquiring new knowledge, and correcting and integrating
new with previous knowledge. Each operation must be understood
with respect to the level of correctness, completeness, and efficiency
that can be estimated.

This research involves identifying relevant principles and techni‐
ques. Principles concern the theories that are established formally—
e.g., mathematically—and possibly demonstrated empirically. Tech‐
niques involve the application of wisdom [19]; i.e., domain knowl‐
edge, art, experience, methodologies, and practice—often called best
practices. The principles and techniques, especially those established
for conventional data science, must be verified and, if required,
extended, augmented, or replaced for the new context of the Fourth
Paradigm—especially its volumes, velocities, and variety. For exam‐
ple, new departments at MIT, Stanford, and the University of Cali‐
fornia, Berkeley, are conducting such research under what some are
calling 21st-century statistics.

A final, stimulating challenge is what is called metamodeling or
metatheory. This area emerged in the physical sciences in the 1980s
and subsequently in statistics and machine learning and is now
being applied in other areas. Metamodeling arises when using multi‐
ple analytical models and multiple analytical methods to analyze dif‐
ferent perspectives or characteristics of the same phenomenon. This
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extremely natural and useful methodology, called ensemble model‐
ing, is required in many physical sciences, statistics, and AI, and
should be explored as a fundamental modeling methodology.
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CHAPTER 5

From DevOps to DataOps

—Andy Palmer

Why It’s Time to Embrace “DataOps” as a New
Discipline
Over the past 10 years, the technology industry has experienced the
emergence of “DevOps.” This new set of practices and tools have
improved the velocity, quality, predictability, and scale of software
engineering and deployment. Starting at the large Internet compa‐
nies, the trend toward DevOps is now transforming the way that
systems are developed and managed inside the enterprise—often
dovetailing with enterprise cloud adoption initiatives. Regardless of
your opinion about on-prem versus multitenant cloud infrastruc‐
ture, the adoption of DevOps is improving how quickly new features
and functions are delivered at scale for end users.

There is a lot to learn from the evolution of DevOps, across the
modern Internet as well as within the modern enterprise—most
notably for those who work with data every day.

At its core, DevOps is about the combination of software engineer‐
ing, quality assurance, and technology operations (Figure 5-1).
DevOps emerged because traditional systems management (as
opposed to software development management) was not adequate
to meet the needs of modern, web-based application development
and deployment.
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Figure 5-1. DevOps in the enterprise

From DevOps to DataOps
It’s time for data engineers and data scientists to embrace a new,
similar discipline—let’s call it “DataOps”—that at its core addresses
the needs of data professionals inside the modern enterprise.

Two trends are creating the need for DataOps:

1. The democratization of analytics is giving more individuals
access to cutting-edge visualization, data modeling, machine
learning, and statistical tools.

2. The implementation of “built-for-purpose” database engines is
improving the performance and accessibility of large quantities
of data, at unprecedented velocity. The techniques to improve
beyond legacy relational DBMSs vary across markets, and this
has driven the development of specialized database engines such
as StreamBase, Vertica, VoltDB, and SciDB.
More recently, Google made its massive Cloud Bigtable database
(the same one that powers Google Search, Maps, YouTube, and
Gmail) available to everyone in a scalable NoSQL database ser‐
vice through the Apache HBase API.

Together, these trends create pressure from both “ends of the stack.”
From the top of the stack, users want access to more data in more
combinations. From the bottom of the stack, more data is available
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than ever before—some aggregated, but much of it not. The only
way for data professionals to deal with the pressure of heterogeneity
from both the top and bottom of the stack is to embrace a new
approach to managing data This new approach blends operations
and collaboration. The goal is to organize and deliver data from
many sources, to many users, reliably. At the same time, it’s essential
to maintain the provenance required to support reproducible data
flows.

