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Chapter 0

Getting Started

0.1 Course Introduction

MI-205: R for Pharmacometrics covers introductory through intermediate-level R program-
ming topics with a focus on pharmacometric applications through lectures and hands-on lab
sessions. Each week’s topic will consist of a lecture (one hour) followed by a hands-on lab
(one hour). The general plan will be as follows:

• Lectures will be on Tuesdays.

• Hands-on labs will be on Fridays (in some cases, the lecture may finish during the first
part of the lab on Friday).

• Students are expected to attempt the hands-on exercises prior to the Friday lab.

• A midterm take-home exam is to be assigned at the midpoint of the course.

• A final take-home exam is to be completed by the end of the course (due one week
after it is posted).

• Students will be required to complete and submit an R coding project (project detail-
s/instructions to be posted before the start of Week 4).

• Course grade will be based on the midterm (35%), final (35%), project (30%).

0.2 Metrum Institute R Web Server

All R code examples will be run on the Metrum Institute R Web Server using RStudio. User-
name, password, and instructions for login will be supplied via email. The login instructions
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CHAPTER 0. GETTING STARTED

are also listed below:

1. Use a web browser (all mainstream browsers supported) and go to the web address:
http://comp.metruminstitute.org:8787

2. Enter your username and password.

3. Click the Sign In button.

0.3 About the Course Materials

Each week, you will find a new chapter of this book along with any other course materials on
the main course website (http://training.metruminstitute.org). The package will be a zip file.
Normally you should:

1. Download the package to your computer.

2. Login to the RStudio web server.

3. Upload the package to your home directory on the web server using the Upload button
in the lower right pane.

4. The zip file will be unzipped by Rstudio into the MI205 directory (this directory will
be created if it does not exist).

Some book conventions to be aware of: R code that appears within a sentence will use a
fixed-width font like this. Blocks of R code will appear as black text on a light blue
background

like so.

The output of that R code may follow and will appear as blue text

just like this.

0.4 Licensing

Your use of the materials provided in this course is subject to the terms of use described in
the courseware license agreement in Appendix 12.5.

7
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Chapter 1

Basic Mechanics in R

1.1 Objectives

Afeter completing this chapter, you will be able to. . .

• Provide a rationale for the use of R.

• Understand how to log in and use the Metrum Institute courseware server.

• Name and define the main R objects and data types.

• Access R help.

• Create R objects and perform simple operations on them.

• Import and export simple data sets with R.

• Load an R package.

• Write and save an R script and execute code from an R script.

1.2 Introduction to R

Data manipulation, modeling, and post-processing tasks for pharmacometric applica- tions
should be reproducible. They can also be complex and time consuming. The R language
can perform these tasks in a way that is both reproducible and efficient. R is similar to the S
language developed by AT& T Bell Labs (Lucent) and can be considered an implementation
of S. It was developed as an Open Source alternative to S-PLUS and is available as free
software that can be compiled and run on a variety of platforms, including *NIX (linux,
NetBSD, etc.), Windows, and Mac OS X.

8



CHAPTER 1. BASIC MECHANICS IN R

Downloadable binary versions for Linux, MacOSX, and Windows are available from the R
project page (http://www.r-project.org).

What is R?

• Powerful, statistical, graphical, data handling and exploratory data analysis tool.

• High-level non-compiled language.

• Code is interpreted as each command is issued.

• Users can add additional functionality by defining new functions (Week 3).

9
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CHAPTER 1. BASIC MECHANICS IN R

1.3 R Objects and Data Types

R stores data, graphs, functions, etc. as R data structures or objects, which reside in memory
and can’t be read externally to R unless specifically written to a file. This is different from
S-Plus, which uses available hard disk space for object storage. This has implications when
reading very large (greater than available memory) files.

Some examples of R data objects are vector, matrix, list, data.frame.

R objects differ in the data types stored and the associated attributes. Some typical data types
are:

• numeric - numbers or integers

• character - letters or combinations of letters and numbers

• factor - representation of underlying data via levels/categories

• logical - vector containing TRUE, FALSE, or NA

In dealing with R objects, we can think of moving along a complexity scale that goes from
simplest (vector) to the most complex (list of data frames). As we move from simple to com-
plex, the information the R object carries increases.

Vector

• Ordered set of values

• Indexed by [row] or [col] numbers

• Can be created with vector() function

Table 1.1: Vector Object

Attribute Description
length number of values
mode kind of values (data type)
names value labels

Now we can create a simple vector called ‘a’ using the following R code.

Listing 1.1:
# create a vector called _a_ containing the numbers 1 - 10
a <- 1:10

Listing 1.2:
# In the above example 'a' was 'assigned' the numbers 1 - 10

10
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# the 'assignment' operator is '<-'

# create vector then add information
a <- vector("numeric",10)
a[1:10] <- 1:10

The second example may seem a non-direct route to the same results but there are times when
creating an empty vector and then filling it is easier than creating the vector in one step (more
on the second approach in later weeks).

Matrix

• Values arranged by rows and columns in a rectangular table

• Indexed by [row,col] numbers

• Can be created with matrix() function

Table 1.2: Matrix Object

Attribute Description
length number of values
mode kind of values (data type)
dim number of rows and columns
dimnames row and column names

We can create a matrix called ma using the following R code.

Listing 1.3:
# create a 2x2 matrix called 'ma' containing the numbers 1 - 4
ma <- matrix(c(1:4),

nrow = 2,
ncol = 2,
byrow = F
)

ma

[,1] [,2]
[1,] 1 3
[2,] 2 4

Listing 1.4:
# a slightly different version of 'ma' when 'byrow=T'
ma <- matrix(c(1:4),

nrow = 2,
ncol = 2,

11
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byrow = T
)

ma

[,1] [,2]
[1,] 1 2
[2,] 3 4

Listing 1.5:
# create a 2x2 matrix containing characters rather than numbers
# we do not specify 'byrow' so the default value of 'F' is used
clra <- c("red","white")
clrb <- c("blue","stars")
flag <- matrix(c(clra,clrb),

nrow = 2,
ncol = 2
)

flag

[,1] [,2]
[1,] "red" "blue"
[2,] "white" "stars"

Listing 1.6:
# can't mix data types in a matrix and get expected results
a <- 1:2
mixm <- matrix(c(clra,a),

nrow = 2,
ncol = 2
)

mixm

[,1] [,2]
[1,] "red" "1"
[2,] "white" "2"

Notice all elements are character, as denoted by " " around elements.

matrix() will return a character matrix if there are any non-numeric columns.

List

• An ordered collection of objects know as components.

• Allows combination of components of different data types and lengths.

• Indexed by component number .

12
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• Can be created with the list() function.

• Each component in a list can be indexed by a number or by $.

Listing 1.7:
b[[1]]
b$name

It important to distinguish between b[[1]] and b[1]. [[...]] is the operator used
to select a single element and [...] is a general subetting operator (more on subsetting
later).

Table 1.3: List Object

Attribute Description
length number of components
mode all lists are of mode list
names name of each component

We can create a list called Lsta using the following R code.

Listing 1.8:
# create a list with the components 'breed', 'ages', 'colors'
# we can start by creating each component then making the list
breed <- c("beagle","irish setter", "mix")
ages <- c(1, 5, 3)
colors <- c("brown","tan","red")
Lsta <- list(breed, ages, colors)
Lsta

[[1]]
[1] "beagle" "irish setter" "mix"

[[2]]
[1] 1 5 3

[[3]]
[1] "brown" "tan" "red"

Listing 1.9:
# we could have also created 'Lsta' in one step
Lsta <- list(breed = c("beagle","irish setter", "mix"),

ages = c(1, 5, 3),
colors = c("brown","tan","red")
)

13
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Notice that Lsta contains character and numeric components and the original type of each
component is preserved.

Data Frame

• Spreadsheet-type format, similar to matrix, that can be created with data.frame
() function.

• Allows combination of variables (columns) of different data types.

• Indexed by [row,col] numbers.

• Default data object for read.table() function and its variants (read.csv(),
read.delim()).

• Each column is a vector and is indicated by $.

e.g. data frame: data1
DV column: data1$DV

Table 1.4: Data Frame Object

Attribute Description
length number of variables in the data frame
mode all data frames are of mode list
names names of the varibles (columns)
row.names names of the rows in the data frame
dim number of rows and columns as [r,c]
dimnames row and column names

We can create a data frame called df1 using the following R code.

Listing 1.10:
# create a data frame called 'df1' from five vectors
id <- c(1,3,5,7)
age <- c(35, 46, 50, 25)
wt <- c(70, 100, 67, 40)
sex <- as.factor(c("male","male","female","male")

)
trt <- as.logical(c('T','F','T',NA)

)
df1 <- data.frame(id, age, wt, sex, trt)
# typing the data frame name (df1) at the R prompt
# prints out the components of df1

df1

14



CHAPTER 1. BASIC MECHANICS IN R

id age wt sex trt
1 1 35 70 male TRUE
2 3 46 100 male FALSE
3 5 50 67 female TRUE
4 7 25 40 male NA

The data type of vectors combined to make a data frame are preserved. This can be proven
by using the str() function.

Listing 1.11:
str(df1)

'data.frame': 4 obs. of 5 variables:
$ id : num 1 3 5 7
$ age: num 35 46 50 25
$ wt : num 70 100 67 40
$ sex: Factor w/ 2 levels "female","male": 2 2 1 2
$ trt: logi TRUE FALSE TRUE NA

str() indicates the R object df1 is a data frame with 4 observations and 5 variables with
the first three variables being numeric and the next two being a factor and logical,
respectively.
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1.4 Getting Help Inside and Outside of R

R has a very extensive help that can be accessed in a variety of ways. The R help information
has been provided via a link in the RStudio interface.

Lets take a quick tour of the R help browser. Log onto the web server and click the Help
button.

Other ways of getting help with R:

• Online Manuals - under Help Menu

• help(function name) or ?function name from the R prompt

• Venables & Ripley. Modern Applied Statistics with S (4th edition). 2002

• Paul Murrell. R graphics. 2005.

• R-project web page http://www.r-project.org and mailing lists: http://www.r-project.org/mail.html

1.5 Create R Objects and Perform Simple Operations

Now that we understand the basic building blocks of R, we can begin to operate on objects
we have created.

Some examples for creating simple R objects

• create a simple vector of numbers and ’assign’ it to a variable:

Listing 1.12:
a <- c(1,2,3,6,10)

The values 1,2,3,6, and 10 were assigned to a using <-.

• use the colon (:) operator or seq() to generate a sequence of numbers:

Listing 1.13:
b <- c(1:5)
b1 <- seq(from=1,to=5)

b and b1 contain the same set of values.

