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Course Outline

A Brief Introduction to Bayesian Modeling Using Stan

Objective
Provide a brief introduction to Bayesian modeling and the practical use
of Stan for PKPD applications

Primary intended audience: PKPD scientists
Background assumed

PKPD modeling
Some familiarity and experience with nonlinear regression, mixed
effects modeling and R (or S-PLUS)
Basic understanding of Bayesian principles.
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Course Outline

A Brief Introduction to Bayesian Modeling Using Stan

This brief online workshop is essentially a set of excerpts from the
Metrum 1 or 2 day workshop entitled Getting Started with
Bayesian PKPD Modeling Using Stan.
I will focus on how to construct Stan models and analyze data with
them.
I will skip material on the fundamentals of Bayesian inference, data
analysis and computation. For that I encourage you to read the
first 7 chapters and chapters 10–12 of Bayesian Data Analysis [1].
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Course Outline

A Brief Introduction to Bayesian Modeling Using Stan

Introduction to Bayesian statistical principles and methods
Bayes Rule
Bayesian modeling & inference process

Computation for Bayesian modeling
Key challenge of Bayesian modeling and inference: sampling from
high-dimensional probability distributions
General computational approach: posterior simulation
Brief intro to Markov chain Monte Carlo simulation

Stan basics
What is it?
How do I get it?
How do I run it?

Using rstan

Stan demo: Linear regression
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Course Outline

A Brief Introduction to Bayesian Modeling Using Stan

Hands-on example 1: Simple nonlinear regression
Assessing convergence
Programming hierarchical models (aka mixed effect or population
models)
Prior distributions
Truncated distributions
Hands-on example 2: Nonlinear mixed effects
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Course Outline

A Brief Introduction to Bayesian Modeling Using Stan

User-defined functions
Programming for pharmacometricians:

PK models
Dosing and observation event schedules

Hands-on example 3: Population PK
Dealing with censored data in Stan, e.g., BQL data
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Course Outline

Getting set up for the workshop examples

Download zip file containing workshop materials from the site
where you launched this video.
Unzip downloaded file.

The resulting directory contains a directory tree with the following
directories: data, deliv, doc, model and script.

If necessary install R.
Download R from a CRAN site, e.g.,
https://cran.r-project.org/.
Install both R Base and Rtools.

Open the script directory.
Open the pkgSetup.R file using your favorite R environment.
Set the working directory to the script directory.
Run the pkgSetup.R script.

This will download and install the R packages used in the examples
plus any dependencies. Be patient; this takes a while.
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Introduction to Bayesian statistical principles and methods Core notions

Introduction to Bayesian statistical principles and
methods

Bayesian principles and methods provide a coherent framework
for:

Quantifying uncertainty,
Making inferences in the presence of that uncertainty.

It is also the basis for formal approaches to incremental model
building, parameter estimation and other statistical inference as
knowledge and data are accumulated.

The two core notions that distinguish Bayesian analysis are:
Unknown quantities are viewed as random variables, i.e., they are
described in terms of probability distributions.
Bayes rule provides a formal mechanism for combining prior
knowledge and new data.
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Introduction to Bayesian statistical principles and methods Bayesian approach to statistical inference

Bayesian approach to statistical inference

Model parameters and predictions described in terms of
probability distributions representing uncertainty
Results reflect the combined evidence of data and prior
knowledge or belief
Focuses on estimation and inferences related to probabilities of
unknown quantities: parameters, future data, hypotheses.
Inferences are described directly in terms of probabilities:
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Introduction to Bayesian statistical principles and methods Bayesian inference

Bayesian inference
Bayes Rule

Bayes Rule is the basis for inference about model parameters (θ) given
data (y ) and prior knowledge about model parameters (p (θ)):

p (θ|y) =
p (θ) p (y |θ)

p (y)
=

p (θ) p (y |θ)∫
p (θ) p (y |θ) dθ

∝ p (θ) p (y |θ)

The p’s are probabilities or probability densities of the specified
random variables.
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Introduction to Bayesian statistical principles and methods Bayesian inference

Bayesian modeling/inference process

1 Assess prior distribution p (θ)

θ viewed as random variables
Subjective
Ideally base on all available evidence/knowledge (or belief)
Or deliberately select a non-informative prior (e.g., reference, vague
or improper prior)

2 Construct a model for the data p (y |θ), also known as the
likelihood function when viewed as a function of θ.

3 Calculate posterior distribution p (θ|y).
Use for inferences regarding parameter values

4 Calculate posterior predictive distribution p (ynew|y).
Use for inferences regarding future observations

p (ynew |y) =

∫
p (ynew |θ) p (θ|y) dθ
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Computation for Bayesian modeling The bad news

So what’s the bad news?

You’ve a selected suitable distributions for p (θ) and p (y |θ).
θ is a vector of 6 parameters;
y is a vector of 200 observations.

You would like to estimate the expected value of a function of θ,
i.e., E (f (θ) |y).
You know that p (θ|y) ∝ p (y |θ) p (θ) so

E (f (θ) |y) =
∫
θ1

∫
θ2

∫
θ3

∫
θ4

∫
θ5

∫
θ6

f (θ) p (θ|y) dθ =

∫
θ1

∫
θ2

∫
θ3

∫
θ4

∫
θ5

∫
θ6

f (θ) p (y |θ) p (θ) dθ∫
θ1

∫
θ2

∫
θ3

∫
θ4

∫
θ5

∫
θ6

p (y |θ) p (θ) dθ

Hmmmm. How do you do that?
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Computation for Bayesian modeling The bad news

So what’s the bad news?