Defining DataOps
DataOps is a data management method used by data engineers, data
scientists, and other data professionals that emphasizes:

• Communication
• Collaboration
• Integration
• Automation

DataOps acknowledges the interconnected nature of data engineer‐
ing, integration, quality, and security and privacy. It aims to help an
organization rapidly deliver data that accelerates analytics, and to
enable previously impossible analytics.

The “ops” in DataOps is very intentional. The operation of infra‐
structure required to support the quantity, velocity, and variety of
data available in the enterprise today is radically different from what
traditional data management approaches have assumed. The nature
of DataOps embraces the need to manage many data sources and
many data pipelines, with a wide variety of transformations.

Changing the Fundamental Infrastructure
While people have been managing data for a long time, we’re at a
point now where the quantity, velocity, and variety of data available
to a modern enterprise can no longer be managed without a signifi‐
cant change in the fundamental infrastructure. The design of this
infrastructure must focus on:

• The thousands of sources that are not centrally controlled, and
which frequently change their schemas without notification
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(much in the way that websites change frequently without noti‐
fying search engines)

• Treating these data sources (especially tabular data sets) as if
they were websites being published inside of an organization

DataOps challenges preconceived notions of how to engage with the
vast quantities of data being collected every day. Satisfying the enor‐
mous appetite for this data requires that we sort it in a way that is
rapid, interactive, and flexible. The key to DataOps is that you don’t
have to theorize and manage your data schemas up front, with a
misplaced idealism about how the data should look.

DataOps Methodology
Using DataOps methodology, you start with the data as it is and
work from the bottom up. You work with it, integrate it, uncover
insights along the way, and find more data and more data sources
that support or add to what you have discovered. Eventually, you
come away with more quality outcomes than if you had tried to sort
through the information from the top down with a specific goal in
mind.

DataOps methodology brings a more agile approach to interrogat‐
ing and analyzing data, on a very large scale. At some point, what
you want is all the data. If you have all the data in a clear, compre‐
hensible format, then you can actually see things that other people
can’t see. But you can’t reach that monumental goal by simply
declaring that you’re going to somehow conjure up all of the data in
one place—instead, you have to continually iterate, execute, evalu‐
ate, and improve, just like when you are developing software.

If you want to do a better job with the quality of the data you are
analyzing, you’ve got to develop information-seeking behaviors. The
desire to look at more information and use more data sources gives
you better signals from the data and uncovers more potential sour‐
ces of insight. This creates a virtuous cycle: as data is utilized and
processed, it becomes well organized and accessible, allowing more
data to emerge and enter the ecosystem.

Any enterprise data professional knows that data projects can
quickly become insurmountable if they rely heavily on manual pro‐
cesses. DataOps requires automating many of these processes to
quickly incorporate new data into the existing knowledge base.
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First-generation DataOps tools (such as Tamr’s Data Unification
platform) focus on making agile data management easier.

Integrating DataOps into Your Organization
Much of what falls under the umbrella of big data analytics today
involves idiosyncratic and manual processes for breaking down
data. Often, companies will have hundreds of people sifting through
data for connections, or trying to find overlap and repetition.
Despite the investment of these resources, new sources of data
actually make this work harder—much, much harder—which means
more data can limit instead of improve outcomes. DataOps tools
will eliminate this hypolinear relationship between data sources and
the amount of resources required to manage them, making data
management automated and truly scalable.

To integrate this revolutionary data management method into an
enterprise, you need two basic components. The first is cultural—
enterprises need to create an environment of communication and
cooperation among data analytics teams. The second component is
technical—workflows will need to be automated with technologies
like machine learning to recommend, collect, and organize informa‐
tion. This groundwork will help radically simplify administrative
debt and vastly improve the ability to manage data as it arrives.