• seq() can also be used to create more complicated sequences

Listing 1.14:
b2 <- seq(from=1, to=5, by=0.5)
b2
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[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Listing 1.15:
b3 <- seq(from=1, to=5, length.out=10)
b3

[1] 1.000000 1.444444 1.888889 2.333333 2.777778 3.222222
[7] 3.666667 4.111111 4.555556 5.000000

• rep() can be used to replicate an object.

Listing 1.16:
d <- c(3,4)
d1 <- rep(d, times=4)
d1

[1] 3 4 3 4 3 4 3 4

d1 was created by replicating d four times.

• could also use a combination of the above:

Listing 1.17:
e <- rep(seq(from=1, to=10), times=4)

e will contain the numbers 1 - 10 repeated four times.

Vector operations

• Vectors can be used in arithmetic expressions with the evaluation performed element
by element

Listing 1.18:
a <- c(1:5)
b <- c(2:6)
a+b

[1] 3 5 7 9 11

• Vectors can be of differing length; if so, they are recycled to complete the operation.

Listing 1.19:
a <- c(1:5)
b <- 2
c <- 1
a*b+c
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[1] 3 5 7 9 11

• Available elementary operators are +, -, * ,/ , and ˆ (raising to a power)

• Also available are the common arithmetic functions log, exp, sin, cos, etc.

• Standard summary functions are also available min(), max(), mean(), etc. as
well as summary() that incorporates a number of the standard summary functions.

Data frame operations

• Operations on data frames can be performed in a similar fashion to vectors

• The operations can be performed on a column-by-column basis, over the entire data
frame, or over a portion of the data frame.

• Operating on a column(s) of a data frame requires the user to indentify the column(s)
to use for the operation.

– identify/see the conc column in the a data frame using a$conc

– Operate on that column using a similar notation:

Listing 1.20:
a <- data.frame("time" = c(0:10),

"conc" = c(0, 20, 100, 96, 94, 92,
90, 60, 30, 5, 1),

"dose" = rep(5,11)
)

a$conc <- a$conc * 10
# we have multiplied the "conc" column by 10 and put the
# new values back into the 'a' data frame
a$conc10 <- a$conc * 10

This may be a better way to do it because you can keep track of what was done.

– Can also multiply a data frame by a scalar (single value) or vector (set of values).

Listing 1.21:
a <- data.frame("time" = c(0:10),

"conc" = c(0, 20, 100, 96, 94, 92,
90, 60, 30, 5, 1),

"dose" = rep(5,11)
)

a2 <- a*5
# we have multiplied all of the columns in 'a' by 5.
# BE CAREFUL this only works if there
# are no character or factor columns
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mly <- c(1,2)
a3 <-a*mly
# This code works but lets see what the results are.
a3

time conc dose
1 0 0 5
2 2 20 10
3 2 200 5
4 6 96 10
5 4 188 5
6 10 92 10
7 6 180 5
8 14 60 10
9 8 60 5
10 18 5 10
11 10 2 5

R ’recycled’ the mly vector for the multiplication because it was shorter in length
than the data frame.

Subsetting a data frame

• Use the subset ([]) operator to select some or many columns or rows

• Very powerful and often used operator in R.

• Rows and columns are specified as [row, column].

• Some examples:

– select a given column

Listing 1.22:
a <- data.frame("time" = c(0:10),

"conc" = c(0, 20, 100, 96, 94, 92,
90, 60, 30, 5, 1),

"dose" = rep(5,11)
)

# data frame 'a' contains three columns
# with 11 rows per column
# select only the 'time' and 'conc' columns and
# place in new data frame call 'f1'
f1 <- a[ ,c("time","conc")]
#or
f1 <- a[ ,c(1,2)]
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Why might the first approach be better/safer?

– Select a row or set of rows:

Listing 1.23:
a <- data.frame("time" = c(0:10),

"conc" = c(0, 20, 100, 96, 94, 92,
90, 60, 30, 5, 1),

"dose" = rep(5,11)
)

# select only the first 5 rows and all columns
f2 <- a[1:5,]
# select a$time <=5
f3 <- a[a$time<=5,]

Go to Rstudio web interface, navigate to the basicmechanics directory under MI205, and
click the on the basicmechanics.R file. This should open the basicmechanics.R script
in its own window. Use the script to create and manipulate R objects.

1.6 Import and Export Simple Data Sets with R

R has the ability to import a variety of data set types:

• ASCII text with any delimiter (preferred).

• Excel: save as *.csv.

• SAS transport (*.xpt) file import and export using SASxport package.

• Additional statistical and database file formats, including Minitab, S-PLUS, SPSS,
Stata.

The main function for importing data is read.table().

Listing 1.24:
read.table(file, header=FALSE, sep, row.names, col.names,

as.is=F, na.strings="NA", skip=0)
# importing a simple comma delimited *.csv might look like

test <- read.table(file="/home/billk/example.csv",
header=TRUE,
sep=".",
skip=0)
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R makes an attempt to identify the data type (numeric, character, factor) of each
column when read.table() is used.

• Default behavior is to convert character variables to factors.

• Variable as.is controls this conversion, by default it is set to as.is=FALSE.

• Setting as.is=TRUE suppresses conversion of characters to factors (in many cases it
is easier to set as.is=T and perform conversion after data has been imported).

There are also variants of read.table() specifically for reading in *.csv files read.csv
() and delimited files read.delim().

The main function for exporting files from R is write.table() .

Listing 1.25:
write.table(data, file = "", sep = ",", append = F, quote = F,

col.names=T, row.names=F, na = 'NA', eol = "\n")
# exporting a simple R data frame might look like

write.table(x = test,
file = "/home/billk/exampleout.csv",
sep = ",",
append = F,
quote = F,
col.names=T,
row.names=F,
na = '.')

This will write out the ’test’ R object to ’exampleout.csv’ using the PATH defined in ’file’.

There is also a variant of write.table() specifically for writing *.csv files write.csv
().

SAS transport files (specifically *.xpt) can be written using the SASxport package (more on
this in later weeks).

Go to RStudio web interface, navigate to the basicmechanics directory under MI205, and
click the on the ImportExport.R file. This should open the ImportExport.R R script in its own
window. Review importing and exporting of files.

1.7 Load an R package

The library() function is used to load R packages when R is running. The syntax for this
command is:
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Listing 1.26:
library("package name")

Listing 1.27:
library(lattice) # loads the lattice graphics package
installed.packages() # lists all available packages for a given R

installation

On RStudio the available packages can be found by looking in the Help link and then clicking
on the Packages link.

If a package is not available for a given R installation, it must be installed from the R gui
then loaded with library(PackageName) from within R. All packages for the MI205 course
have been pre-installed on the web interface and can be loaded using the library() func-
tion.

1.8 Write and Save an R Script and Execute Code from an
R Script

Previous sections have demonstrated running R code from a script (basicmechanics.R).
The RStudio interface can be used to create an R script, add code to it, execute all or portions
of it, and save the file.

1.9 Homework Problems

1. Import the week1.csv data file and determine the number of rows and columns in
the imported data set.

2. Summarize the time, dose, and conc columns. What are the minimum, maximum,
mean and median of each column?

3. Create a new data frame that only contains the id, time, and conc columns.

4. In the subsetted data frame, create a new column called nid that is an exact copy of
id.

5. Export the data frame in 4 as a csv file named week1new.csv.

22



Chapter 2

Basic Plotting

2.1 Objectives

After completing this chapter, you will be able to . . .

• Provide a high-level description of the two basic graphics paradigms in R and their
relationship to trellis/lattice graphics in R (and S+).

• Make a rudimentary scatterplot with traditional graphics.

• Make a rudimentary scatterplot with lattice graphics.

• Open and close devices, including saving a plot to a file (e.g. pdf, png, bmp)

• Make trellised and non-trellised scatterplots in lattice, using the following arguments:

– the main, xlab, and ylab arguments

– the type argument

– the subset argument

– the groups argument

– the auto.key argument

– the col, pch, lty and related arguments

– the relation component of the scales argument

• Control the panel dimensions (layout) for trellised scatterplots.

• Control the order of panels within a trellised scatterplot.

• Toggle between the two basic types of panel “strips”.
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2.2 Introduction

There are two basic graphics paradigms in R: traditional graphics and grid graphics [1]. Ex-
amples of packages and functions from these two paradigms are shown in Figure 2.2. In
general, the two paradigms are non-intersecting: what works in traditional graphics will not
work in grid graphics, and vice versa.

In this course we will focus primarily on the lattice package, written and maintained by
Deepayan Sarkar [2]. The lattice package makes it very easy to produce multi-panel
plots (such as have been popularized by Spotfire visualization software), but it is also a great
environment for making a wide variety of single-panel plots.

Since we will be spending so much time with the lattice package, we should note that
this is one bit of your R education that won’t translate to S+. At first glance, the lattice
package appears to be similar to its S+ analog, trellis, to the extent that they produce
similar types of displays and the high-level syntax is more or less the same. This is a super-
ficial similarity — lattice code of even moderate complexity generally will not work in
trellis. I will point out a few non-translatable bits of code as we go along. For more on
this, see the main help page for lattice.
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Throughout this lesson we will work with a single data set. It’s a fake data set, but it’s
moderately realistic and presents you with a number of challenges that are typical to phar-
macometric data sets. Create this data set by executing the code below. Based on what you
learned in the first lession, you probably could figure out what most of this code is doing, but
that’s not the point of this lesson, so let’s just accept this code as a black box for now so we
can get right to the plotting.

Listing 2.1:
set.seed(1)
nSubj <- 40
doses <- c(0, 10, 30, 100)
times <- seq(0, 9, 3)
dat <- expand.grid(Subject = 1:nSubj,

Month = times)
dat <- as.data.frame(dat)
dat$Dose <- doses[as.numeric(dat$Subject) %% length(doses) + 1]
dat$Exposure <- dat$Dose * exp(rnorm(nrow(dat), 0, 0.3))
noise <- rep(rnorm(nSubj, 0, 0.2), length(doses)) + rnorm(nrow(dat

), 0, 0.2)
emax <- c(0, 50, 100, 100)[match(dat$Month, times)]
dat$Response <- with(dat, 10 + emax * Exposure / (Exposure + 25))

* exp(noise)
dat$Response <- pmin(dat$Response, 100)

Let’s take a quick look at what we just created, by sampling a few rows from this data
set:
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Listing 2.2:
sample.rows <- sample(1:nrow(dat), 10)
dat[sample.rows, ]

Subject Month Dose Exposure Response
1 1 0 10 8.286676 11.816366
96 16 6 0 0.000000 10.201445
144 24 9 0 0.000000 7.037375
111 31 6 100 82.636316 100.000000
41 1 3 10 9.518412 29.833741
132 12 9 0 0.000000 7.462788
52 12 3 0 0.000000 11.080414
89 9 6 10 11.174012 43.325292
66 26 3 30 31.748170 38.827614
8 8 0 0 0.000000 8.380869

As you can see, we have longitudinal observations. Importantly, this longitudinal data set
is organized in the “tall-skinny” format with the time variable as one of the columns, rather
than the “short-fat” format where each time point is represented in a different column. Re-
cent versions of lattice can handle “short-fat” data to some extent, but in general a “tall
skinny” data set is a better starting point. Later in the course you will learn how to reshape
data sets from one format to the other within R.