If you’re lucky those integrals have known analytic solutions, but
that is rarely true for PK/PD modeling applications.
For integrals in fewer dimensions, a numerical quadrature method
might be practical. 6 dimensions is pushing quadrature to its limits.
Now imagine the computational requirements for hierarchical
models, e.g., population PK models, with individual-specific
parameters in the hundreds!!
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Computation for Bayesian modeling Posterior simulation

But there’s hope: posterior simulation

What if you could simulate samples of θ from the joint posterior
distribution?
Then you could estimate E (f (θ) |y) by the arithmetic mean:

E (f (θ) |y) ≈ 1
n

n∑
i=1

f (θi)

More generally, you could characterize the properties of any
marginal posterior distribution of a model parameter or function of
model parameters, e.g., moments, quantiles, ...
But how do you simulate samples from a high dimensional joint
posterior distribution?
Markov chain Monte Carlo (MCMC) simulation via Stan is the
approach we will explore today.
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Computation for Bayesian modeling Posterior simulation

Inferences from posterior simulations

Posterior simulation yields vectors of parameters and/or
predictions from a joint posterior distribution
Marginal distributions

To describe the posterior distribution of any scalar function of the
parameters apply the function to each simulated vector. The
empirical distribution of those values approximates the posterior
distribution.
The marginal distribution of any single parameter is just a special
case of that approach.

Inferences are usually based on moments, probabilities or
percentiles from marginal posterior distributions. They are readily
estimated from the corresponding sample statistics for the
simulated values.
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

Tools for Bayesian modeling & inference

There remains the challenge of simulating from high dimensional
posterior distributions.
Markov chain Monte Carlo (MCMC) simulation has become the
primary method.

Simulation methods for performing high dimensional simulation
required for Bayesian modeling.
Simulate random variables from the posterior distributions of
interest, e.g., means and variances of the population distributions of
PK/PD parameters.
Inferences follow directly from the distributions of simulated
parameter values

Point estimates from mean, median or mode.
Posterior intervals from percentiles, e.g., 95% interval from the 2.5
and 97.5 percentiles.
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

Markov Chain Monte Carlo (MCMC) simulation

Involves random draws from approximate distributions and then
correcting those draws to better approximate the joint posterior.
The samples are drawn sequentially so that each draw depends
on the previous one, thus forming a Markov chain.
Eventually the Markov chain converges (in distribution) to a
stationary distribution that is the joint posterior distribution.
Algorithms for MCMC include:

Metropolis-Hastings algorithm
Gibbs sampling
Hamiltonian Monte Carlo (HMC) simulation

MCMC samples are serially correlated:
Inferences based on MCMC require more samples than would be
required for independent samples

Practical consequences:
Use only samples drawn after convergence is achieved, i.e.,
discard samples from a warmup phase.
Draw more samples than you would for independent random draws.
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

Gibbs sampling

In most cases a convergent Markov chain may be constructed by
progressively sampling from the univariate full conditional
distributions:

θi
1 ∼ p

(
θ1|θi−1

2 , θi−1
3 , . . . , θi−1

n , y
)

θi
2 ∼ p

(
θ2|θi

1, θ
i−1
3 , . . . , θi−1

n , y
)

...
θi

n ∼ p
(
θn|θi

1, θ
i
2, . . . , θ

i
n−1, y

)

This reduces the multivariate posterior sampling problem to a
sequence of more manageable univariate sampling problems.
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

Metropolis-Hasting algorithm

The Metropolis-Hastings is a general purpose multivariate MCMC
algorithm.
It requires selection of a conditional proposal density q (y |x) that
is easy to sample from.
To generate x (t+1) ∼ f given a previous value x (t):

1: Generate yt ∼ q
(
y |x (t)).

2: x (t+1) =

{
yt , with probability ρ

(
x (t), yt

)
x (t), with probability 1− ρ

(
x (t), yt

)
where ρ (x , y) = min

{
f (y)

f (x)

q(x |y)

q(y |x)
,1
}
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

Hamiltonian Monte Carlo (HMC) simulation
Physical analogy to motivate HMC

In classical mechanics the Hamiltonian equations describe the
evolution of a system over time.
The state of the system is described in terms of kinetic energy as
a function of momentum (mass × velocity) and potential energy
as a function of position.
For the analogy equate the model parameters θ to position and
equate a set of auxiliary parameters ρ to momentum.
Now define a Hamiltonian in terms of the joint posterior
distribution of θ and ρ:

H(θ, ρ) = − log (p (θ, ρ|y)) = − log (p (θ|y) p (ρ|θ, y))

= − log (p (θ|y))− log (p (ρ|θ, y))

= V (θ) + T (ρ|θ)

V (θ) = −log (p (θ|y)) = potential energy
T (ρ|θ) = −log (p (ρ|θ, y)) = kinetic energy
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

Hamiltonian Monte Carlo (HMC) simulation

θ is what we really care about.
ρ allows the use of Hamiltonian mechanics to more efficiently
move through the relevant parts of the parameter space.
Usually the distribution of ρ is chosen to be independent of θ, e.g.,
p(ρ|θ) = p(ρ) = N (0,Σ).
Suppose we place a frictionless particle on the potential energy
surface (−log (p (θ|y))) at some position θt−1.

We give it a shove that imparts a momentum ρt−1 to that particle at
time t − 1.
The particle moves over that surface according to Hamiltonian
dynamics.
Now stop the particle at time t and measure its position θt .
Now randomly sample a new momentum from p(ρ) and give the
particle another shove, and so on...
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

Hamiltonian Monte Carlo (HMC) simulation

Though the initial momentum at each step is random, the
subsequent path will favor regions of lower potential energy
(higher probability density).
The set of sampled positions are distributed according to the
target posterior density.
In practice the Hamiltonian equations are solved numerically. As a
result some error is introduced in the estimated path.
A Metropolis step is used to assure that the position samples
converge in distribution to the target distribution.

c©2017 Brief Intro to Stan Oniine Tutorial May 2017 24 / 111



Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

The HMC algorithm

Repeat the following steps:
1 Sample ρt−1 ∼ N (0,Σ)

2 Simultaneously update θ and ρ by numerically solving the
Hamiltonian equations using the leapfrog method to generate a
proposal θ∗ for θt .