The Four Processes of DataOps
As illustrated in Figure 5-2, four processes work together to create a
successful DataOps workflow:

• Engineering
• Integration
• Quality
• Security

Within the context of DataOps, these processes work together to
create meaningful methods of handling enterprise data. Without
them, working with data becomes expensive, unwieldy, or—worse—
unsecure.
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Figure 5-2. Four processes of DataOps

Data Engineering
Organizations trying to leverage all the possible advantages derived
from mining their data need to move quickly to create repeatable
processes for productive analytics. Instead of starting with a specific
analytic in mind and working through a manual process to get to
that endpoint, the data sifting experience should be optimized so
that the most traditionally challenging, but least impactful, aspects
of data analysis are automated.

Take, for example, the management of customer information in a
CRM database or other database product. Sorting through customer
data to make sure that the information is accurate is a challenge that
many organizations either address manually—which is bad—or
don’t address at all, which is worse. No company should be expected
to have bad data or be overwhelmed by working with its data in an
age when machine learning can be used as a balm to these problems.

The central problem of previous approaches to data management
was the lack of automation. The realities of manually bringing
together data sources restricted projects’ goals and therefore limited
the focus of analytics—and if the analytical outcomes did not match
the anticipated result, the whole effort was wasted. Moving to Data‐
Ops ensures that foundational work for one project can give a jump-
start to the next, which expands the scope of analytics.

A bias toward automation is even more critical when addressing the
huge variety of data sources that enterprises have access to. Only
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enterprises that engineer with this bias will truly be able to be data-
driven—because only these enterprises will begin to approach that
lofty goal of gaining a handle on all of their data.

To serve your enterprise customers the right way, you have to deliver
the right data. To do this, you need to engineer a process that auto‐
mates getting the right data to your customers, and to make sure
that the data is well integrated for those customers.

Data Integration
Data integration is the mapping of physical data entities, in order to
be able to differentiate one piece of data from another.

Many data integration projects fail because most people and systems
lack the ability to differentiate data correctly for a particular use case.
There is no one schema to rule them all; rather, you need the ability
to flexibly create new logical views of your data within the context of
your users’ needs. Existing processes that enterprises have created
usually merge information too literally, leading to inaccurate data
points. For example, often you will find repetitive customer names
or inaccurate email data for a CRM project; or physical attributes
like location or email addresses may be assigned without being vali‐
dated.

Tamr’s approach to data integration is “machine driven, human gui‐
ded.” The “machines” (computers running algorithms) organize cer‐
tain data that is similar and should be integrated into one data point.
A small team of skilled analysts validate whether the data is right or
wrong. The feedback from the analysts informs the machines, con‐
tinually improving the quality of automation over time. This cycle
can remove inaccuracies and redundancies from data sets, which is
vital to finding value and creating new views of data for each use
case.

This is a key part of DataOps, but it doesn’t work if there is nothing
actionable that can be drawn from the data being analyzed. That
value depends on the quality of the data being examined.

Data Quality
Quality is purely subjective. DataOps moves you toward a system
that recruits users to improve data quality in a bottom-up, bidirec‐
tional way. The system should be bottom-up in the sense that data
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quality is not some theoretical end state imposed from on high, but
rather is the result of real users engaging with and improving the
data. It should be bidirectional in that the data can be manipulated
and dynamically changed.

If a user discovers some weird pattern or duplicates while analyzing
data, resolving these issues immediately is imperative; your system
must give users this ability to submit instant feedback. It is also
important to be able to manipulate and add more data to an
attribute as correlating or duplicate information is uncovered.

Flexibility is also key—the user should be open to what the data
reveals, and approach the data as a way to feed an initial conjecture.

Data Security
Companies usually approach data security in one of two ways—
either they apply the concept of access control, or they monitor
usage.

The idea of an access control policy is that there has to be a way to
trace back who has access to which information. This ensures that
sensitive information rarely falls into the wrong hands. Actually
implementing an access control policy can slow down the process of
data analysis, though—and this is the existing infrastructure for
most organizations today.

At the same time, many companies don’t worry about who has
access to which sets of data. They want data to flow freely through
the organization; they put a policy in place about how information
can be used, and they watch what people use and don’t use. How‐
ever, this leaves companies potentially susceptible to malicious mis‐
use of data.