2.3 Graphics Devices

When you work directly with a standard, locally-installed version of R, or when you work on
RStudio, you can make calls to graphics functions and the result will just magically appear
on the screen. Graphics “devices” are being used to present the graphics on your display.
This is often taken care of for you behind the scenes, but it doesn’t hurt to understand the
basics.

To determine the device that RStudio has turned on for us, we can do:

Listing 2.3:
dev.cur()

This screen device is fine for our current purposes, but sometimes we want to be able to write
our plots to files in a scripted manner. For that purpose we could turn on a pdf device:

Listing 2.4:
pdf(file = 'test.pdf')
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From now until we turn that device off, all the graphics that we create will be directed to the
file test.pdf. If we should forget what the current device is, we can always checks again
with:

Listing 2.5:
dev.cur()

While leaving the pdf device active, let’s plot Exposure versus Response:

Listing 2.6:
plot(dat$Exposure, dat$Response)

and maybe we want to add a horizontal reference line at y = 50:

Listing 2.7:
abline(h = 50)

Now, go and take a look at test.pdf, and you should see . . . nothing (or maybe a message
that the file is corrupt). That’s because we haven’t told the pdf device that we are done
sending content to it. For all of the graphics devices that write to files, we turn the device off
in order to finish writing the file and get something in valid format:

Listing 2.8:
dev.off()

A valid pdf file now awaits us.

Since we will be opening up and closing pdf and png devices frequently, you may want to just
invoke pdf() and png() without any arguments. A default file name will be used.

Listing 2.9:
pdf()
plot(1:10, 11:20)
dev.off()

In this case the file created is Rplots.pdf.

NB: From here on out, it will be understood that every set of plotting instructions must be
preceded by the opening of a device and followed by the closing of that device. We won’t
continue to show this explicitly in the code examples.

2.4 Traditional Graphics

We have already seen one way of using the traditional graphics function plot() to produce
a scatterplot. That used what is known as the “default method”. It worked fine in that case,
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but it can get cumbersome: suppose we don’t want to include the placebo group in our plot
(maybe because we want to plot versus log exposure). To accomplish this with the default
method we could do:

Listing 2.10:
plot(log(dat$Exposure[dat$Dose != 0]), dat$Response[dat$Dose !=

0])

Still not too bad, but do we really have to specify the data set four times, and the subset two
times? It is often more convenient to use the “formula method”. One way to use the formula
method would be:

Listing 2.11:
plot(dat$Response[dat$Dose != 0] ~ log(dat$Exposure[dat$Dose !=

0]))

but this doesn’t gain us anything in terms of convenience. A better way to use the formula
method allows us to specify the data set only once, and to specify the subset only once:

Listing 2.12:
plot(Response ~ log(Exposure),

data = dat,
subset = Dose != 0)

Maybe we also want to add a title, and some more informative axis labels:

Listing 2.13:
plot(Response ~ Exposure,

data = dat,
main = 'Exposure-response Relationship',
xlab = 'Concentration (ng / mL)',
ylab = "Dr. Eynobest's Assessment Scale"
)

Note that plot(), in addition to actually plotting the points, has been drawing the axes with
tick marks and adding labels for each axis. It can do a lot of other things too, like adding a
title. All those extras are great the first time around, but when we add to an existing plot, we
need lower levels functions like points() and abline():
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Listing 2.14:

plot(Response ~ Exposure,
data = dat,
main = 'Exposure-response Relationship',
xlab = 'Concentration (ng / mL)',
ylab = "Dr. Eynobest's Assessment Scale"
)

points(mean(dat$Exposure), mean(dat$Response),
pch = 19, # this specifies solid circles
cex = 2) # this specifies 2x the default size

v.reflines <- quantile(dat$Exposure, probs = c(0.25, 0.5, 0.75))
h.reflines <- quantile(dat$Response, probs = c(0.25, 0.5, 0.75))
abline(v = v.reflines, lty = 2) # lty = 2 means dashed lines
abline(h = v.reflines, lty = 2)
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2.5 Lattice Graphics

Unlike the graphics package that we used to create our traditional graphics, lattice is
not loaded by default. We need to load it with the library() command:

Listing 2.15:
library(lattice)

At a high level, the lattice function xyplot() works similarly to the formula method
of the traditional plot() function. In it’s simplest usage, it just takes a single formula that
references two vectors:

Listing 2.16:
xyplot(1:10 ~ 11:20)

Let’s reproduce one of our examples from traditional graphics:

Listing 2.17:
print(

xyplot(Response ~ Exposure,
data = dat,
main = 'Exposure-response Relationship',
xlab = 'Concentration (ng / mL)',
ylab = "Dr. Eynobest's Assessment Scale"
)

)

Using a conditioning variable: trellising

At this point, you may be wondering what xyplot() has brought to the party other than
some differently colored dots. Here’s your answer:

Listing 2.18:
print(

xyplot(Response ~ Exposure | Month,
data = dat,
main = 'Exposure-response Relationship',
xlab = 'Concentration (ng / mL)',
ylab = "Dr. Eynobest's Assessment Scale"
)

)
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Exposure−response Relationship
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That default arrangement of the panels makes it a bit hard to compare responses between
months. A more informative arrangement would be to put all four panels in a single row. We
do this with the layout argument:

Listing 2.19:

print(
xyplot(Response ~ Exposure | Month,

data = dat,
layout = c(4, 1), # this means 4 columns, 1 row
main = 'Exposure-response Relationship by Month',
xlab = 'Concentration (ng / mL)',
ylab = "Dr. Eynobest's Assessment Scale"
)

)
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Exposure−response Relationship by Month
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The “strips” on each panel have a little dark band, indicating where that panel’s Month
value falls relative to the other Month values (note the within-strip position of the dark band
progresses from left to right as the panels progress from left to right). Lattice is presenting
the information this way because it sees that dat$Month is a numeric variable.

Listing 2.20:
str(dat$Month)

num [1:160] 0 0 0 0 0 0 0 0 0 0 ...

A different style of strip will be used if we change dat$Month to character:

Listing 2.21:
dat$Month2 <- paste("Month", dat$Month)
str(dat$Month2)
print(

xyplot(Response ~ Exposure | Month2,
data = dat,
layout = c(4, 1),
main = 'Exposure-response Relationship by Month',
xlab = 'Concentration (ng / mL)',
ylab = "Dr. Eynobest's Assessment Scale"
)

)

This is a fairly common thing to want to do, so be aware that you can do this conversion on
the fly (this will save you from creating a lot of extra variables):
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Listing 2.22:

print(
xyplot(Response ~ Exposure | paste("Month", Month),

data = dat,
layout = c(4, 1),
main = 'Exposure-response Relationship by Month',
xlab = 'Concentration (ng / mL)',
ylab = "Dr. Eynobest's Assessment Scale"
)

)
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Let’s try a similar trick using Dose as the conditioning variable:

Listing 2.23:

print(
xyplot(Response ~ Month | paste(Dose, 'mg'),

data = dat,
layout = c(4, 1),
)

)
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Now, unless you really love to break conventions, you probably would prefer to have the
value of Dose increase as we go from left to right. There is an easy way to do this, and a
hard way. We are going to do the hard way, because it’s a chance to learn a little bit about
factors.

First let’s make a character version of Dose:

Listing 2.24:
dat$Dose2 <- paste(dat$Dose, 'mg')

While we’re at it, let’s relabel ’0 mg’ as ’Placebo’:

Listing 2.25:
dat$Dose2[dat$Dose2 == '0 mg'] <- 'Placebo'

Now let’s convert it from a character vector to a factor. This is exactly what lattice does
behind the scenes.

Listing 2.26:
dat$Dose2 <- factor(dat$Dose2)

By default, factor levels are sorted on the underlying data type (in this case character, so they
are sorted lexically):

Listing 2.27:
levels(dat$Dose2)

[1] "10 mg" "100 mg" "30 mg" "Placebo"
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We can use what we know about subscripting to permute the factor levels:

Listing 2.28:
levels(dat$Dose2)[c(4, 1, 3, 2)]

[1] "Placebo" "10 mg" "30 mg" "100 mg"

Now let’s assign this permuted vector to be the levels for dat$Dose2:

Listing 2.29:
newlevs <- levels(dat$Dose2)[c(4, 1, 3, 2)]
dat$Dose2 <- factor(dat$Dose2, levels = newlevs)
levels(dat$Dose2)

[1] "Placebo" "10 mg" "30 mg" "100 mg"

If you find yourself doing this sort of thing a lot, you should take a look at the mixedsort()
function in package gtools and the reorder() function in package gdata. Those fun-
cions provide the sort of hybrid lexical / numeric sorting that one typically wants for dose
labels.

Listing 2.30:
print(

xyplot(Response ~ Month | Dose2,
data = dat,
layout = c(4, 1),
)

)
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Now that you’ve been through that pain, here’s the easy way we could have done it, using the
original Dose variable:

Listing 2.31:

print(
xyplot(Response ~ Month | paste(Dose, 'mg'),

data = dat,
index.cond = list(c(1, 2, 4, 3))

)
)

Using the groups argument and legends/keys

So far our plots have been blind to the fact that each subject has multiple associated data
points. We can distinguish points from different subjects using the groups argument:

Listing 2.32:

print(
xyplot(Response ~ Month | Dose2,

groups = Subject,
data = dat)

)

And let’s link each patient’s points with line segments:

Listing 2.33:

print(
xyplot(Response ~ Month | Dose2,

groups = Subject,
data = dat,
type = 'l'
## or type = 'b' if you want (b)oth points
## and lines
)

)
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In this case, we are using the groups argument primarily to visually link multiple observations
from the same subject; the ability to identify specific subjects is probably not so important.
In that case, the color is more of a distraction than and aid to interpretation; we can use the
same color for all groups by using the col argument.