3 Apply a Metropolis step to decide whether to accept or reject the
proposal θ∗ as θt .
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

The leapfrog method

Using the starting values θt−1 and ρt−1 the leapfrog algorithm
alternates half-step updates of ρ with full step updates of θ:

ρ← ρ− ε

2
∂V
∂θ

= ρ+
ε

2
d log (p (θ|Y ))

dθ
θ ← θ + εΣρ

ρ← ρ− ε

2
∂V
∂θ

= ρ+
ε

2
d log (p (θ|Y ))

dθ

For each HMC iteration repeat this L times to yield the proposal values
θ∗ and ρ∗.
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

The Metropolis step

Compute the ratio:

r = exp
(

H
(
θt−1, ρt−1

)
− H (θ∗, ρ∗)

)
=

p (θ∗|y) p (ρ∗)

p (θt−1|y) p (ρt−1)

Accept/reject step:

θt =

{
θ∗, with probability min (r ,1)
θt−1, otherwise

Since ρ is sampled independently of θ and previous values of ρ,
we just discard ρ∗ and sample a new value for the next HMC
iteration.
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

HMC algorithm parameters

Parameters that must be set: discretization time ε, number of leapfrog
steps L and mass matrix Σ−1.

Sampling efficiency is very sensitive to those parameters:
ε too large→ too many proposals rejected
ε too small→ long simulation times
L too large→ too much work for each iteration
L too small→ devolves to a random walk
If Σ−1 is poorly tuned to the problem, ε needs to be decreased
and L increased to maintain precision and efficiency.

Stan automatically optimizes those parameters using the NUTS (no
U-turn sampling) algorithm [19].
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

HMC performance

from RM Neal. MCMC Using Hamiltonian Dynamics (2011) [20]
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

HMC performance

from MD Hoffman and A Gelman. The no-U-turn sampler: Adaptively setting path lengths in

Hamiltonian Monte Carlo (2014) [19]
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Computation for Bayesian modeling Markov chain Monte Carlo (MCMC) simulation

HMC issues/limitations

Requires calculation of the gradient d log(p(θ|Y ))
dθ

Suitable for sampling of continuous parameters only
Cannot sample discrete parameters
Discrete data is OK as long as the likelihood depends only on
continuous parameters.
Models with discrete parameters, e.g., finite mixture models, can
often be implemented by marginalizing out the discrete parameters.
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Stan basics What is it?

Stan: What is it?

Stan (http://mc-stan.org/) is a general purpose Bayesian modeling
package [21]

General model specification language
Primarily uses a Hamiltonian Monte Carlo (HMC) sampler
(standard HMC or NUTS (no U-turn sampler)). Other methods
include:

Optimization for estimation of posterior modes.
Variational inference for approximate Bayesian inference.

Developed by a team headed by Andrew Gelman of Columbia
University
C++ program available with several interfaces: rstan, PyStan,
CmdStan, MatlabStan, Stan.jl, StataStan, ShinyStan
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Stan basics What is it?

Stan: Why is it called that?

Stanislaw Ulam, co-inventor of
Monte Carlo methods, holding an
analog computer known as the
FERMIAC that performed a
mechanical simulation of random
diffusion of neutrons
(http://fas.org/sgp/othergov/
doe/lanl/pubs/00326866.pdf).
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Stan basics How do I get it?

Stan: How do I get it?

Most Stan interfaces may be downloaded from the Stan website
(http://mc-stan.org/).
rstan [22] is available on CRAN (https://cran.r-project.org/)
Documentation

Stan: https://github.com/stan-dev/stan/releases/download/
v2.15.0/stan-reference-2.15.0.pdf

rstan: https://cran.r-project.org/web/packages/rstan/
vignettes/rstan.html

c©2017 Brief Intro to Stan Oniine Tutorial May 2017 34 / 111

http://fas.org/sgp/othergov/doe/lanl/pubs/00326866.pdf
http://fas.org/sgp/othergov/doe/lanl/pubs/00326866.pdf
http://mc-stan.org/
https://cran.r-project.org/
https://github.com/stan-dev/stan/releases/download/v2.15.0/stan-reference-2.15.0.pdf
https://github.com/stan-dev/stan/releases/download/v2.15.0/stan-reference-2.15.0.pdf
https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html
https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html


Stan basics How do I run it?

Stan demo: Linear regression

Linear model with weakly informative prior distributions for slope and
intercept:

yi ∼ N (ŷi , σ)

ŷi = a + bxi

Prior distributions:

a ∼ N (0,100)

b ∼ N (0,100)

σ ∼ Cauchy (0,2)

Data (R format):
x = c(1,2,3,4,5,6,7,8,9,10)
y = c(5.19,6.56,9.19,8.09,7.6,7.08,6.74,9.3,8.98,11.5)
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Stan basics How do I run it?

Stan model specification language

Very flexible model specification language
Imperative language: statements executed in the order in which
they are written.
Computational control structures, e.g., if-then-else, for and while
loops
Large collection of:

Operators
Built-in functions
Probability distributions

User-defined functions
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Stan basics How do I run it?

Stan program blocks

The essential program blocks

data{

# Declare data: variables that remain fixed.

}

parameters{

# Declare parameters: random variables.

}

model{

# Model calculations.

}
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Stan basics How do I run it?

data{

real x[10];

real y[10];

}

parameters{

real a;

real b;

real<lower=0> sigma;

}

model{

# Model calculations.

}

Declarations
All variables must be
declared
Primitive data types

real
integer (int)

Compound data types
array (real[] or int[])
vector
row vector
matrix

Variables may be bounded
Required for parameters
with bounded priors.
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Stan basics How do I run it?

model{

real ymean[10];

a ∼ normal(0, 100);

b ∼ normal(0, 100);

sigma ∼ cauchy(0, 2);

for(i in 1:10){

ymean[i] = a + b * x[i];

y[i] ∼ normal(ymean[i],

sigma);

}

}

Code the model and
additional declarations in the
model block

Syntax similar to C, R or
BUGS
= for assignment
statements
∼ for sampling statements

Normal parameters are
mean and standard
deviation.