Both of these data protection techniques pose a challenge to com‐
bining various data sources, and make it tough for the right infor‐
mation to flow freely.

As part of a system that uses DataOps, these two approaches need to
be combined. There needs to be some access control and use moni‐
toring. Companies need to manage who is using their data and why,
and they also always need to be able to trace back how people are
using the information they may be trying to leverage to gain new big
data insights. This framework for managing the security of your
data is necessary if you want to create a broad data asset that is also
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protected. Using both approaches—combining some level of access
control with usage monitoring—will make your data more fluid and
secure.

Better Information, Analytics, and Decisions
By incorporating DataOps into existing data analysis processes, a
company stands to gain a more granular, better-quality understand‐
ing of the information it has and how best to use it. The most effec‐
tive way to maximize a system of data analytics is through viewing
data management not as an unwieldy, monolithic effort, but rather
as a fluid, incremental process that aligns the goals of many disci‐
plines.

If you balance out the four processes we’ve discussed (engineering,
integration, quality, and security), you’ll empower the people in your
organization and give them a game-changing way to interact with
data and to create analytical outcomes that improve the business.

Just as the movement to DevOps fueled radical improvements in the
overall quality of software and unlocked the value of information
technology to many organizations, DataOps stands to radically
improve the quality and access to information across the enterprise,
unlocking the true value of enterprise data.
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CHAPTER 6

Data Unification Brings Out the
Best in Installed Data

Management Strategies

—James Markarian

Companies are now investing heavily in technology designed to
control and analyze their expanding pools of data, reportedly spend‐
ing $44 billion for big data analytics alone in 2014. In relation, data
management software now accounts for over 40 percent of the total
spend on software in the US With companies focusing on strategies
like ETL (extract, transform, and load), MDM (master data manage‐
ment), and data lakes, it’s critical to understand that while these
technologies can provide a unique and significant handle on data,
they still fall short in terms of speed and scalability—with the poten‐
tial to delay or fail to surface insights that can propel better decision
making.

Data is generally too siloed and too diverse for systems like ETL,
MDM, and data lakes, and analysts are spending too much time
finding and preparing data manually. On the other hand, the nature
of this work defies complete automation. Data unification is an
emerging strategy that catalogs data sets, combines data across the
enterprise, and publishes the data for easy consumption. Using data
unification as a frontend strategy can quicken the feed of highly
organized data into ETL and MDM systems and data lakes, increas‐
ing the value of these systems and the insights they enable. In this
chapter, we’ll explore how data unification works with installed data
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management solutions, allowing businesses to embrace data volume
and variety for more productive data analyses.

Positioning ETL and MDM
When enterprise data management software first emerged, it was
built to address data variety and scale. ETL technologies have been
around in some form since the 1980s. Today, the ETL vendor mar‐
ket is full of large, established players, including Informatica, IBM,
and SAP, with mature offerings that boast massive installed bases
spanning virtually every industry. ETL makes short work of repack‐
aging data for a different use—for example, taking inventory data
from a car parts manufacturer and plugging it into systems at deal‐
erships that provide service, or cleaning customer records for more
efficient marketing efforts.

Extract, Transform, and Load
Most major applications are built using ETL products, from finance
and accounting applications to operations. ETL products have three
primary functions for integrating data sources into single, unified
datasets for consumption:

1. Extracting data from data sources within and outside of the
enterprise

2. Transforming the data to fit the particular needs of the target
store, which includes conducting joins, rollups, lookups, and
cleaning of the data

3. Loading the resulting transformed dataset into a target reposi‐
tory, such as a data warehouse for archiving and auditing, a
reporting tool for advanced analytics (e.g., business intelli‐
gence), or an operational database/flat file to act as reference
data

Master Data Management
MDM arrived shortly after ETL to create an authoritative, top-down
approach to data verification. A centralized dataset serves as a
“golden record,” holding the approved values for all records. It per‐
forms exacting checks to assure the central data set contains the
most up-to-date and accurate information. For critical business
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decision making, most systems depend on a consistent definition of
“master data,” which is information referring to core business opera‐
tional elements. The primary functions of master data management
include:

