

Current State of Sources, Exposure and Regulations

Meet Our Panelist

John Baker

Mr. Baker has completed several feasibility studies to evaluate the most cost effective technologies to treat PFAS (and other parameters that may interfere with PFAS treatment) in complex wastewaters including landfill leachate, wastewater and contaminated surface water to local limits. He has recently worked with the Michigan Waste and Recycling Association (MWRA) to peer review the largest study on PFAS in landfill leachates in North America that was prepared for the Michigan environmental agencies. This also involved evaluating publicly available data for PFAS in at POTWs and biosolids.

PFAS Experience

50Y

Introduction to Per-and Polyfluoroalkyl Substances (**PFAS**)

- Description of PFAS Compounds
- Environmental Agency Concerns
- Environmental Impacts
- Regulatory Responses
- PFAS Sources
- Sampling and Analyses Challenges
- Remediation and Treatment Options

What are **PFAS** Compounds?

- Per-and polyfluoroalkyl substances are collectively referred to as **PFAS** and are terms used to describe a large group of organic fluorinated chemicals
- PFAS are anthropogenic chemicals and do not occur naturally in the environment
- PFAS are a group of chemicals that are comprised of a carbon backbone containing many carbon-fluorine (C-F) bonds
- The C-F bond is the shortest and strongest in nature
- Due to their unique chemical structure, PFAS are very stable in the environment and are relatively resistant to biodegradation
- The 2 most studied PFAS are
 - Perfluorooctanoic Acid (PFOA)
 - Perfluorooctane Sulfonate (PFOS)
- PFAS family = thousands of diverse compounds
- 24 PFAS Compounds identified by MDEQ

Chemical and Physical Properties

- Properties of PFAS range and are not well understood
- PFASs are commercially useful because they repel both oil and water
- The fluorinated carbon tail is both lipophobic/oleophobic (repelled by fats and oils) and hydrophobic (repelled by water)
- The functional group head can vary but is often hydrophilic (attracted to water)
- Because of these properties, they are often used as surfactants and stain preventers

Federal and State Environmental Agency Concerns

- Known or suspected toxicity, especially for PFOS and PFOA
- PFOA cancer risk Kidney & testicular (humans) & liver (animals)
- PFOS cancer risk—Liver tumors in animals
- PFOA and PFOS exposures in humans over certain levels may result in adverse health effects, including changes in cholesterol, low birth weight, liver effects and thyroid effects
- Bioaccumulation
- Some have very long half lives (several years), especially in human

Human Exposure

- PFAS can be inhaled, ingested and/or absorbed via skin
- PFAS are found virtually everywhere in the world
- Blood serum of >99% of Americans
- Toxicological studies have linked PFAS in serum to adverse health affects

PFAS Persistence

- Persistent due to C-F Bonds
- Half-life of PFOA in water is 92 years
- Half-life of PFOS in water is 41 years
- First manufactured in 1940s
- Phase out in USA
 - PFOA (2015) from 8 manufacturers
 - PFOS (2002) from its only manufacturer

States with PFAS detected in 94 Public Utilities

U.S. Water Contaminated by PFCs*

*source http://news10.com/2016/06/02/pfoa-by-the-numbers-a-widespread-contamination-and-how-it-affects-your-health/

USEPA & State Standards/Advisory Limits Regulatory responses vary...

Jurisdiction		PFOA (ppt)	PFOS (ppt)	Notes
Advisory or Regulatory Standard				
U. S. EPA, 2016	Advisory	70		for combined
New Hampshire, 2016, AGWQ	Standard		70	for combined
Vermont, 2016	Standard	20	20	
Australia, January 2017 interim	Advisory	5,000 500 (includng		
drinking water guidance			PFHxS)	
Australia, April 2017 final drinking	Advisory	70	560 (including	
water guidance			PFHxS)	
Canada, proposed June 2016	Standard	200	600	
Michigan, non-cancer values, 2014		420	11	
Minnesota drinking water (as of 2016)	Standard	300	300	PFBA & PFBS = 7000
(as of 2017)	Advisory	35	27	Adopted 5/2017
New Jersey preliminary health-based	Advisory	40		
guidance				
West Virginia (as of 2016)	Standard	400 or 500		
Maine CDC, 2014, health-based MEG		100		
Maine residential groundwater RAG	Advisory	560	130	
California Water Resources Board				Considering
				Prop. 65 listing