Variables declared in the
model block may not be
monitored.
Loop indices do not have
to be declared.
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Stan basics How do I run it?

model{

real ymean[10];

a ∼ normal(0, 100);

b ∼ normal(0, 100);

sigma ∼ cauchy(0, 2);

for(i in 1:10){

ymean[i] = a + b * x[i];

y[i] ∼ normal(ymean[i], sigma);

ypred[i] ∼ normal(ymean[i], sigma);

}

}

Additional code to generate
predictions for model
checking

Sampling statement used
to generate samples from
the posterior predictive
distributions
ypred is declared in
parameters block.
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Stan basics How do I run it?

Using rstan

rstan is an R package available from CRAN sites, e.g.,
https://cran.r-project.org/

Contains several R functions for:
Translating Stan models to C++,
Compiling the resulting C++ code,
Analyzing data using the Stan model,
Analyzing, summarizing and plotting the resulting MCMC samples.

We will focus on only a few of those functions—particularly stan().
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Stan basics How do I run it?

library(rstan)

data = list(

x = c(1,2,3,4,5,6,7,8,9,10),

y = c(5.19,6.56,9.19,8.09,7.6,

7.08,6.74,9.3,8.98,11.5)

)

init = function() list(

a = rnorm(1, 6, 3),

b = rnorm(1, 0.5, 0.5),

sigma = exp(rnorm(1,log(1.5), 1)))

fit <- stan(file = file.path(dirname(

getwd()), "model", "linear1.stan

"),

data = data,

pars = c("a","b","sigma"),

iter = 2000,

init = init)

Minimal R code for the linear
model example

Data format is an R list
Named list of scalars,
vectors, matrices or arrays
Names and data types
must be consistent with
the declarations in the
Stan model data block.
Numbers only—no
character strings
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Stan basics How do I run it?

library(rstan)

data = list(

x = c(1,2,3,4,5,6,7,8,9,10),

y = c(5.19,6.56,9.19,8.09,7.6,

7.08,6.74,9.3,8.98,11.5)

)

init = function() list(

a = rnorm(1, 6, 3),

b = rnorm(1, 0.5, 0.5),

sigma = exp(rnorm(1,log(1.5), 1)))

fit <- stan(file = file.path(dirname(

getwd()), "model", "linear1.stan

"),

data = data,

pars = c("a","b","sigma"),

iter = 2000,

init = init)

Minimal R code for the linear
model example

Initial estimates
Not strictly required, but
recommended in nearly all
cases
Specify as a list or function
that returns a list.
Use of a function with
random number
generation results in
different initial estimates
for each chain—desirable
for convergence
assessment.

Runs 4 chains by default.
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Stan basics How do I run it?

Stan
demo
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Stan basics How do I run it?

linear1: minimal Stan model and R script for linear
regression example

Stan model: model/linear1.stan
R script: script/linear1.R
MCMC results summarized using rstan functions from R
command line
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Stan basics How do I run it?

> fit

Inference for Stan model: linear1.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

a 5.72 0.03 1.01 3.70 5.12 5.74 6.32 7.80 1213 1

b 0.42 0.00 0.16 0.09 0.32 0.42 0.52 0.75 1148 1

sigma 1.48 0.01 0.40 0.93 1.20 1.40 1.67 2.50 1489 1

lp__ -8.47 0.04 1.36 -12.12 -9.03 -8.10 -7.48 -6.98 1051 1

Samples were drawn using NUTS(diag_e) at Fri Oct 7 10:29:45 2016.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).
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Stan basics How do I run it?

> stan_trace(fit) a b sigma
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c©2017 Brief Intro to Stan Oniine Tutorial May 2017 47 / 111

Stan basics How do I run it?

> stan_trace(fit,

inc_warmup = TRUE

)

a b sigma

0

5

10

−1.0

−0.5

0.0

0.5
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Stan basics How do I run it?

> pairs(fit)

a

0.0 0.5 1.0 1.5 −18 −14 −10
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0
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lp__
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Stan basics How do I run it?

linear2: more complete Stan model and R script

Stan model: model/linear2.stan
R script: script/linear2.R
Posterior predictions generated via Stan model.
R script now summarizes the MCMC results including simple
posterior predictive checks (PPC).

Summary table and plots written to files
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Hands-on session 1

Hands-on session 1
PK-PD modeling of time-averaged biomarker and PK data

Phase 1 single dose study in healthy volunteers
Parallel dose-escalation design
8 subjects per dose arm
Single doses of ME-2

Placebo, 1.25, 5, 10, 15, 20, 30, 40, 60 and 80 mg

PK: plasma concentrations of parent drug
Biomarker: ex vivo inhibition of factor Xa activity in plasma

PK and biomarker measured at 0, 0.083, 0.167, 0.25, 0.5, 0.75, 1,
1.5, 2, 3, 4, 6, 8, 12, 18 and 24 hours after dose.

Hands-on exercise:
Model relationship between time-averaged factor Xa inhibition and
time-averaged ME-2 plasma concentrations
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Hands-on session 1

Hands-on session 1
EDA: PK and biomarker data
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Hands-on session 1

Hands-on session 1
EDA: Relationship between biomarker and PK data

ME−2 plasma concentration (ng/mL)

fa
ct

or
 X

a 
in

hi
bi

tio
n 

(%
)

0
50

100

−0.4 0.2

0 mg

05 15 25

1.25 mg

0 4080

5 mg

0100250

10 mg
0100 300

15 mg

0 200 500

20 mg

0 400

30 mg

0 400 1000

0
50
100

40 mg

0
50

100

0 500

60 mg

0 1000

80 mg

average ME−2 plasma concentration (ng/mL)
av

er
ag

e 
fa

ct
or

 X
a 

in
hi

bi
tio

n 
(%

)

