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Summary 

 

In this paper, we investigate the use of spectral 

decomposition and facies classification on time-lapse data 

related to a Brazilian pre-salt carbonate reservoir. Synthetic 

seismic data were generated through petro-elastic modeling 

(PEM), which is based on a representative geological 

model and flow simulator dynamic properties. Reservoir 

pressure and saturation distributions are used that 

corresponds to periods of time, in which, real time-lapse 

seismic data will be available. The spectral decomposition 

method used, is based on a modified matching pursuit 

algorithm. At this stage, we focus on the interpretation of 

the spectral decomposition, mainly on geometric effects. 

We conclude that the use of spectral decomposition on 4D 

seismic data enhances reservoir heterogeneities and 

correlates with water saturation changes. 

 

Introduction 

 

In order to better produce and develop the vast Brazilian 

pre-salt carbonate reservoirs, several techniques have been 

studied. Among them, the use of time-lapse seismic data to 

detect production induced fluid and pressure changes on 

carbonates. Having achieved success in monitoring 

offshore Albian carbonate reservoirs (Grochau et al., 2014), 

Petrobras decided to focus on Aptian pre-salt, stiffer 

carbonates. The recently completed node acquisition of an 

important pre-salt oil field is to serve as a base survey and 

monitor surveys are planned to be acquired starting in 

2017. For another giant oil field, the same acquisition 

geometry is planned to happen soon, followed by monitor 

surveys in the future. We forecast that the interpretation of 

4D seismic data (S4D) on these stiff pre-salt carbonates 

will not be trivial due to variety of effects, including not 

only pressure and saturation changes, but also rock-fluid 

interaction and perhaps, thermic as well. Consequently, in 

order to better interpret the eventual 4D anomalies, we 

intend to investigate the added value and limitations of 

applying spectral decomposition (SD) on 4D data. 

 

In the past, there were few attempts of using spectral 

decomposition on 4D seismic data. Previous works 

describe the application of frequency decomposition for 

S4D data. Zhao et al. (2006) applied SD to a 4D seismic 

data from the Norwegian North Sea, it is determined the 

lack of robustness of SD on 4D workflow in high 

frequencies for difference volumes, and the importance of 

modeling to correctly interpret results. Rojas and Davis 

(2009) applied SD on a multicomponent seismic data set in 

an onshore sandstone to identify faults and fractures. White 

et al. (2015) applied for CO2 monitoring. 

 

In this paper, we investigate how SD and facies 

classification can help time-lapse seismic interpretation for 

a typical pre-salt carbonate oil field, focusing on variations 

of pressure and fluid saturation changes. Synthetic seismic 

data were created using PEM and convolutional modeling.  

 

Pre-salt carbonate reservoir characteristics 

 

The field in this study is located in the Brazilian pre-salt 

province, which has important hydrocarbon volumes due to 

its thickness and areal extends (Figure 1). The top of 

reservoir is located approximately 5,000 meters below sea 

level and sealed by a thick salt layer. 

 

Pre-Salt Province
 

 

Figure 1:  Map of the Brazilian pre-salt province (top), Gaffney, 

Cline & Associates, 2010; and a typical vertical seismic section 
showing the main stratigraphic units (bottom). Azevedo, 2011. 
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4D Seismic Spectral Decomposition 

Methodology 

 

Spectral decomposition breaks the seismic trace into 

constituent frequencies, highlighting specific structures that 

are better represented in discrete frequencies rather than in 

full bandwidth, defining lateral and vertical borders of 

depositional packages and sequences (Paryka et al., 1999; 

Chopra, 2013; Castagna and Sun, 2006). One of the main 

characteristics extracted from spectral decomposition 

volumes is the correlation between bed thickness and 

frequency (Partyka et al., 1999; Khonde and Rasogi, 2013). 

Difference volumes (monitor-base) carry information on 

amplitude, frequency and structural changes between base 

and monitor surveys. It is expected that spectral 

decomposition of the difference volume allows detecting 

structural and amplitude alterations due to production. In 

real data, along with production induced changes, there 

may be present acquisition footprints, noise and time shifts. 

Those factors are not accounted in this study. 

 

Changes in individual frequencies between the base and 

monitor surveys may be related to absorption with 

changing saturation fluid (Chen et al, 2008; Castagna and 

Siegfried, 2003) or structural changes leading to 

constructive and destructive interferences. The latter is the 

focus of this study.  