Listing 2.34:

print(
xyplot(Response ~ Month | Dose2,

groups = Subject,
data = dat,
type = 'l',
col = 'black'
)

)
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In other cases, it’s important to be able to specifically identify the groups from the plot. For
example, suppose Dose is our grouping variable:
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Listing 2.35:

print(
xyplot(Response ~ Exposure | Month,

groups = Dose,
data = dat)

)

We need a legend! There are extremely flexible ways of specifying the legend/key (flexible
to the point were you can easily specify it incorrectly), but the easiest and safest way is to use
the auto.key argument:

Listing 2.36:

print(
xyplot(Response ~ Exposure | Month,

groups = Dose,
auto.key = TRUE,
data = dat)

)

You have some flexibility, even when working with auto.key:

Listing 2.37:

print(
xyplot(Response ~ Exposure | Month,

groups = Dose,
auto.key = list(title = 'Dose (mg)', space = 'bottom

',
columns = 4, border = TRUE),

data = dat)
)
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Using the scales argument

In all the trellised displays we have made so far, lattice has computed common axes
and used them for every panel. That default is desirable when you want a “between-panel”
perspective on the data. For example, our last plot makes it very clear that the placebo group
had lower scores than any of the active dose groups for every post-baseline timepoint. On
the other hand, sometimes you are more interested in “within-panel” variation. For example,
might there be a trend in the placebo group over time? It’s hard to tell from our last plot,
because the scale in the placebo group panel might be dwarfing any trend that is there. One
way of addressing this is by using the scales argument to establish a “free” relationship
between the axes:
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Listing 2.38:
print(

xyplot(Response ~ Exposure | Month,
groups = Dose,
auto.key = list(title = 'Dose (mg)', space = 'bottom

',
columns = 4, border = TRUE),

scales = list(relation = "free"),
data = dat
)

)
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In this case there is no reason to compute the x axes separately; if we only want to free up the
y axes, we can do:

Listing 2.39:
print(
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xyplot(Response ~ Exposure | Month,
groups = Dose,
auto.key = list(title = 'Dose (mg)', space = 'bottom

',
columns = 4, border = TRUE),

scales = list(
x = list(relation = "same"),
y = list(relation = "free")
),

data = dat
)

)
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There is one other possible relation, “sliced”, which makes all axes span ranges of equal
length, but possibly centered at different values. It’s not a particularly helpful perspective in
this case, but we’ll do it anyway for illustration.
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Listing 2.40:

print(
xyplot(Response ~ Exposure | Month,

groups = Dose,
auto.key = list(title = 'Dose (mg)', space = 'bottom

',
columns = 4, border = TRUE),

scales = list(
x = list(relation = "same"),
y = list(relation = "sliced")
),

data = dat
)

)
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2.6 Homework

• Apply xyplot to this lesson’s data set (dat) to show how the response varies with
exposure within each dose group. Does exposure explain much of the variation in
response, beyond what is already explained by dose?

• Make the same plot as previously, but using only data from month nine. Add a title to
your plot that says “Month 9 Data Only”.

• Save the plot you just made as a 3 inch by 3 inch figure in pdf format (we haven’t
discussed how to specify the plotting dimensions — you will need to search for help
on the pdf() function)
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Basic Function Writing

3.1 Objectives

After completing this chapter, you will be able to . . .

• Distinquish between named and anonymous functions.

• Display the definition of a named function.

• Store and retrieve file-based function definitions.

• Write simple functions with one or more arguments.

• Write functions with default argument values.

• Write functions that accept arbitrary arguments.

• Explain the scope of function variables.

3.2 Introduction

Functions are the basic units of reusable code in R. If you find yourself writing the same
instructions over and over, it may be time to capture your algorithm in a reusable func-
tion.

3.3 Simple Functions

Let’s write a simple function that computes opposites.
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Listing 3.1:
opposite <- function(x){

return(-x)
}

This is a function declaration. Not all functions have names, but this one does: opposite.
Anonymous functions are useful for passing to other functions; you’ll use them later in the
course.

The name is followed by the assignment operator and the reserved word function. The
parentheses enclose the names of the function’s formal arguments: information to be supplied
by the user. Formal arguments are the declared arguments of a function, whereas actual
arguments are those supplied when the function is called.

The curly braces enclose the function body: the list of instructions that comprise the algo-
rithm. Every function body ends with a return value (exactly one!). In this case, we specify
that the function returns the opposite of its sole argument. Let’s try it.

Listing 3.2:
opposite(x=5)
opposite(x=5:10)
opposite(5:10)
opposite(opposite(5:10))

[1] -5

[1] -5 -6 -7 -8 -9 -10

[1] -5 -6 -7 -8 -9 -10

[1] 5 6 7 8 9 10

To use the function, we type its name, followed by arguments in parentheses. It is appropriate
to name the arguments explicitly, but in this case it is not necessary: there is only one argu-
ment (x) and R can match what we pass to the formal argument name. Note that the return
value of a function can itself be the argument to a function.

If you don’t say return anywhere in the function body, the last expression evaluated is the
returned value. Also, if the function body consists of only one expression, the curly braces
are not needed. So a shorter definition of opposite is possible.

Listing 3.3:
opposite <- function(x)-x

In this case, the function body is -x. That is also the return value.
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A function does not need to have any arguments (but the parentheses are still required). Here
is an example.

Listing 3.4:
hello <- function()print('Hello World')

To view the definition of the function, simply enter its name at the prompt. To call this
function, include the (empty) parentheses.

Listing 3.5:
hello
hello()

function ()
print("Hello World")

[1] "Hello World"

Sometimes you need to execute several steps before returning a value. Here, we write a
function that removes all missing values from a vector, returning the (shortened) result.

Listing 3.6:
na.drop <- function(x){

bad <- is.na(x)
good <- x[!bad]
return(good)

}

It’s a good idea to save your function definitions in a text file, e.g, myFunctions.R. Then
you can ‘load’ your functions simply.

Listing 3.7:
source('myFunctions.R')

3.3.1 Excercises

1. Create and save a file to store the functions you will write below.

2. Write a function that returns the first element of its argument.

3. Use source() to load your function definition(s).

4. Write a function that squares its argument.

5. Rewrite na.drop as a single expression (no curly braces).
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6. Write a function that takes an integer and returns a day of the week.

7. Write a function that replaces all missing values in a vector with the mean of the non-
missing values, returning the fully-defined vector.

3.4 Functions with Multiple Arguments

Many functions require two or more arguments. Addition, for example, requires left and right
operands. In fact, the addition operator in R is really just another function. Here we view its
definition, and even call it in an unconventional way.

Listing 3.8:
`+`
`+`(2,3)

function (e1, e2) .Primitive("+")

[1] 5

Let’s write a function that raises x to the power y.

Listing 3.9:
pow <- function(x,y)x**y
pow(2,3)

[1] 8

3.4.1 Exercises

1. Write a function that concatenates a protocol number and a subject ID, separated by a
hyphen.

2. Write a function that normalizes weight by some typical value, rounding the result to 3
significant figures.

3. Write a function that normalizes x by its median, and rounds the result to n decimal
places.
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3.5 Default Argument Values

Normally it is an error to call a function without supplying all the necessary arguments.
However, arguments often have default values, specified in the declaration. These need not
be supplied. Let’s revisit the previous example.

Listing 3.10:
pow <- function(x,y=2)x**y
pow(2,3)
pow(2)
pow(y=3)

[1] 8

[1] 4

'x' is missing

Default argument values can be expressions that depend on other arguments. For example,
when calculating the area of a rectangle, we could assume by default that the rectangle is
square.

Listing 3.11:
rectArea <- function(width,height=width)width*height
rectArea(width=3,height=4)

[1] 12

Listing 3.12:
rectArea(width=3)

[1] 9

3.6 Arbitrary Arguments

R allows functions that accept differing numbers of arguments. Normally, if an actual ar-
gument does not correspond to any formal argument, an error occurs. But if the special
argument . . . is present, it will be a list containing unmatched arguments, named or unnamed.
Functions with . . . arguments may operate directly on these arguments (eg. paste and max),
may ignore them, or may pass them to other functions. The last behavior is often useful. For
example, suppose you want a function that not only calculates the area of a rectangle, but
also reports the units.
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Listing 3.13:
specificRectArea <- function(..., units='meters')paste(

rectArea(...),
units

)
specificRectArea(3)
specificRectArea(3,units='feet')

[1] "9 meters"

[1] "9 feet"

3.6.1 Exercises

1. Write a function to evaluate the quadratic formula: (−b±
√

b2−4ac)/2a. Ignore un-
expected arguments, and return the “additive” root by default.

2. Write a function to calculate AUC in terms of dose, clearance, and bioavailability.
Assume bioavailability to be 1, if not given. (Clearance/bioavailability * AUC = dose.)

3. Suppose most of your data files are tab-separated, with headers, and have ‘.’ to repre-
sent missing values. Write a ‘wrapper’ function for read.table() that sets these
arguments, so that the caller only needs to supply a filename. Use . . . to let the caller
set other arguments. Is the caller able to override your value for ’header’?

3.7 Variable Scope

Scope is a technical term for the visibility of a defined variable. It is important to remember
that variable changes and variable definitions made inside of functions are not visible in
the “calling environment”. In other words, “What happens here, stays here". Consider this
example.

Listing 3.14:
do <- function(x){

x <- 2 * x
'done'

}
x <- 3
do(x)
x
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[1] "done"

[1] 3

The variable x in the calling environment is distinct from the similarly-named variable x
inside the function. Changes to x in the function have no lasting effect unless they are

returned.

The reverse is not true, however. Variables defined in the calling environment may be visible
in the function environment, even if not imported. So, "What happened there ... is visible
here, too!"

Listing 3.15:
do <- function(){

return(y * 2)
}
y <- 3
do()

[1] 6

Generally, it is dangerous to rely on this sort of visibility. Anything a function needs to know
should be passed to it. There are cases, however, where this scoping behavior is useful.

3.8 Additional Exercises

1. Visit http://www.halls.md/ideal-weight/devine.htm and write an R
function to calculate Miller’s ideal body weight for men.

2. Same as above, but generalize the function to accommodate women as well.

3. Same as above, but assume subject is female if not specified.

4. What are all the possible ways you could calculate the square of 8, using pow() as
defined in this chapter? Remember, actual arguments can be named or unnamed, in
which case they are matched to the formal arguments by position.
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Chapter 4

Data Summary

4.1 Objectives

After completing this chapter, you will be able to . . .

• Prepare R objects for summarizing

• Generate simple frequency tables using factors

• Understand the usage of the apply(), lapply(), tapply(), and aggregate()
functions

• Subset dataframes using a logical vector

4.2 Introduction

After importing data, the next task that is usually performed is an exploration of the data.
There are a number of simple, user-friendly functions in R for getting basic data summaries.
These can occur at the individual variable level, at the intersection of two or more variables,
across an entire data frame, etc. . . Some examples we have used in the Basic Mechanics
section are shown below.