...but the difference is that we're talking ng/L drinking

PFAS Sources

Production and Manufacturing Facilities

• Textiles and Leather

Factory and consumer applied coating to repel water, oil, and stains

- Paper products Surface coatings to repel grease and moisture
- Metal Plating and Etching Corrosion prevention, wear reduction, surfactant, fume suppressant
- Wire Manufacturing Coating and insulation
- Pesticides

Cleaning products, polishes, photo processing

Industrial Uses of PFAS

Aerospace

Apparel

Building and Construction

Chemicals and Pharmaceuticals

Electronics

Oil & Gas

Energy

Healthcare and Hospitals

Aqueous Film Forming Foam

Semiconductors

PFAS Production in USA

If PFAS Production in USA has been discontinued, where are the new sources coming from?

PFAS Cycle

Potential PFAS Exposure Pathways

Figure 3. Environmental transport of PFAS in the context of pathways to human exposure. Figure adapted from (Ahrens and Bundschuh 2014).

PFOA & PFOS Landfill Leachate by Global Region

Effluent PFAS in Higher Concentrations than Influence in Most POTWs in MI

Figure 5-4 Influent vs Effluent PFOA and PFOS Concentrations at POTWs

Potential PFAS Re-Opener

Extent of Non-PFAS Impact

Extent of PFAS Impact

PFAS Site

Closed Landfill PFAS in Groundwater/Surface Water

Paper Sludge Compost Facility

Groundwater Impacts Boisolids Monofill & Land Application

Monitoring well testing at biosolids monofill

- Monofill used in 1980s. Since ~1996, all biosolids from WWTP (11.5 MGD) have been land applied, some on farm field shown.
- Likely a worst-case scenario?

PFAS Vertical Profile from Surface Application Biosolids

Some PFAS leach in soil

Sepulvado et al; Environ. Sci. Technol. 2011, 45, 8106-8112

Land Application of Biosolids PFAS Studies

Conclusions of Gottschall et al. 2017

- Perfluorinated chemicals detected in both groundwater and tile discharge after a single large biosolids application.
- Chemicals detected for months after the application.
- The contributions of leaching through soil matrix, and preferential flow through macropores are unknown.

Known Treatment Technologies for PFAS Compounds

neffective	Partially effective	Effective
Coagulation Sedimentation Aeration Microfiltration Ultrafiltration Ozone Chlorine Ultraviolet Photolysis Advanced Oxidation Process Municipal Treatment	 Anion Exchange Granular Activated Carbon (GAC) 	• Reverse Osmosis

Emerging Treatment Technologies

- Electro Coagulation
- Electro-chemical coagulation
- New membrane technologies
- Others in development

Just when you think you understand PFAS

Lab Analysis Limitations

- EPA Method 537: for Drinking Water Only!
 - 14 Analytes, all in OSRTI List
 - PFOS, PFOA, N-EtFOSAA, N-MeFOSAA, PFBS, PFDA, PFDoA, PFHpA, PFHxS, PFHxA, PFNA, PFTreA, PFTriA, PFUnA.
 - 3 Surrogates
 - MPFHxA, MPFDA, MN-EtFOSAA
 - 3 Internal Standards
 - ¹³C-PFOA, ¹³C-PFOS, d₃-N-MeFOSAA
- Modified 537 Methods: varied, uncertain QC
- ASTM D7979 and D7968 (2017 versions)
 - Heavily single lab validated on multiple matrices
 - 31 Target Analytes and 14 Surrogates
 - Ten Additional Target Analytes added to Appendix with all MRM transitions, Tune parameters, recoveries in matrices ...
 - Five Additional Surrogates (Isotopes) added to Appendix with all MRM transitions, Tune parameters, recoveries in matrices...
 - NEBRA encouraging states to encourage U. S. EPA to approve ASTM methods

<u>See recprded NEBRA webinar</u>: Analyzing PFAS in Wastewater, Solids & Soils, at <u>https://www.nebiosolids.org</u>