 

1- Petroelastic Modeling 

 

Based on the known geometry and geological properties of 

the oil field under study, a flow simulation grid was 

created. For this dynamic flow simulator, elastic properties 

were forecasted, corresponding to the expected reservoir 

pressure and saturation distributions for the time of the base 

and monitor seismic data acquisitions. The changes in 

saturation and pressure are shown in Figure 2.  

 

 
Figure 2: Water saturation increase (left), and pore pressure 

changes (right) predicted for 2019 to 2022 period. 

 

Having static (i.e. porosity, dry rock incompressibility) and 

dynamic (i.e. saturation and pressure distribution) 

properties in each cell of the simulation grid, a PEM was 

performed to obtain impedances and reflection coefficients. 

A convolutional forward model and synthetic seismic data 

were created. Figure 3 shows the synthetic differences 

between base (B) and monitor (M) volumes generated 

using a wavelet extracted from real seismic data. 

 

 
Figure 3:  Synthetic amplitude difference generated using 

convolutional model with central frequency of 12 Hz. 
 

2- Frequency Characterization of Base and Monitor 

Volumes 

 

The base and monitor frequency spectrums show strong 

similarity in the reservoir interval: a 14 Hz dominant 

frequency and a bandwidth of 21 Hz (Figure 4). The largest 

differences between the base and monitor spectrums occur 

between 3 and 50 Hz. The difference of the base and 

monitor amplitude volumes is small and bimodal with peak 

at 10 and 29 Hz.  

 

 
Figure 4: Base and monitor synthetic amplitude volumes (left), 
their frequency spectrums (middle) and spectral difference (right).  
 

Another way to compare the frequency content between the 

base and monitor models is by computing the amplitude 

difference volume and then extracting its frequency 

spectrum. Figure 5 shows this approach and it can be seen 

that the difference amplitude volume has a dominant 

frequency of 14 Hz and bandwidth 25 Hz. Note that there is 

a relative increase in high frequencies related to the second 

peak, around 30Hz, seen on Figure 4 (M spectrum minus B 

spectrum). 
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4D Seismic Spectral Decomposition 

 
Figure 5: Base and monitor synthetic amplitude volumes (left), the 
amplitude difference (middle) and its frequency spectrum (right).  
 

3- Spectral Decomposition of the Amplitude Difference 

Volume 

 

To understand the effect of saturation and pressure changes 

using SD, two strategies were investigated:  

(i) frequency decomposition of the amplitude 

difference (M-B) volume; and  

(ii) the difference between discreet frequencies 

computed for each volume (B, M) (Figure 6). 

 

As the first approach provided visually better results, 

regarding 4D seismic anomalies detection, we will focus on 

that method.  

 
Figure 6 – Two strategies applied for this study: i) SD of the 

amplitude difference; and ii) SD of base and monitor, and then 

compute differences between low, mid and high discrete frequency 
amplitude volumes. 

 

Based on spectrum shapes observed in Figures 4 and 5, the 

amplitude difference volume was decomposed into 5 

discrete frequency amplitude volumes using 10, 15, 20, 30 

and 40 Hz Gabor wavelets. Several combinations of these 

frequencies were blended using a RGB color scheme. 

Figure 7 shows examples of the mentioned combinations. 

 

4- Facies Classification 

 

In order to deeper investigate SD potential for identifying 

production derived effects, a facies classification using a 

probability density function was performed. The aim is to 

understand if facies mapped in color blends can be used as 

a proxy for identify changes in petro-elastic properties. 

 

Firstly, the amplitude difference SD color blend was used 

to perform facies classification using a dominant color 

pattern (related to frequency) as a main parameter. 

Secondly, in order to understand the previous step potential 

in providing useful information, petro-elastic facies are 

classified according to the known ΔSw and ΔPp 

relationship. This control information of known saturation 

and pressure changes will further be called as “reference”. 

Thirdly, a comparison of the first and second steps is done. 

 

Results 

 

The results presented account for reflectivity interferences 

generated by both pressure and saturation variations. 

Seismic dispersion and attenuation are not considered in 

this stage, once convolutional modeling was used. 