Listing 4.1:
library(metrumrg)

metrumrg 5.1

Listing 4.2:
prob1<-read.table(file="prob1.tab", skip=0, header=TRUE)
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head(prob1)

C ID DV AMT II ADDL TIME RATE HT WT CLCR SEX AGE
1 0 1 0.00 900 12 9 0.0 300 103 91 101.48 0 46
2 0 1 6.99 0 0 0 1.5 0 103 91 101.48 0 46
3 0 1 12.66 0 0 0 3.0 0 103 91 101.48 0 46
4 0 1 5.31 0 0 0 8.0 0 103 91 101.48 0 46
5 0 1 2.39 0 0 0 11.9 0 103 91 101.48 0 46
6 0 1 2.87 0 0 0 23.9 0 103 91 101.48 0 46

Listing 4.3:
median(prob1$DV)

[1] 3.52

Listing 4.4:
mean(prob1$DV)

[1] 4.2787

Listing 4.5:
summary(prob1[prob1$SEX==0, c("DV")])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.120 3.400 4.016 5.310 16.560

Listing 4.6:
summary(prob1)

C ID DV AMT
Min. :0 Min. : 1.00 Min. : 0.000 Min. : 0
1st Qu.:0 1st Qu.:10.75 1st Qu.: 2.127 1st Qu.: 0
Median :0 Median :20.50 Median : 3.520 Median : 0
Mean :0 Mean :20.50 Mean : 4.279 Mean : 60
3rd Qu.:0 3rd Qu.:30.25 3rd Qu.: 5.930 3rd Qu.: 0
Max. :0 Max. :40.00 Max. :21.280 Max. :900

II ADDL TIME
Min. : 0.0 Min. :0.0 Min. : 0.00
1st Qu.: 0.0 1st Qu.:0.0 1st Qu.: 8.00
Median : 0.0 Median :0.0 Median : 47.90
Mean : 0.8 Mean :0.6 Mean : 60.82
3rd Qu.: 0.0 3rd Qu.:0.0 3rd Qu.:111.00
Max. :12.0 Max. :9.0 Max. :144.00

RATE HT WT
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Min. : 0 Min. : 41.00 Min. :34.00
1st Qu.: 0 1st Qu.: 59.25 1st Qu.:50.50
Median : 0 Median : 69.00 Median :58.00
Mean : 20 Mean : 70.33 Mean :60.52
3rd Qu.: 0 3rd Qu.: 79.00 3rd Qu.:70.25
Max. :300 Max. :108.00 Max. :96.00

CLCR SEX AGE
Min. : 24.58 Min. :0.000 Min. :38.00
1st Qu.: 47.70 1st Qu.:0.000 1st Qu.:44.00
Median : 58.94 Median :0.000 Median :45.50
Mean : 66.54 Mean :0.425 Mean :45.65
3rd Qu.: 72.89 3rd Qu.:1.000 3rd Qu.:47.25
Max. :192.38 Max. :1.000 Max. :51.00

While the commands above are nice for getting quick results, they can be cumbersome and
error-prone to apply in many everyday situations. This would include summarizing a variable
by a grouping variable that has more than two categories, creating summaries at the level of
the individual, handling missing data, and utilizing summary results as an input to one or
more additional functions. We can tweak the prob1 data set to make it more interesting for
summarizing by adding a few additional columns.

Listing 4.7:
set.seed(35241)
prob1<-read.table(file="prob1.tab", skip=0, header=TRUE)
IDs <- unique(prob1$ID)
race <- sample(c("Caucasian","Asian","African American","Other"),

40, replace=T)
food <- sample(c(0:2), 40, replace=T)
wt2 <- rnorm(40, mean=5, sd=2)
racefoodwt2 <- data.frame("ID" = IDs, "RACE" = race, "FOOD" = food

, "WT2" = wt2)
prob1 <- merge(prob1, racefoodwt2, by="ID")
prob1$WT2 <- prob1$WT+prob1$WT2
prob1$WT3 <- prob1$WT2
prob1$WT3[prob1$WT3>80] <- NA
prob1$RACE <- as.factor(prob1$RACE)
prob1$SEX <- as.factor(prob1$SEX)
prob1$FOOD <- as.factor(prob1$FOOD)
summary(prob1)

ID C DV AMT
Min. : 1.00 Min. :0 Min. : 0.000 Min. : 0
1st Qu.:10.75 1st Qu.:0 1st Qu.: 2.127 1st Qu.: 0
Median :20.50 Median :0 Median : 3.520 Median : 0
Mean :20.50 Mean :0 Mean : 4.279 Mean : 60
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3rd Qu.:30.25 3rd Qu.:0 3rd Qu.: 5.930 3rd Qu.: 0
Max. :40.00 Max. :0 Max. :21.280 Max. :900

II ADDL TIME
Min. : 0.0 Min. :0.0 Min. : 0.00
1st Qu.: 0.0 1st Qu.:0.0 1st Qu.: 8.00
Median : 0.0 Median :0.0 Median : 47.90
Mean : 0.8 Mean :0.6 Mean : 60.82
3rd Qu.: 0.0 3rd Qu.:0.0 3rd Qu.:111.00
Max. :12.0 Max. :9.0 Max. :144.00

RATE HT WT
Min. : 0 Min. : 41.00 Min. :34.00
1st Qu.: 0 1st Qu.: 59.25 1st Qu.:50.50
Median : 0 Median : 69.00 Median :58.00
Mean : 20 Mean : 70.33 Mean :60.52
3rd Qu.: 0 3rd Qu.: 79.00 3rd Qu.:70.25
Max. :300 Max. :108.00 Max. :96.00

CLCR SEX AGE
Min. : 24.58 0:345 Min. :38.00
1st Qu.: 47.70 1:255 1st Qu.:44.00
Median : 58.94 Median :45.50
Mean : 66.54 Mean :45.65
3rd Qu.: 72.89 3rd Qu.:47.25
Max. :192.38 Max. :51.00

RACE FOOD WT2
African American:210 0:180 Min. :37.87
Asian :135 1:165 1st Qu.:56.10
Caucasian :150 2:255 Median :63.44
Other :105 Mean :65.87

3rd Qu.:74.90
Max. :99.01

WT3
Min. :37.87
1st Qu.:54.26
Median :61.88
Mean :61.41
3rd Qu.:70.56
Max. :78.52
NA's :90.00
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From the summary(prob1) step we now see this data set contains three factor level vari-
ables (RACE, SEX, and FOOD) and two additional weight variable (WT2 and WT3). We
will use this revised prob1 data set for the remainder of this chapter.

4.3 Simple Summaries Using table()

We can begin summarizing interesting portions of the prob1 data set using various R func-
tions. The first function we will use is table(). This function will generate a frequency
table of the counts at each combination of factor levels. This will enable us to get a picture of
male/female counts, male/female counts across RACE categories, male/female counts across
FOOD categories, FOOD counts across RACE categories, etc. . .

Listing 4.8:
table(prob1$SEX)

0 1
345 255

Listing 4.9:
table(prob1$SEX, prob1$RACE)

African American Asian Caucasian Other
0 105 90 75 75
1 105 45 75 30

A more informative approach would be to limit the data set to one line per individual prior
to creating the summary. We can use the [ operator and duplicated() function to subset
our data ’on the fly’.

Listing 4.10:
table(prob1[!duplicated(prob1$ID), c("SEX")])

0 1
23 17

Listing 4.11:
table(prob1[!duplicated(prob1$ID), c("SEX","RACE")])

RACE
SEX African American Asian Caucasian Other
0 7 6 5 5
1 7 3 5 2
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Listing 4.12:
table(prob1[!duplicated(prob1$ID), c("SEX","FOOD")])

FOOD
SEX 0 1 2
0 5 7 11
1 7 4 6

Listing 4.13:
table(prob1[!duplicated(prob1$ID), c("FOOD","SEX","RACE")])

, , RACE = African American

SEX
FOOD 0 1

0 1 2
1 5 3
2 1 2

, , RACE = Asian

SEX
FOOD 0 1

0 2 1
1 1 0
2 3 2

, , RACE = Caucasian

SEX
FOOD 0 1

0 1 4
1 0 0
2 4 1

, , RACE = Other

SEX
FOOD 0 1

0 1 0
1 1 1
2 3 1

The summaries utilizing non-duplicated ID values results in more meaningful counts. Given
the results of the category counts, we could begin to formalize decisions around what type
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of questions could be answered or not with the current data set. For example, we have a
reasonable split between males and females so we may be able to ask/answer, What are the
effects of gender on clearance?. We may also be able to ask/answer the question, What are
the effects of FOOD on clearance?. However, due to the small sample size (n=40), we may
not want to try and answer the question, What are the effects of FOOD given gender on
clearance?. Whether these questions are scientifically/clinically relevant also needs to be
considered but is not something we will address here.

4.3.1 Exercises

• load the ChickWeight data set and determine the number of weight observations per
Diet.

• How many weight observations per Chick?

4.4 Applying Summary Functions Across Vectors and Dataframes

The use of table() has reduced the amount of R code to get factor level summaries but does
not provide a result that is easily used as input to other functions. R provides a very powerful
set of inter-related functions, apply(), tapply(), lapply(), and aggregate(), that
can be used to “apply” a function to an R object. Lets start by looking at the arguments that
are required by apply() utilizing the args() function.

Listing 4.14:
args(apply)

function (X, MARGIN, FUN, ...)
NULL

We will need to supply “X”, “MARGIN”, and “FUN” arguments to apply. If we were un-
sure of the data requirements for these arguments we could use R-help for additional informa-
tion. We would find out that “X” should represent the data to be used, “MARGIN” indicates
how to apply the function, e.g., 1 indicates rows and 2 indicates columns, and “FUN” is the
function to apply. We will utilize available R functions for the “FUN” argument but a user
written function could also be used.

Listing 4.15:
apply(X=prob1[!duplicated(prob1$ID),c("WT","CLCR")], MARGIN=2, FUN

=mean)
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WT CLCR
60.52500 66.54375

Listing 4.16:

apply(X=prob1[!duplicated(prob1$ID),c("WT","WT2")], MARGIN=1, FUN=
mean)

1 16 31 46 61 76
94.50746 50.52943 58.86600 59.51227 68.27993 76.16969

91 106 121 136 151 166
73.17902 52.82397 47.83453 88.11308 69.25926 59.77521

181 196 211 226 241 256
39.90034 76.75797 51.62801 87.65498 56.06839 43.44307

271 286 301 316 331 346
65.80988 35.93439 59.09193 69.54200 97.50347 57.13954

361 376 391 406 421 436
60.86345 62.71663 53.48403 77.14603 61.01500 40.95554

451 466 481 496 511 526
50.56214 46.90958 67.24608 72.37702 70.65591 55.48285

541 556 571 586
82.01322 53.57233 60.42317 73.16164

The first use of apply returns the mean weight and creatinine clearance across the prob1
data set while the second example returns the mean weight of each individual. We achieve
the latter result by applying the function across the rows (MARGIN 1) rather than per col-
umn (MARGIN 2). The output of both apply arguments is a simple vector with names
corresponding to the column or row names used in the calculation. We could have used the
output for preparing a plot as the example below shows.