• Consolidating all master data records to create a comprehensive
understanding of each entity, such as an address or dollar figure

• Establishing survivorship, or selecting the most appropriate
attribute values for each record

• Cleansing the data by validating the accuracy of the values
• Ensuring compliance of the resulting single “good” record related

to each entity as it is added or modified

Clustering to Meet the Rising Data Tide
Enterprise data has changed dramatically in the last decade, creating
new difficulties for products that were built to handle mostly static
data from relatively few sources. These products have been extended
and overextended to adjust to modern enterprise data challenges,
but the workaround strategies and patches that have been developed
are no match for current expectations.

Today’s tools, like Hadoop and Spark, help organizations reduce the
cost of data processing and give companies the ability to host mas‐
sive and diverse datasets. With the growing popularity of Hadoop, a
significant number of organizations have been creating data lakes,
where they store data derived from structured and unstructured
data sources in its raw format.

Upper management and shareholders are challenging their compa‐
nies to become more competitive using this data. Businesses need to
integrate massive information silos—both archival and streaming—
and accommodate sources that change constantly in content and
structure. Further, every organizational change brings new demand
for data integration or transformation. The cost in time and effort to
make all of these sources analysis-ready is prohibitive.

There is a chasm between the data we can access thanks to Hadoop
and Spark and the ordered information we need to perform analysis.
While Hadoop, ETL, and MDM technologies (as well as many oth‐
ers) prove to be useful tools for storing and gaining insight from
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data, collectively they can’t resolve the problem of bringing massive
and diverse datasets to bear on time-sensitive decisions.

Embracing Data Variety with Data Unification
Data variety isn’t a problem; it is a natural and perpetual state. While
a single data format is the most effective starting point for analysis,
data comes in a broad spectrum of formats for good reason. Data
sets typically originate in their most useful formats, and imposing a
single format on data negatively impacts that original usefulness.

This is the central struggle for organizations looking to compete
through better use of data. The value of analysis is inextricably tied
to the amount and quality of data used, but data siloed throughout
the organization is inherently hard to reach and hard to use. The
prevailing strategy is to perform analysis with the data that is easiest
to reach and use, putting expediency over diligence in the interest of
using data before it becomes out of date. For example, a review of
suppliers may focus on the largest vendor contracts, focusing on
small changes that might make a meaningful impact, rather than
accounting for all vendors in a comprehensive analysis that returns
five times the savings.

Data unification represents a philosophical shift, allowing data to be
raw and organized at the same time. Without changing the source
data, data unification prepares the varying data sets for any purpose
through a combination of automation and human intelligence.

The process of unifying data requires three primary steps:

1. Catalog: Generate a central inventory of enterprise metadata. A
central, platform-neutral record of metadata, available to the
entire enterprise, provides visibility of what relevant data is
available. This enables data to be grouped by logical entities
(customers, partners, employees), making it easier for compa‐
nies to discover and uncover the data necessary to answer criti‐
cal business questions.

2. Connect: Make data across silos ready for comprehensive analy‐
sis at any time while resolving duplications, errors, and incon‐
sistencies among the source data’s attributes and records. Scala‐
ble data connection enables data to be applied to more kinds of
business problems. This includes matching multiple entities by
taking into account relationships between them.
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3. Publish: Deliver the prepared data to the tools used within the
enterprise to perform analysis—from a simple spreadsheet to
the latest visualization tools. This can include functionality that
allows users to set custom definitions and enrich data on the fly.
Being able to manipulate external data as easily as if it were their
own allows business analysts to use that data to resolve ambigu‐
ities, fill in gaps, enrich their data with additional columns and
fields, and more.

Data Unification Is Additive
Data unification has significant value on its own, but when added to
an IT environment that already includes strategies like ETL, MDM,
and data lakes, it turns those technologies into the best possible ver‐
sions of themselves. It creates an ideal data set for these technologies
to perform the functions for which they are intended.