PFAS Analytical Challenges

Pace Analy	rtical®	PFAS – Analytical Challenges					
	EPA 537	EPA 537 v 1.1	EPA 537M	ISO 25101	ASTM D7979-16	DoD QSM 5.1	DoD QSM 5.1
Matrix	Drinking water	Drinking water	All Matrices	Drinking, ground, surface water	Water & wastewater	Matrices other than drinking water	Soil & sediment
Analytes	6	14	24+	2 (PFOA, PFOS)	21	24	24
Sample size	250 mL	250 mL	250 mL	~ 500 mL	5 mL	As received	2 g
Holding time	14/28	14/28	14/28	14	28	14/28	14/28
Surrogate	3	3	3	-	9	19	19
Extraction	SPE	SPE	SPE	SPE	Liquid/liquid filtration	SPE, ENVI- Carb cleanup	Sonicate and shake/SPE
RLs (ng/L)	3 - 14	2 -14	2 -14	2 - 10	10-300	-	-
Quantification	Internal Std.	Internal Std.	Internal Std.	Internal Std.	External Std.	Isotope dilution or internal std.	Isotope dilution or internal s td.
Branch isomer	Yes	Yes	Yes	No	No	Yes	Yes

Sampling Guidelines

Best Practices	What To Avoid			
Sample Container Items				
HDPE or Polypropylene (PP)	No glass or LDPE containers			
Lined or unlined HDPE or	No Teflon™ lined caps			
Field Equipment				
High density polyethylene(HDPE) or polypropylene	No Teflon [™] containing materials			
Silicon tubing	No Teflon™ tubing			
Loose paper (non-water resistant)	No waterproof field books			
Aluminum field clipboards or Masonite	No plastic clipboards, binders, or spiral notebooks			
Sharpies, pens	No Post-it Notes			
Regular Ice	No chemical (blue) ice packs			

Sampling Guidelines (continued)

Best Practices	What To Avoid			
Field Clothing and Personal Protection Equipment				
Well-launched clothing, defined as clothing that has been washed six or more times after purchase, made of synthetic or natural fibers (preferable cotton)	No new clothing or water resistant, waterproof, or stain-treated clothing containing Gore-Tek™			
No fabric softener	No clothing laundered using fabric softeners			
Cotton clothing	No Tyvek®			
Boots made with polyurethane and polyvinyl chloride (PVC)	No boots containing Gore-Tek™			
Sunscreens – all organic natural sunscreen, that are "free" or "natural". Check the label, insect repellants –various natural one, DEET, check the label	No cosmetics, moisturizers, hand creams, or other related products as part c personal cleaning/showering routine on the morning of sampling			
Field Equipment Decontamination Items				
Alconox [®] and/or Liquinox [®]	No Decon 90			
Food Items				
Bottled water and hydration drinks (i.e., Gatorade® and Powerade®) to be brought and consumed only in the staging area	No food and drink, with exceptions hydrating items listed on the left			

Pace Analytical®

PFAS – Sample Containers

Matrix	Container	Preservative	Method	Notes
Drinking Water	2 x 250 ml HPDE or PP	Trizma	EPA Method 537 or EPA Method 537M	Trizma is a buffer and removes free chlorine.
Groundwater, surface water, waters	2 x 250 ml HPDE or PP	none	EPA Method 537M	
Effluent	2 x 250 ml HPDE or PP	Trizma	EPA Method 537M	Finished samples may require Trizma.
Soil, sediment, bio-solids	1 x 250 ml (or 4 ounce) HPDE or PP	none	EPA Method 537M	
Sample extraction $= 14$ days	Sample analysis = 28 days			

Learn More

References

Michigan Waste & Recycling Association Landfill Leachate Summary and Technical Reports North East Biosolids & Residuals Association Interstate Technology & Research Council PFAS Fact Sheets Test America and Pace Laboratories American Water Works AECOM Great Lakes Water Authority

Get in Touch

WEB: Ø www.bbjgroup.com **PHONE:** Q 800 875 1756 EMAIL: \swarrow info@bbjgroup.com **DOWNLOAD:** L. Webinar Recording: bbjgroup.com/resources