0

20

40

60

80

0 100 200 300

●

●
●●

●●
●●
●
●●
●

●
●●●●

●●

●

●
●

●

●

●●

●●

●

●●

●

●

●

●

●

●
●

●
●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

c©2017 Brief Intro to Stan Oniine Tutorial May 2017 56 / 111

Hands-on session 1

Hands-on session 1
Proposed model

Sigmoid Emax model relating time-averaged % inhibition of factor
Xa activity to time-averaged ME-2 plasma concentration in the i th

subject:

E24,i ∼ N
(

Ê24,i , σ
)

Ê24,i =
Emaxcγ24,i

ECγ
50 + cγ24,i

Some possible weakly informative prior distributions:

Emax ∼ U (0,100)

EC50 ∼ half-N (0,250)

γ ∼ half-N (0,5)

σ ∼ half-Cauchy (0,10)

See [23] for half-Cauchy rationale.
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Hands-on session 1

Hands-on session 1
Files

Data: data/derived/fxa.data.avg.csv
Version 1

Uses linear2 as a template
Stan model: model/fxaInhibitAvg1.stan
R script: script/fxaInhibitAvg1.R

Version 2
Introduces additional Stan features

Vectors and vectorized calculations
Additional program blocks: “transformed parameters” and “generated
quantities”

Stan model: model/fxaInhibitAvg2.stan
R script: script/fxaInhibitAvg2.R
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Topics in Bayesian model development using Stan I Assessing convergence & adequacy of sample sizes

Assessing convergence & adequacy of sample sizes

Early samples may be unrepresentative of the target distribution
MCMC samples within a chain are autocorrelated

Inferences based on MCMC samples are less precise than those
from the same number of independent samples
Autocorrelation also influences the rate of convergence
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Topics in Bayesian model development using Stan I Assessing convergence & adequacy of sample sizes

Assessing convergence & adequacy of sample sizes

Use a warmup phase, i.e., discard
early iterations
Monitor convergence via multiple
chains with different starting points

Look for chains to converge to a
common distribution
You want chain history plots to look
more like straight horizontal fuzzy
caterpillars than wiggly snakes
Monitor Gelman-Rubin diagnostics
(Rhat) and/or Gelman-Rubin-Brooks
plots

Essentially ratios of total variance
to within chain variance.
Should approach 1 for all
parameters of interest on
convergence

Poor convergence & mixing
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Topics in Bayesian model development using Stan I Assessing convergence & adequacy of sample sizes

How many samples?

Number of samples depends on the inference(s) of interest and
the desired precision
For independent samples:

A posterior mean of a parameter θ is estimated with an error of
∼ sθ√

n where sθ is the standard deviation of the simulated values of
θ and n is the number of samples.

A probability p is estimated with an error of ∼
√

p(1−p)
n .

In general more samples are required for estimating tail quantiles
and probabilities than for central tendencies and probabilities near
0.5
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Topics in Bayesian model development using Stan I Assessing convergence & adequacy of sample sizes

How many samples?
Suppose the posterior distribution of θ is N (µ = 10, σ = 2).

What if we use simulation to estimate various features of that distribution?

The following are bootstrap estimates of error due to simulation:
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Topics in Bayesian model development using Stan I Assessing convergence & adequacy of sample sizes

How many MCMC samples?

Given a set of MCMC samples it is possible to adjust for
autocorrelation to estimate:

The equivalent number of independent samples, aka effective
sample size (n eff)
The standard error in the estimated posterior mean
The rstan print and summary functions provide estimates of each.

Guidance based on independent samples may then be applied

For more rigorous and comprehensive treatment see Robert and
Casella 2004 and 2010 [8, 7].
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Topics in Bayesian model development using Stan I Programming hierarchical models

Programming hierarchical models (e.g. population
models)

Consider the usual case where you want to model 2 levels of
variability, e.g., inter-individual and residual
The bulk of the data set consists of a set of equal length vectors

Data value(s) for each observation
Individual identifier: Use a consecutive sequence of integers
Covariates (dose, time, etc.)

May include constants such as numbers of observations and
patients, parameters of prior distributions, etc.
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Topics in Bayesian model development using Stan I Programming hierarchical models

Stan demo: Hierarchical model for dose-response

Data: sample mean response from 5 clinical trials

Illustration of meta-analysis where inter-trial differences are modeled as random

dose

re
sp

on
se

2

4

6

8

10

0 20 40 60 80

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mean
Study Dose n Response

1 0 40 2.02
1 10 40 8.17
1 20 40 9.87
1 40 40 10.51
2 0 40 2.19
2 40 40 10.72
2 80 40 10.99
3 0 200 1.97
3 40 200 11.44
4 0 50 1.87
4 20 50 8.86
4 40 50 10.03
5 0 20 1.99
5 10 20 8
5 20 20 9.47
5 30 20 10.33

c©2017 Brief Intro to Stan Oniine Tutorial May 2017 65 / 111



Topics in Bayesian model development using Stan I Programming hierarchical models

Hierarchical model for dose-response

Emax model with inter-trial variation in E0 & Emax :

log (Eij) ∼ N
(

log
(

Êij

)
,
σ
√

nij

)
Êij = E0,j +

Emax,jDij

ED50 + Dij

log (E0,j) ∼ N
(

log
(

Ê0

)
, ωE0

)
log (Emax,j) ∼ N

(
log
(

Êmax

)
, ωEmax

)

Weakly informative prior distributions

Ê0 ∼ half-N (0, 10) Êmax ∼ half-N (0, 50) ED50 ∼ half-N (0, 50)

σ ∼ half-Cauchy (0, 2) ωE0 ∼ half-Cauchy (0, 2) ωEmax ∼ half-Cauchy (0, 2)
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Topics in Bayesian model development using Stan I Programming hierarchical models

Stan demo: Hierarchical model for dose-response
Files

Data: data/derived/doseResponse.csv
Stan model: model/doseResponseMBMA1.stan
R script: script/doseResponseMBMA1.R
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Topics in Bayesian model development using Stan I Programming hierarchical models

parameters{

...

vector<lower = 0>[nStudies] e0;

vector<lower = 0>[nStudies] emax;

}

transformed parameters{

...

for(i in 1:nArms){

responseHat[i] = e0[study[i]] +

emax[study[i]] * dose[i] / (ed50

+ dose[i]);

}

}

Stan program excerpts
Nested indexing of
study-specific parameters
Sampling statements
specify distributions for
study-specific parameters.