Data Unification and Master Data Management
The increasing volume and frequency of change pertaining to data
sources poses a big threat to MDM speed and scalability. Given the
highly manual nature of traditional MDM operations, managing
more than a dozen data sources requires a large investment in time
and money. Consequently, it’s often very difficult to economically
justify scaling the operation to cover all data sources. Additionally,
the speed at which data sources are integrated is often contingent on
how quickly employees can work, which will be at an increasingly
unproductive rate as data increases in volume.

Further, MDM products are very deterministic and up-front in the
generation of matching rules. It requires manual effort to under‐
stand what constitutes potential matches, and then define appropri‐
ate rules for matching. For example, in matching addresses, there
could be thousands of rules that need to be written. This process
becomes increasingly difficult to manage as data sources become
greater in volume; as a result, there’s the risk that by the time new
rules (or rule changes) have been implemented, business require‐
ments will have changed.

Using data unification, MDM can include the long tail of data sour‐
ces as well as handle frequent updates to existing sources—reducing
the risk that the project requirements will have changed before the
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project is complete. Data unification, rather than replacing MDM,
works in unison with it as a system of reference, recommending new
“golden records” via matching capability and acting as a repository
for keys.

Data Unification and ETL
ETL is highly manual, slow, and not scalable to the number of sour‐
ces used in contemporary business analysis. Integrating data sources
using ETL requires a lot of up-front work to define requirements,
target schemas, and establish rules for matching entities and
attributes. After all of this work is complete, developers need to
manually apply these rules to match source data attributes to the tar‐
get schema, as well as to deduplicate or cluster entities that appear in
many variations across various sources.

Data unification’s probabilistic matching provides a far better engine
than ETL’s rules when it comes to matching records across all of
these sources. Data unification also works hand-in-hand with ETL
as a system of reference to suggest transformations at scale, particu‐
larly for joins and rollups. This results in a faster time-to-value and
more scalable operation.

Changing Infrastructure
Additionally, data unification solves the biggest challenges associ‐
ated with changing infrastructure—namely, unifying datasets in
Hadoop to connect and clean the data so that it’s ready for analytics.
Data unification creates integrated, clean datasets with unrivaled
speed and scalability. Because of the scale of business data today, it is
very expensive to move Hadoop-based data outside of the data lake.
Data unification can handle all of the large-scale processing within
the data lake, eliminating the need to replicate the entire data set.

Data unification delivers more than technical benefits. In unifying
enterprise data, enterprises can also unify their organizations. By
cataloging and connecting dark, disparate data into a unified view,
for example, organizations illuminate what data is available for ana‐
lysts, and who controls access to the data. This dramatically reduces
discovery and prep effort for business analysts and “gatekeeping”
time for IT.
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Probabilistic Approach to Data Unification
The probabilistic approach to data unification is reminiscent of
Google’s full-scale approach to web search and connection. This
approach draws from the best of machine and human learning to
find and connect hundreds or thousands of data sources (both visi‐
ble and dark), as opposed to the few that are most familiar and easi‐
est to reach with traditional technologies.

The first step in using a probabilistic approach is to catalog all meta‐
data available to the enterprise in a central, platform-neutral place
using both machine learning and advanced collaboration capabili‐
ties. The data unification platform automatically connects the vast
majority of sources while resolving duplications, errors, and incon‐
sistencies among source data. The next step is critical to the success
of a probabilistic approach—where algorithms can’t resolve connec‐
tions automatically, the system must call for expert human guidance.
It’s imperative that the system work with people in the organization
familiar with the data, to have them weigh in on mapping and
improving the quality and integrity of the data. While expert feed‐
back can be built into the system to improve the algorithms, it will
always play a role in this process. Using this approach, the data is
then provided to analysts in a ready-to-consume condition, elimi‐
nating the time and effort required for data preparation.
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