Listing 4.17:

wt.ind <- apply(X=prob1[!duplicated(prob1$ID),c("WT","WT2")],
MARGIN=1, FUN=mean)

plot(x=unique(prob1$ID),
y=wt.ind,
xlab="ID",
ylab = "Mean Weight Across Occasions")
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Now, lets take a look at the variants of apply. The lapply function takes only the X and
FUN arguments. It applies the FUN argument to each element in X and returns a list of the
same length as X. This function simplifies the R code but is limited to operating on columns
of X. How could we use lapply to calculate the maximum weight (WT or WT3) and DV
for prob1?

Listing 4.18:
prob1.ind <- prob1[!duplicated(prob1$ID),]
lapply(X=prob1.ind[ ,c("DV","WT")], FUN = max)

$DV
[1] 0

$WT
[1] 96

Listing 4.19:
lapply(X=prob1[ ,c("DV","WT")], FUN = max)
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$DV
[1] 21.28

$WT
[1] 96

Listing 4.20:
lapply(X=prob1[ ,c("DV","WT3")], FUN = max)

$DV
[1] 21.28

$WT3
[1] NA

The first result of lapply may not be what we expected. We were attempting to deter-
mine the maximum weight and DV value in prob1. In the first evaluation, we used an R
object that was limited to the first row in each individual resulting in a 0 value for DV for
all individuals. We wanted to evaluate the max function across the entire data set as we did
in the second example. The third example demonstrates why it is important to understand
the data prior to summarizing. The WT3 variable contains some missing (NA) values so the
result of applying max over this variable is "NA". We could have passed na.rm=TRUE as
an additional argument to FUN so "NA" values would be removed prior to applying the max
function. NOTE: All of the FUN arguments will accept additional arguments that are specific
to the function being used.

The last variant of apply we will look at is tapply. This function takes the X, INDEX,
FUN, and simplify arguments. tapply expects X to be a vector and will error if any
other type of object is passed to it. tapply applies FUN to X by the unique combination
of levels of INDEX. We can think of tapply as tying together the FUN argument and the
table results. Lets take a look at how we could use tapply to calculate the maximum DV
value for each subject.

Listing 4.21:
maxDV <- tapply(X=prob1$DV, INDEX=prob1[,c("ID")], FUN=max)
head(maxDV)

1 2 3 4 5 6
12.66 15.68 13.46 11.61 8.35 13.03

Listing 4.22:
maxDV <- tapply(X=prob1$DV, INDEX=prob1[,c("ID")], FUN=max,

simplify=FALSE)
head(maxDV)
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$`1`
[1] 12.66

$`2`
[1] 15.68

$`3`
[1] 13.46

$`4`
[1] 11.61

$`5`
[1] 8.35

$`6`
[1] 13.03

Both examples calculate the maximum DV value for each individual and then list the first six
results in the maxDV object. The second call to tapply utilizes the simplify argument
to produce a list object rather than a vector object. The choice of TRUE or FALSE for
the simplify argument will be guided by how the resulting R object will be used.

R also provides a function called aggregate that combines calls to tapply and lapply
across a data.frame. aggregate splits the data into subsets, computes summary statis-
tics for each, and returns the results in a convenient form. We can use the args function to
determine the arguments and then use this information to compute the maximum DV by ID
and VISIT.

Listing 4.23:
args(aggregate.data.frame)

function (x, by, FUN, ...)
NULL

Listing 4.24:
prob2<-prob1
prob1$VISIT<-1
prob2$VISIT<-5
prob2$DV <- prob2$DV*5
prob1 <- rbind(prob1, prob2)
maxDVbyVISIT <- aggregate.data.frame(x=prob1[,c("DV")], by=list(

prob1$VISIT, prob1$ID), FUN=max)
head(maxDVbyVISIT, n=12)
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Group.1 Group.2 x
1 1 1 12.66
2 5 1 63.30
3 1 2 15.68
4 5 2 78.40
5 1 3 13.46
6 5 3 67.30
7 1 4 11.61
8 5 4 58.05
9 1 5 8.35
10 5 5 41.75
11 1 6 13.03
12 5 6 65.15

The results above demonstrate the maximum DV value by VISIT for each individual. aggregate
returns a data.frame with column names of “Group.1” to “Group.x”, where the ordering
and number of columns corresponds to the variables in the by argument and an “x” col-
umn that contains the results of the applied FUN. Additional arguments specific to the FUN
function can be passed in the same manner as we did above for the apply functions.

4.4.1 Exercises

• load the sleep data set and determine the average sleep increase in hours by drug.

• load the women data set and determine the average height and weight using apply
and lapply.

4.5 Subsetting a dataframe using a logical vector

A logical vector in R contains TRUE or FALSE values for all of its elements. It can
be created with the logical function but most of the time it is generated by “testing”
a variable. For example, the code below tests whether the WT3 variable contains any NA
values then prints out all of the “unique” values in the testNA R object.

Listing 4.25:
testNA <- is.na(prob1$WT3)
unique(testNA)

[1] TRUE FALSE

64



CHAPTER 4. DATA SUMMARY

Listing 4.26:
length(testNA)

[1] 1200

The length of testNA is equal to the number of rows in prob1. (How could we verify
the number of rows in prob1 ?) We now have a logical vector that can be used to subset
our data set based on the presence or absence of NA values in WT3.

Listing 4.27:
prob3 <- prob1[testNA,]
dim(prob3)

[1] 180 18

Listing 4.28:
unique(prob3$WT3)

[1] NA

Listing 4.29:
prob4 <- prob1[!testNA,]
dim(prob4)

[1] 1020 18

Listing 4.30:
unique(prob4$WT3)

[1] 54.05885 61.73200 62.02454 70.55987 78.33937 75.35804
[7] 56.64795 50.66906 73.51853 62.55041 40.80069 78.51593

[13] 54.25601 58.13678 45.88614 69.61976 37.86879 59.18386
[19] 72.08399 59.27908 64.72690 65.43326 55.96807 63.03001
[25] 41.91107 52.12429 50.81915 70.49216 74.75403 74.31182
[31] 57.96570 56.14467 63.84633 75.32328

We can see from the results above that the use of a logical vector is a very simple and
concise way to generate a subset.

4.6 Homework

• Read in the data5.csv data set and create a new dataframe containing the average
DV and CRCL by DAY.
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• Using the same data5.csv data set calculate the median and maximum WT by DAY.
Be careful, there are missing values (NA’s) in the WT variable. How can we deal with
these?

• In many of the examples in this chapter, we used the duplicated function with
the logical ! operator to limit prob1 to one row per individual prior to performing
data summaries. Generate a logical vector that could be used to subset prob1 to
one line per individual and determine minimum and maximum CRCL in this subset of
prob1.

• Load the women data set. Write a function that converts weight in pounds to weight
in kilograms. Convert the weight variable in the women data set from pounds to
kilograms using your function with lapply.
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Advanced Plotting

5.1 Objectives

After completing this chapter, you will be able to . . .

• Understand the role of the panel argument to xyplot().

• Write your own panel functions.

• Understand how the function panel.superpose(), the argument panel.groups,
and the lattice theme interact.

5.2 Introduction

We have already seen how xyplot() is a very convenient function to use, e.g. multi-panel
plots can be created by just introducing a conditioning variable in your formula. In this
chapter we are going to see that xyplot() is also very extensible. The cornerstone of this
extensibility is the panel argument.

Let’s recreate the same data set we used in Chapter 2 (but this time adding in a gender vari-
able).

Listing 5.1:
set.seed(1)
nSubj <- 40
doses <- c(0, 10, 30, 100)
times <- seq(0, 9, 3)
dat <- expand.grid(Subject = 1:nSubj,

Month = times)
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dat <- as.data.frame(unclass(dat))
dat$Dose <- doses[as.numeric(dat$Subject) %% length(doses) + 1]
dat$Exposure <- dat$Dose * exp(rnorm(nrow(dat), 0, 0.3))
noise <- rep(rnorm(nSubj, 0, 0.2), length(doses)) + rnorm(nrow(dat

), 0, 0.2)
emax <- c(0, 50, 100, 100)[match(dat$Month, times)]
dat$Response <- with(dat, 10 + emax * Exposure / (Exposure + 25))

* exp(noise)
dat$Response <- pmin(dat$Response, 100)
dat$Dose2 <- factor(paste(dat$Dose, "mg"))
dat$Dose2 <- factor(dat$Dose2, levels = levels(dat$Dose2)[c(1, 2,

4, 3)])
dat$Sex <- rep(sample(c("M", "F"), nSubj, replace = TRUE), length(

times))

And before we get started let’s not forget to load the lattice package:

Listing 5.2:

library(lattice)

5.3 The panel argument

The panel argument to xyplot() is used to tell xyplot() what to do inside each panel.
In our examples in Chapter 2, we never explicitly specified a value for panel, so it just
defaulted to panel.xyplot. We could have made this default explicit by doing:

Listing 5.3:

print(
xyplot(Response ~ Exposure | paste("Month", Month),

data = dat,
layout = c(4, 1),
panel = panel.xyplot,
)
)
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By specifying panel = panel.xyplot, we are basically saying, “just make a basic
scatterplot inside each panel”. If we want something more exciting to happen within the
panels, we will need to change the value supplied for this argument. There are some built-in
panel functions (see ?panel.functions) that we could use instead of panel.xyplot,
but most of them are not that helpful on their own. For, example, panel.loess draws a
“loess” fit to the data:

Listing 5.4:

print(
xyplot(Response ~ Exposure | paste("Month", Month),

data = dat,
layout = c(4, 1),
panel = panel.loess,
)
)
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But what happened to our data points? If we want both the data points and the loess fit to be
shown, we have to write our own panel function. Let’s do it first and think about it later:

Listing 5.5:
my.panel <- function(x, y,

my.point.color = "blue",
my.loess.color = "red") {

panel.xyplot(x, y, col = my.point.color)
panel.loess(x, y, col = my.loess.color)
return(NULL)

}

Listing 5.6:
print(
xyplot(Response ~ Exposure | paste("Month", Month),

data = dat,
layout = c(4, 1),
panel = my.panel,
)
)
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Let’s notice a few things about our custom panel function:

• We never called my.panel() directly. We called xyplot(), and while it was exe-
cuting it called my.panel().

• We can see that xyplot() must have called my.panel() four different times, once
for each panel.

• We used the names x and y for the first two arguments of my.panel(). This nam-
ing convention is important because xyplot() has to know how to set up its call to
my.panel(). Behind the scenes xyplot() does things like: my.panel(x = Exposure[Month==0], y = Response[Month==0]).
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• The return value of our panel function (NULL) is useless. The drawing of graphics
that takes place is considered a “side effect” of the function, not a return value. Panel
functions are invoked for their side effects, not to compute return values. (There is
no need to explicitly specify a return value at all, although one could argue that always
providing an explicit return value for all functions that you write makes your code more
readable).