Explicit loops not
required
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Topics in Bayesian model development using Stan I Programming hierarchical models

...

model{

...

e0 ∼ lognormal(log(e0Hat), omegaE0);

emax ∼ lognormal(log(emaxHat),

omegaEmax);

logResponse ∼ normal(log(responseHat)

, sigma ./ exp(log(n) / 2));

}

Stan program excerpts
Nested indexing of
study-specific parameters
Sampling statements
specify distributions for
study-specific parameters.

Explicit loops not
required

Data: data/derived/doseResponse.csv
Stan program: model/doseResponseMBMA1.stan
R script: script/doseResponseMBMA1.R
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Topics in Bayesian model development using Stan I Programming hierarchical models

Stan demo
MCMC history plots for model parameters
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Topics in Bayesian model development using Stan I Programming hierarchical models

Stan demo
Posterior marginal densities of model parameters
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Topics in Bayesian model development using Stan I Programming hierarchical models

Stan demo
Summary statistics for posterior marginal distributions of model
parameters

parameter mean se mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat
lp 72.6 0.175 5.03 61.7 69.4 73 76.3 80.7 825 1.01
e0Hat 2.01 0.00212 0.0918 1.83 1.96 2.01 2.05 2.21 1870 1
emaxHat 10.1 0.0141 0.598 9.01 9.75 10 10.4 11.3 1800 1
ed50 6.49 0.0233 0.93 4.82 5.92 6.42 6.98 8.55 1590 1
sigma 0.162 0.00247 0.0719 0.0769 0.112 0.143 0.192 0.346 850 1.01
omegaE0 0.0832 0.00144 0.058 0.0216 0.0486 0.0683 0.0989 0.239 1630 1
omegaEmax 0.0954 0.00184 0.0743 0.0345 0.0572 0.0778 0.11 0.252 1630 1
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Topics in Bayesian model development using Stan I Programming hierarchical models

Stan demo
Model predictions (median + 90% prediction intervals) compared
to observed data
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Topics in Bayesian model development using Stan I Programming hierarchical models

”Individual” and ”population” predictions

θ

θj
θpred,j

yij ycond,ij ypred,ij

observed 
data

"individual" prediction, 
i.e., prediction of new 

observation in the 
same individual

"population" prediction, 
i.e., prediction of new 
observation in a new 

individual

individual-specific 
parameters, i.e., 

parameter’s value 
conditioned on the jth 

individual's data

predicted 
parameter values 

for a new individual

model 
parameters
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Topics in Bayesian model development using Stan I Prior distributions

Brief discussion on prior distributions

Think of prior distributions as part of the model.
Priors should be chosen and subjected to scrutiny much like other
model components.
Model checking should ideally include sensitivity analysis of the
priors.
Choice of priors is most critical with sparse or limited data.

See https://github.com/stan-dev/stan/wiki/

Prior-Choice-Recommendations
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Topics in Bayesian model development using Stan I Prior distributions

What is the function of a prior distribution

Represent prior knowledge
Regularization to facilitate computation

Typically weakly-moderately informative
E.g., Cauchy with most of its mass in a plausible range, but heavy
tails allow for diagnosis of prior-posterior discrepancies.
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Topics in Bayesian model development using Stan I Prior distributions

What does it mean to be informative, uninformative or
weakly informative?

Not well defined, but here’s an attempt at some loose definitions:
Weakly informative prior: A prior that rules out unreasonable
parameter values but is not so strong as to rule out values that
might make sense
Informative prior: A prior that purposely represents information
intended to influence the posterior distribution

To capture prior knowledge
To challenge the analysis with competing points of view, e.g., use of
pessimistic or optimistic priors.

Uninformative prior: Ostensibly a prior that represents no
information and therefore “let’s the data tell the story.”

E.g., a constant over the entire real line—an improper prior
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Topics in Bayesian model development using Stan I Prior distributions

Beware: That “uninformative” prior might not be!

Suppose you use an improper prior for a standard deviation—a
constant over the positive real line.
That means all positive values are equally likely. Sounds like a
reasonable definition of uninformative doesn’t it?
But that means that the prior assigns infinitely more probability to
the set of values greater than any fixed value you care to choose.
This will tend to bias the posterior to high values.
Bottom line: A uniform distribution does not automatically confer
uninformativeness.
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Topics in Bayesian model development using Stan I Truncated distributions

Brief note on truncated distributions

Truncated priors
Parameter bounds are sufficient

Truncated distributions for derived parameters or data
T(,) distribution modifier, e.g.,

real<lower = L, upper = U> y;

y ∼ normal(mu, sigma) T(L, U);

for a truncated normal distribution with lower bound L and upper
bound U.
Univariate distributions only
Not vectorized

Not the same as censoring!
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Hands-on session 2

Hands-on session 2
Population PK-PD modeling of time-matched biomarker and PK
data

Now we analyze the time course data from the same Phase I study we
analyzed in hands-on session 1:

Phase 1 single dose study in healthy volunteers
Parallel dose-escalation design
8 subjects per dose arm
Single doses of ME-2

Placebo, 1.25, 5, 10, 15, 20, 30, 40, 60 and 80 mg

PK: plasma concentrations of parent drug
Biomarker: ex vivo inhibition of factor Xa activity in plasma

PK and biomarker measured at 0, 0.083, 0.167, 0.25, 0.5, 0.75, 1,
1.5, 2, 3, 4, 6, 8, 12, 18 and 24 hours after dose.