 

Reservoir internal heterogeneities imprinted by ΔSw and 

ΔPp, due to reflection interferences, are detected and 

enhanced by the color blends. Tuning effects from the new 

oil water contact become evident and are shown by the 

brighter colors (Figure 7, yellow arrows). Applying RGB 

blends of amplitude differences, SD volumes highlight 

frequency related changes between the base and monitor 

surveys, mainly related to structural aspects. Figure 7C 

clearly shows separations between low and high frequency 

events (red and blue arrows, respectively). 

 

 
Figure 7 – Vertical sections comparing color blends of discrete 
frequency volumes. Note that internal heterogeneities are better 

imaged in the 20-30-40Hz volume (C). 

Figure 7 shows boosted signal on the reservoir horizontal 

limits due to layers tuning. These low frequencies are 

displayed with white/brownish in 10-15-20 Hz and 10-20-

30 Hz (A and B) and by red in 20-30-40 Hz (C). 

 

Internal reservoir layer thickness variation becomes more 

defined by this particular color assembly (RGB). These 

variations are mainly generated by constructive and 

destructive interferences of the reflectors and side lobes, as 

a result of dynamic properties changes, and thus generating 

higher frequency images. This statement is related to the 

relative higher frequency content of the difference volume 
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4D Seismic Spectral Decomposition 

spectrum compared to the base and monitor (Figures 4 and 

5). 

 

In terms of 4D monitoring, it was expected to detect 

changes in water saturation rather than pressure changes in 

the stiff carbonates. It can be seen in Figure 8, it is possible 

to retrieve, using SD, the morphology of the 4D anomaly, 

which matches the known (“reference”) water saturation 

change. 

 

Spectral decomposed volumes could not improve pressure 

changes detection in comparison with amplitude data. Low 

amplitude differences due to pressure changes from the 

reference synthetic data are not boosted by SD. 

 

 
Figure 8 – Vertical section of (A) water saturation change; (B) SD; 

and (C) pressure change. 
 

Facies classification was then applied on SD data in 

another attempt to retrieve the “reference” production 

derived effects. Despite the lack of vertical resolution due 

to a low dominant frequency, water increase is well 

correlated with known water changes. Figure 9 compares 

the “reference” blue facies class (B) with SD (C) and facies 

classification on the SD data (D). 

 

(A)

(C)

(B)

(D)

 
 
Figure 9 – (A) Synthetic amplitudes difference; (B) “reference” 

facies classification performed on ΔSw and ΔPp volumes: Sw 

increase (blue), Pp increase (red) and Pp decrease (green); (C) 
color blended SD of the amplitudes difference; (D) facies 

classification performed on the RGB color blend. 

 

Facies corresponding to pressures changes are visible (red 

and green), however their correlation is weaker with the 

“reference” petro-elastic model (Figure 9B). This can be 

explained by the inability in separating between positive 

and negative values during computation for RGB blending. 
 

Conclusions 

 

Monitoring production derived effects on stiff carbonates is 

a challenging task, so new approaches of using seismic 

time-lapse (S4D) monitoring are needed. In this paper, we 

investigate spectral decomposition of 4D synthetic seismic 

data generated by petro-elastic modeling using typical 

Brazilian offshore pre-salt carbonate reservoir properties. 

The model used to create synthetic data honored the 

expected in-situ reservoir saturation and pressure 

distribution during base and monitor surveys. Known static 

and dynamic properties are used as a reference to evaluate 

the applicability of SD, and facies classification of SD data, 

for improving interpretation. 

 

The main results of applying SD on the synthetic data are: 

(i) reservoir internal heterogeneities, imprinted by dynamic 

changes due to reflection interferences are better detected; 

(ii) internal reservoir layers thickness variation becomes 

more defined by RGB colors assembly; (iii) SD data is 

morphologically correlated with water saturation increase; 

and (iv) SD could not improve pressure detection in 

comparison with amplitude data.  

 

The main results of applying facies classification on the SD 

data are: (i) the obtained classes related to water increase 

are well correlated with known “reference” water changes 

and (ii) classes related to pressure changes have lower 

resemblance with the known pressure variation. 

 

Next step will be to investigate SD on synthetic data 

created by point spread function in order to account for 

dispersion and attenuation. Furthermore, once real seismic 

data become available, we will use the SD of the base and 

monitor surveys, and then compute differences between 

low, mid and high frequency amplitude volumes to 

discriminate hardening and softening effects. 
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