We have been focusing on xyplot(), but note that most other high level lattice functions
also take a panel argument. For example, the default panel function for histogram() is
panel.histogram(), but as with xyplot(), we can easily modify this default. If you
prefer you can just define your panel function on the fly, as in this example:

Listing 5.7:

print(
histogram( ~ Exposure | Dose2,

data = dat,
layout = c(1, 4),
panel = function(x) {

panel.histogram(x, breaks = seq(0, 200, 10), type = '
percent')

panel.rug(x)
}

)
)
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5.4 Passing information to your panel function

We have already seen how values are supplied to the canonical arguments x and y of our
panel function. What about the other arguments? What if we want to override the default
values that we specified when we wrote the function? One thing we can do is supply them as
arguments to the high-level function:

Listing 5.8:
print(
xyplot(Response ~ Exposure | paste("Month", Month),

data = dat,
layout = c(4, 1),
panel = my.panel,
my.point.color = "red",
my.loess.color = "blue"
)
)
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It is also very often convenient to pass information along using the special ... argument.
In the following example, the argument lty is passed to my.panel and subsequently to
panel.loess as a ... argument.

Listing 5.9:
my.panel <- function(x, y,

my.point.color = "blue",
my.loess.color = "red",
...
## "..." is like saying "and
## whatever else I didn't think of"
) {
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panel.xyplot(x, y, col = my.point.color)
panel.loess(x, y, col = my.loess.color, ...)
return(NULL)

}

Listing 5.10:
print(
xyplot(Response ~ Exposure | paste("Month", Month),

data = dat,
layout = c(4, 1),
panel = my.panel,
my.point.color = "blue",
my.loess.color = "red",
lty = 2, # gets passed to my.panel as "...",
lwd = 2
)
)
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5.5 Doing computations inside your panel function

While the ultimate purpose of a panel function is to draw stuff, there is no reason we can’t
do computations within our panel function as well. While we’re at it, let’s see what happens
when we condition on two variables:

Listing 5.11:
print(
histogram( ~ Exposure | Dose2 * paste("Month", Month),

data = dat,
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panel = function(x, ...) {
panel.histogram(x, ...)
xmean <- mean(x)
xquantile <- quantile(x, probs = c(0.05, 0.95))
panel.abline(v = xmean)
panel.abline(v = xquantile, lty = 2)

}
)

)
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5.5.1 Exercise: Visualizing Missing Data

Visualizing missing data is not as useless an endeavor as it might sound. There are infor-
mative ways of visualizing missingness in one variable if you have another variable that is
associated with it. Let’s introduce some missingness in our data so we have an example to
play with:
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Listing 5.12:
dat2 <- dat
nr <- nrow(dat2)
make.missing <- sample(seq(nr), floor(nr/10), prob = dat2$Response

)
dat2$Response[ make.missing ] <- NA

Make a scatterplot of Response versus Expsoure, conditional on Dose, and add a “rug”
on the Exposure axis that shows the Exposure values for which Response is missing.
In other words, the result should look like this:
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This figure suggests (correctly) that Response values are more likely to be missing at higher
exposures, possibly a useful thing to recognize.

5.6 panel.superpose() and the panel.groups argument

One of the most important panel functions is called panel.superpose. When xyplot()
has a groups argument, the default value for panel actually resolves to panel.superpose,
and there is yet another argument, panel.groups, that resolves to panel.xyplot. In
other words, when you do this:

Listing 5.13:
xyplot(Response ~ Exposure | Month,

groups = Sex,
data = dat
)

You are implicitly doing this:
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Listing 5.14:
xyplot(Response ~ Exposure | Month,

groups = Sex,
data = dat,
panel = panel.superpose,
panel.groups = panel.xyplot
)

When we specify panel = panel.superpose, we are essentially saying, “in each
panel, for each level of the groups variable, go do whatever panel.groups tells you
to do”.

So, suppose we want to start drawing our loess fits again. If we want a single loess fit in each
panel (based on combined data from both sexes), we would do:

Listing 5.15:
print(
xyplot(Response ~ Exposure | Month,

groups = Sex,
data = dat,
panel = function(x, y, ...) {

panel.superpose(x, y, ...)
panel.loess(x, y)
},

panel.groups = panel.xyplot,
layout = c(4, 1),
auto.key = TRUE
)
)
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However, if we want a separate loess fit for males and females within each panel, we would
do:

Listing 5.16:
print(
xyplot(Response ~ Exposure | Month,

groups = Sex,
data = dat,
panel = panel.superpose,
panel.groups = function(x, y, ...) {

panel.xyplot(x, y, ...)
panel.loess(x, y)

},
layout = c(4, 1),
auto.key = TRUE
)
)
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It’s important to realize why the loess fits weren’t drawn with different colors or line types:
xyplot() was ready and willing to pass these plotting parameters to panel.loess, but
our call to panel.loess didn’t specify any arguments other than x and y. If we want “all
that other stuff”, we need to pass “...” to panel.loess, like this:

Listing 5.17:
print(
xyplot(Response ~ Exposure | Month,

groups = Sex,
data = dat,
panel = panel.superpose,
panel.groups = function(x, y, ...) {

panel.xyplot(x, y, ...)
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panel.loess(x, y, ...)
},
layout = c(4, 1),
auto.key = TRUE
)
)
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5.7 lattice themes

Let’s suppose we are going to be printing out our graphics in black and white. Our most
recent plot wouldn’t work because we have distinguished the levels of Sex only by color.
xyplot() made this choice for us, and it did so by consulting the current theme. To see
many of the options that are governed by the theme, we can use the built-in lattice function
show.settings() :

Listing 5.18:

show.settings()
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For our current task, pay particular attention to the region of this figure that shows superpose.symbol
and superpose.line. We can query the information that is represented here by do-
ing:

Listing 5.19:
trellis.par.get('superpose.symbol')

$alpha
[1] 1 1 1 1 1 1 1

$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8

$col
[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000"
[5] "orange" "#00ff00" "brown"

$fill
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[1] "#CCFFFF" "#FFCCFF" "#CCFFCC" "#FFE5CC" "#CCE6FF"
[6] "#FFFFCC" "#FFCCCC"

$font
[1] 1 1 1 1 1 1 1

$pch
[1] 1 1 1 1 1 1 1

Listing 5.20:

trellis.par.get('superpose.line')

$alpha
[1] 1

$col
[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000"
[5] "orange" "#00ff00" "brown"

$lty
[1] 1 1 1 1 1 1 1

$lwd
[1] 1 1 1 1 1 1 1

These are the parameters that panel.superpose() is going to cycle through as it goes
through the different levels of the grouping variable. To change these parameters, we can do
things like:

Listing 5.21:

trellis.par.set(superpose.symbol = list(pch = 1:7))
trellis.par.set(superpose.line = list(lty = 1:7))

Let’s take a quick look at these choices before we use them:

Listing 5.22:

show.settings()
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Now let’s put these choices to work:

Listing 5.23:

print(
xyplot(Response ~ Exposure | Month,

groups = Sex,
data = dat,
panel = panel.superpose,
panel.groups = function(x, y, ...) {

panel.xyplot(x, y, ...)
panel.loess(x, y, ...)

},
layout = c(4, 1),
auto.key = TRUE
)
)
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It is important to realize that the theme is also consulted when a key is created with auto.key = TRUE.
Therefore, if you override the parameters specified in the theme, you should not expect
auto.key to do the right thing. As an example of what NOT to do if you are using
auto.key:

Listing 5.24:

print(
xyplot(Response ~ Exposure | Month,

groups = Sex,
data = dat,
col = c("green", "blue"),
pch = 3:4,
panel = panel.superpose,
panel.groups = function(x, y, ...) {

panel.xyplot(x, y, ...)
panel.loess(x, y, ...)

},
layout = c(4, 1),
auto.key = TRUE
)
)
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5.8 Homework

1. Plot Response versus Month, conditional on Dose. Use thin grey lines to con-
nect data points from the same patient. Add a thick black line that connects the mean
responses for each month.

2. Plot Response versus Exposure, conditional on Month, using Dose as the groups
variable. Set the theme so that placebo is represented by blue circles and active doses
are represented by red crosses that increase in size as the dose level increases.
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Chapter 6

Data Assembly

6.1 Objectives

After completing this chapter, you will be able to . . .

• Reorder and rename data frame columns.

• Systematically transform column values.

• Uniquely identify rows by means of well-defined columns.

• Reorder data frame rows.

• Impute missing values column-wise or row-wise, or with constants.

• Generate new columns based on existing columns.

• Remove arbitrary columns and rows.

• Combine two tables that may differ in logical structure.

6.2 Introduction

Chapter 5 explained how to reduce data using summary techniques. This chapter explains
somewhat the opposite: building data up by combining different sources. In Pharmaco-
metrics, a common task is the assembly of a single analyis data set from various sources:
pharmacokinetic measurements, demographic tables, dosing histories, laboratory analyses,
concomitant medications, and so on. We’ll cover techniques that allow us to assemble data
flexibly, efficiently, and intelligibly.
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6.3 Considerations

When faced with an assembly task, it is tempting to leap right in and start drafting a script.
Time spent planning, however, will be rewarded. In particular, it is much to your advantage
if you or someone else has prepared a specification identifying how the assembled data set
should look, and whence the various components should derive. If available, a ‘data spec’
will reduce time wasted on irrelevant data, and time wasted ‘fixing’ a data set not suited for
the intended analysis.

The reality is that, even when a data spec is available, it may change during the course of the
project. In fact, even the data themselves (itself?) may change. All this dynamism is due
in part to the pressure of deadlines. Work may begin before all the data is even collected, let
alone ‘cleaned’ and ‘locked’.

It takes flexibility to survive in a dynamic environment. The chief way to achieve flexibility
(while maintaining efficiency and intelligibility) is to focus on the preparation of source data.
Merging multiple sources is in some sense the focus of this chapter. However, more effort
will be devoted to source preparation. If the sources are well-designed, they can be quickly
rearranged into a variety of valid products to accommodate changing demands.

Another important consideration is one so unquestionably true that it almost sounds strange to
mention it (but I’ll do so anyway): modern data management is table-oriented. The ubiquity
of table orientation is no surprise. Tables are great for cataloging attributes of things, per-
haps because their two-dimensional structure fits well on square, flat interfaces like paper and
computer screens. ‘Two’ is a convenient number of dimensions: we can let various columns
represent multiple attributes of an object, (subject name, subject height, subject weight) and
can let rows represent multiple similar things (e.g., all the subjects in a study). One dimen-
sion put to the same purpose would be inefficient, and three dimensions is often more than
our minds or interfaces can handle conveniently.

However, table-oriented data management suffers from one critical drawback: most infor-
mation is not two-dimensional. For example, if we wish to tabluate ‘dosing history’ next to
‘subject name’ and ‘subject height’, we quickly realize that the ‘one-row-per-subject’ scheme
is incompatible: we need to repeat some identifying information on all those history rows.
And if we want to to have separate history rows for doses and PK samples, we soon no-
tice that the ‘sample concentration’ column doesn’t have a natural meaning for the dose
rows, and the ‘dose amount’ column doesn’t have a natural meaning for the sample rows.
The principal challenges of data assembly arise precisely from the constraint of representing
poly-dimensional data in a two-dimensional form.