Hands-on exercise:
Apply a direct action PK/PD model to the time-matched factor Xa
inhibition and ME-2 plasma concentrations.
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Hands-on session 2

Hands-on session 2
EDA: PK and biomarker data
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Hands-on session 2

Hands-on session 2
EDA: Relationship between biomarker and PK data
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Hands-on session 2

Hands-on session 2
Proposed model

Sigmoid Emax model relating % inhibition of factor Xa activity to
ME-2 plasma concentration on the i th occasion in the j th subject:

Eij ∼ N
(

Êij , σ
)

Êij =
Emaxcγij

ECγ
50,j + cγij

log
(
EC50,j

)
∼ N

(
log
(

ÊC50

)
, ωEC50

)
Some possible weakly informative prior distributions:

Emax ∼ U (0,100) ÊC50 ∼ half-N (0,250)

γ ∼ half-N (0,5)

ωEC50 ∼ half-Cauchy (0,1) σ ∼ half-Cauchy (0,10)
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Hands-on session 2

Hands-on session 2
Files

Data: data/derived/fxa.data.csv
Stan model: model/fxaInhibit1.stan
R script: script/fxaInhibit1.R
Non-centered parametrization to improve sampling efficiency and
prevent divergent transitions

Stan model: model/fxaInhibit1Ncp.stan
R script: script/fxaInhibit1Ncp.R
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Topics in Bayesian model development using Stan II User-defined functions

User-defined functions

New Stan language functions may be defined in a program block
called functions.

functions{

real oneCpt(real time, real dose, real CL, real V){

real k;

k = CL / V;

return dose * exp(-k * time) / V;

}

}

Such functions may be used just like built-in functions.
It is also possible to define new probability distributions and
random number generating functions.
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Topics in Bayesian model development using Stan II User-defined functions

User-defined function syntax

The functions block must precede all other blocks.
Function arguments and return types may be any Stan data type,
e.g., int, int[ ], real, real[ ], vector, row vector, matrix.
Function arguments and return types are not specified with sizes
or constraints, e.g.,

Two dimensional real array: y[ , ];
Vector: vector y;

Void functions are permitted, i.e., functions with no return value.
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Topics in Bayesian model development using Stan II Programming for pharmacometricians

Programming for pharmacometricians

Let’s focus on 2 programming tasks:
Pharmacokinetic compartmental models
Dosing and observation event schedules
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Topics in Bayesian model development using Stan II Programming for pharmacometricians

Stan demo: ME-2 single dose PK

Two compartment model with first order absorption describing ME-2 plasma
concentration on the i th occasion in the j th subject as a function of time, dose and
body weight:

log
(
cij
)
∼ N

(
log
(
ĉij
)
, σ
)

ĉij = f2cpt
(
tij ,Dj ,CLj ,Qj ,V1j ,V2j , kaj

)
log
(
CLj ,Qj ,V1j ,V2j , kaj

)
∼ N

(
log

(
ĈL
(

bwj

70

)0.75

, Q̂
(

bwj

70

)0.75

, V̂1

(
bwj

70

)
, V̂2

(
bwj

70

)
, k̂a

)
,Ω

)

Some possible weakly informative prior distributions:

ĈL ∼ half-N (0, 25) Q̂ ∼ half-N (0, 50) V̂1 ∼ half-N (0, 100)

V̂2 ∼ half-N (0, 200) k̂a ∼ half-N (0, 5) σ ∼ half-Cauchy (0, 1)

Ω = diag (ω) P diag (ω)

ωi ∼ half-Cauchy (0, 1) , i ∈ {1, 2, 3, 4, 5} P ∼ LKJCorr (1)
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Topics in Bayesian model development using Stan II Programming for pharmacometricians

Stan demo: ME-2 single dose PK
Files

Data: data/derived/fxa.data.csv
Stan model: model/singleDosePK1.stan
R script: script/singleDosePK1.R
Version with vectorized function

Stan model: model/singleDosePK2.stan
R script: script/singleDosePK2.R
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Topics in Bayesian model development using Stan II Programming for pharmacometricians

Recursive approach

Dealing with dosing and observation event schedules
Data format: Time-ordered event records for each individual ala
NONMEM
For each event time calculate the amount in each compartment
given the compartment amounts plus doses at the previous event
time.
This also allows for time-varying (piece-wise constant) parameter
values.
Same approach works for compartmental models described in
terms of analytic or numerical solutions.
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Topics in Bayesian model development using Stan II Programming for pharmacometricians

Stan demo: Multiple dose PK with sparse sampling
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Topics in Bayesian model development using Stan II Programming for pharmacometricians

Stan demo: Multiple dose PK with sparse sampling

One compartment model with first order absorption describing plasma drug
concentration on the i th occasion in the j th subject as a function of time and dose:

log
(
cij
)
∼ N

(
log
(
ĉij
)
, σ2
)

ĉij = f1cpt
(
tij ,Dj , τj ,CLj ,Vj , kaj

)
log
(
CLj ,Vj , kaj

)
∼ N

(
log
(

ĈL, V̂ , k̂a

)
,Ω
)

Prior distributions: strongly informative for ka; weakly informative for the
remaining parameters

ĈL ∼ half-N
(

0, 202
)

V̂ ∼ half-N
(

0, 1002
)

k̂a ∼ lognormal
(

log (0.45) , 0.22
)

σ ∼ half-Cauchy (0, 2)

Ω = diag (ω) P diag (ω)

ωi ∼ half-Cauchy (0, 2) , i ∈ {1, 2} ω3 ∼ lognormal
(

log (0.25) , 0.32
)

P ∼ LKJCorr (1)
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Topics in Bayesian model development using Stan II Programming for pharmacometricians

Stan demo: Multiple dose PK with sparse sampling
Files

Data: data/derived/prob 2fixed2.csv
Stan model: model/multiDosePK1.stan
R script: script/multiDosePK1.R
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Hands-on session 3

Hands-on session 3
Population PK of ME-2

A phase IIa PoC trial of ME-2 for prevention of post-op VTEs has
just been completed.
One of your tasks is to do a pop PK analysis based on the
accumulated ME-2 PK data (Phase I SD, Phase I MD & Phase IIa)
Phase 1 single dose study in healthy volunteers described during
hands-on sessions1 & 2
Phase 1 multiple dose study in healthy volunteers

Parallel dose-escalation design
8 subjects per dose arm
Placebo or ME-2 5, 10, 20, 40 or 80 mg bid (q12h) x 7 days
PK: plasma concentrations of parent drug

PK measured at 0, 0.083, 0.167, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8,
12, 12.1, 12.2, 12.2, 12.5, 12.8, 13, 13.5, 14, 15, 16, 18, 20, 24, 36,
48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 168, 168, 168, 168,
169, 169, 170, 170, 171, 172, 174, 176, 180, 186 and 192 hours after
the first dose.
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Hands-on session 3

Hands-on session 3
Population PK of ME-2

A phase IIa PoC trial of ME-2 for prevention of post-op VTEs has
just been completed.
One of your tasks is to do a pop PK analysis based on the
accumulated ME-2 PK data (Phase I SD, Phase I MD & Phase IIa)
Phase IIa trial design:

Treatments
ME-2 20 mg bid (q12h) x 7 days
Enoxaparin 30 mg bid (q12h) x 7 days

100 patients per treatment arm
Sparse ME-2 PK data (3-6 samples/patient)

LOQ = 10 ng/mL

Available patient-specific covariates: weight, age, gender
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Hands-on session 3

Hands-on session 3
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ME-2 PK data from
Phase I SD trial
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Hands-on session 3

Hands-on session 3
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Hands-on session 3

Hands-on session 3
ME-2 PK data from Phase IIa trial
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Hands-on session 3

Hands-on session 3
ME-2 PK data from Phase IIa trial
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Hands-on session 3

Hands-on session 3
Proposed base model

Two compartment model with first order absorption describing ME-2 plasma
concentration on the i th occasion in the j th subject as a function of time, dose and
body weight:

log
(
cij
)
∼ N

(
log
(
ĉij
)
, σ
)

ĉij = f2cpt
(
tij ,Dj , τj ,CLj ,Qj ,V1j ,V2j , kaj

)
log
(
CLj ,Qj ,V1j ,V2j , kaj

)
∼ N

(
log

(
ĈL
(

bwj

70

)0.75

, Q̂
(

bwj

70

)0.75

, V̂1

(
bwj

70

)
, V̂2

(
bwj

70

)
, k̂a

)
,Ω

)

Some possible weakly informative prior distributions:

ĈL ∼ half-N (0, 25) Q̂ ∼ half-N (0, 50) V̂1 ∼ half-N (0, 100)

V̂2 ∼ half-N (0, 200) k̂a ∼ half-N (0, 5) σ ∼ half-Cauchy (0, 1)

Ω = diag (ω) P diag (ω)

ωi ∼ half-Cauchy (0, 1) , i ∈ {1, 2, 3, 4, 5} P ∼ LKJCorr (1)
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Hands-on session 3
Files

Data
ME-2 plasma concentration data (including all covariates) in
NONMEM format: data/derived/fxaNONMEMData.csv

Stan model: model/multiDoseME2PK1.stan
R script: script/multiDoseME2PK1.R
Non-centered parametrization

Stan model: model/multiDoseME2PK1Ncp.stan
R script: script/multiDoseME2PK1Ncp.R
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Dealing with censored data in Stan

The Stan language strongly separates the roles of data and
parameters (random variables).
This has consequences for handling of censored data.

Observed data are known values and thus true data.
Censored data are unknown values and thus random variables.

The user must explicitly separate and declare observed and
censored data:

Observed data in the data block.
Censored data in the parameters block.

Only need to declare censored data if you want to simulate predicted
values.
Information such as censoring bounds and whether the data is
censored is data that should be declared in the data block.

And also specify different likelihoods for observed and censored
data.
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A little aside on Stan machinery

A Stan language model is essentially a set of instructions for Stan to
calculate the log probability given the data and a set of parameter
values.

For (conditionally) independent data the total log probability is the
sum of the individual log probabilities.
In Stan

y ∼ normal(mu, sigma);

is equivalent to

target += normal_lpdf(y | mu, sigma);

More generally you can use “target +=” to specify a user-defined
log probability when none of the built-in distributions are
appropriate.
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Likelihoods for censored normally distributed data

Let’s use “target +=” to specify the log probability function for censored
data.

Right censored data
Observation whose value exceeds some upper bound U.
The appropriate likelihood (probability) function is Pr (y > U) or 1
minus the normal CDF evaluated at U in the normal case.

target += normal_lccdf(U | mu, sigma);

Left censored data
Observation whose value is less than some lower bound L, e.g.,
BQL data.
The appropriate likelihood (probability) function is Pr (y ≤ L) or the
normal CDF evaluated at L in the normal case.

target += normal_lcdf(L | mu, sigma);
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Stan demo: PK modeling with BQL data

During our hands-on session 3 we excluded the BQL data.

Let’s return to that example and appropriately incorporate the BQL
data in the analysis.

Data: data/derived/fxaNONMEMData.csv
Stan model: model/multiDoseME2PK2.stan
R script: script/multiDoseME2PK2.R

c©2017 Brief Intro to Stan Oniine Tutorial May 2017 105 / 111



Topics in Bayesian model development using Stan III What didn’t we cover?

Some of what didn’t we cover?

Fundamentals of Bayesian inference and data analysis
Model evaluation and comparison
Use of informative prior distributions in clinical pharmacology
applications
Why Stan? Comparison with other general purpose modeling
tools with Bayesian analysis capabilities
Numerical solution of ODEs
Torsten: Prototype library of PKPD functions for Stan
Categorical, count and time-to-event data
Population and trial simulations based on MCMC results
User-defined probability distributions and likelihoods
Diagnosing and remedying sampling problems encountered with
Stan
Optimizing Stan code
...
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