86



CHAPTER 6. DATA ASSEMBLY

6.4 Source Management

The outline of the rest of the chapter is a general recommendation for a data assembly se-
quence. Generally, one should put significant effort into preparing the source data sets, one
at a time, and then proceed to merge them. Source management generally starts with col-
umn changes and row changes, followed by imputation of missing data and generation of
new variables. Next, fix any errors, drop unnecessary rows and columns, and reorganize if
necessary.

The order of activities is not fixed. For example, it may be necessary to generate a variable
to serve as a source for imputation. It may be necessary to impute some missing values
before the rows can be correctly ordered. Maybe you want to drop some rows and columns
immediately. It may be necessary to reorganize your data before processing it, rather than
after. Do whatever promotes efficiency and clarity.

Before managing source data, you will of course have to “read it in”. The as.is argument
to many of the read functions is useful, since it assures that columns looking like text will
behave like text (rather than factors). If your underlying data is still changing, you may have
to do some version management as well, perhaps external to the assembly process.

6.4.1 Column Management

Columns are the main elements of a table. Indeed, a data.frame is really a list of equal-length
columns. Recall that all the elements of a column share a single data type.

Reorder

Your specification (whether real or implicit) may call for a different column order than that
of the stored source. In R, columns are easily reordered by name or number, using the subset
operators. Note that you can drop or even repeat columns during the same operation, so this
could be a good time to get rid of unneeded information.

Listing 6.1:
head(Theoph)

Subject Wt Dose Time conc
1 1 79.6 4.02 0.00 0.74
2 1 79.6 4.02 0.25 2.84
3 1 79.6 4.02 0.57 6.57
4 1 79.6 4.02 1.12 10.50
5 1 79.6 4.02 2.02 9.66
6 1 79.6 4.02 3.82 8.58
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Listing 6.2:
Theoph <- Theoph[,c('Subject','Time','Wt','conc')]
head(Theoph)

Subject Time Wt conc
1 1 0.00 79.6 0.74
2 1 0.25 79.6 2.84
3 1 0.57 79.6 6.57
4 1 1.12 79.6 10.50
5 1 2.02 79.6 9.66
6 1 3.82 79.6 8.58

Note that Dose was droped and Time moved next to Subject.

Rename

One of the safest ways to rename a column is like this.

Listing 6.3:
names(Theoph)[names(Theoph)=='Wt'] <- 'Weight'
head(Theoph)

Subject Time Weight conc
1 1 0.00 79.6 0.74
2 1 0.25 79.6 2.84
3 1 0.57 79.6 6.57
4 1 1.12 79.6 10.50
5 1 2.02 79.6 9.66
6 1 3.82 79.6 8.58

Type Coercion

If an otherwise-numeric column has some stray text, R makes the whole thing character
when reading. You may need to coerce to numeric.

Listing 6.4:
Theoph$conc[[2]] <- 'BLQ'
class(Theoph$conc)

[1] "character"
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Listing 6.5:
Theoph$conc <- as.numeric(Theoph$conc)
head(Theoph)

Subject Time Weight conc
1 1 0.00 79.6 0.74
2 1 0.25 79.6 NA
3 1 0.57 79.6 6.57
4 1 1.12 79.6 10.50
5 1 2.02 79.6 9.66
6 1 3.82 79.6 8.58

Next, consider this:

Listing 6.6:
unique(Theoph$Subject)

[1] 1 2 3 4 5 6 7 8 9 10 11 12
12 Levels: 6 < 7 < 8 < 11 < 3 < 2 < 4 < 9 < 12 < ... < 5

Listing 6.7:
unique(as.numeric(Theoph$Subject))

[1] 11 6 5 7 12 1 2 3 8 10 4 9

Surprised? Theoph$Subject is a (strangely) ordered factor. It is often preferable to coerce
factors to text before doing other manipulations:

Listing 6.8:
Theoph$Subject <- as.character(Theoph$Subject)
unique(Theoph$Subject)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"
[12] "12"

Listing 6.9:
unique(as.numeric(Theoph$Subject))

[1] 1 2 3 4 5 6 7 8 9 10 11 12

That result was easier to anticipate than listing 7.
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Value Coercion

Sometimes we want to leave the column type untouched, but change all the values systemat-
ically.

For factor, we can reassign the levels. (Reverting to the original Theoph ....)

Listing 6.10:
levels(Theoph$Subject)

[1] "6" "7" "8" "11" "3" "2" "4" "9" "12" "10" "1"
[12] "5"

Listing 6.11:
levels(Theoph$Subject) <- c(letters[1:12])
head(Theoph[!duplicated(Theoph$Subject),])

Subject Wt Dose Time conc
1 k 79.6 4.02 0 0.74
12 f 72.4 4.40 0 0.00
23 e 70.5 4.53 0 0.00
34 g 72.7 4.40 0 0.00
45 l 54.6 5.86 0 0.00
56 a 80.0 4.00 0 0.00

For character, convert temporarily to factor.

Listing 6.12:
Theoph$race <- rep(

c(
'white','black','asian','hispanic',
'white','black','asian','hispanic',
'white','black','asian','hispanic'

),
each=11

)
head(Theoph[!duplicated(Theoph$Subject),])

Subject Wt Dose Time conc race
1 k 79.6 4.02 0 0.74 white
12 f 72.4 4.40 0 0.00 black
23 e 70.5 4.53 0 0.00 asian
34 g 72.7 4.40 0 0.00 hispanic
45 l 54.6 5.86 0 0.00 white
56 a 80.0 4.00 0 0.00 black
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Listing 6.13:
Theoph$race <- as.character(

factor(
Theoph$race,
levels=c('white','black','asian','hispanic'),
labels=c('wh','bl','as','hi')

)
)
head(Theoph[!duplicated(Theoph$Subject),])

Subject Wt Dose Time conc race
1 k 79.6 4.02 0 0.74 wh
12 f 72.4 4.40 0 0.00 bl
23 e 70.5 4.53 0 0.00 as
34 g 72.7 4.40 0 0.00 hi
45 l 54.6 5.86 0 0.00 wh
56 a 80.0 4.00 0 0.00 bl

For numeric, we may need to convert units, e.g. from mg/L to µg/L.

Listing 6.14:
Theoph$conc <- Theoph$conc * 1000
head(Theoph)

Subject Wt Dose Time conc race
1 k 79.6 4.02 0.00 740 wh
2 k 79.6 4.02 0.25 2840 wh
3 k 79.6 4.02 0.57 6570 wh
4 k 79.6 4.02 1.12 10500 wh
5 k 79.6 4.02 2.02 9660 wh
6 k 79.6 4.02 3.82 8580 wh

The base function within() achieves the same thing but is perhaps easier to read.

Listing 6.15:
Theoph <- within(Theoph, conc <- conc * 1000)

Dates and times are often problematic. They look like text but need to behave as quantities.
Here, we’ll use strptime to make a date-time object. Do see the extensive formatting
options in the help file. For a convenient interface to strptime, see ?temporal in the
package metrumrg.

Listing 6.16:
strptime('Thu 19 Mar 09 03:48',format='%a %d %b %y %H:%M')
strptime('3/19/2009 03.48', format='%m/%d/%Y %H.%M')
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[1] "2009-03-19 03:48:00"

[1] "2009-03-19 03:48:00"

6.4.2 Row Management

Row management generally concerns details that are determined on a per-row basis. That
said, column information is still fairly important for managing rows.

Names

Just like columns, every row in a data frame has a name. Row names, however, must be
unique. (It’s a good idea for column names to be unique, too, but this is not enforced.) After
a series of transformations, rownames can get pretty ugly. You can always view them with
rownames() or row.names(). In later versions of R, you can reset them by executing
rownames(x)<- NULL. Row names are never missing, and are always character, even if
they look like numbers. (They are names after all.)

Keys

Even though rows are formally distinguishable by their official names, they should be struc-
turally distinguishable by data frame content. That’s where the concept of keys comes into
play. Every row in your data frame should be there for a special reason; it should do some-
thing that no other row can do; it should have a unique purpose. A key is a set of columns
that uniquely distinguishes every row. (Data theorists would maybe call this a ‘unique
key’, but let’s not quibble.) That is, for some set of columns (maybe only one), each row-
level combination of values should be unique. If you can’t say this for a particular data frame,
you should seriously ask yourself what the purpose of the data frame is.

It’s easy enough to meet the uniqueness requirement using random data. But that doesn’t
make a useful key. The key should contain information that participates in the symantics of
your project. For example, a demographics data frame may be keyed on Subject: that is,
exactly one row for every subject in the study. Dose history may be keyed on Subject
and Date, assuming no more than one dose per subject per date. An ECG data frame

may be keyed on Subject, Date, Time, and Replicate (assuming simultaneous repli-
cates).

Avoid superkeys. A superkey uniquely distinguishes every row using more columns than
necessary. If you consider all a table’s columns to be the key, you will almost certainly
be able to distinguish all rows, but that would be pointless. In general, the key columns
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should identify unique objects (persons, events) and the other columns should characterize
(list attributes of) those objects.

Many data management systems explicitly recognize the concept of keys. R does not. This
means that maintaining keys is up to you, because there are really no programming constructs
to help you (at least in the base packages). Just make sure that your keys are definite (no
NAs) and unique (no duplicates), in that order. If you are missing a key field for a particular
row, there will likely be problems later. If the value can’t be recovered, probably the row is
not useful. What good, for instance, is a full row of demographic information if you don’t
know who the subject was? Similarly, a PK record is of limited value if you have no idea
when the sample was taken. Also, if you have two PK records for the same subject on the
same date at the same time, you need to know why. Is the subject mis-identified? Is the date
wrong? Are these replicate samples? You may need to drop or aggregate some records before
proceeding.

Order

In classical data management theory, row order shouldn’t matter. However, a table with
ordered rows is easier to read. More importantly, row order can simplify many calculations.
“Last observation carried forward” is rather trivial for rows sorted on ‘time’, but could get
fairly complex for randomly ordered rows.

In nearly all cases, the best row order is that based on the key. Use order() to construct a
permutation of row order based on the key, and pass that as the row argument to the subset
operator. (Reverting to the original Theoph ....)

Listing 6.17:
sorted <- Theoph[order(Theoph$Subject, Theoph$Time),]
identical(sorted,Theoph)

[1] FALSE

Listing 6.18:
head(sorted)

Subject Wt Dose Time conc
56 6 80 4 0.00 0.00
57 6 80 4 0.27 1.29
58 6 80 4 0.58 3.08
59 6 80 4 1.15 6.44
60 6 80 4 2.03 6.32
61 6 80 4 3.57 5.53
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Listing 6.19:
head(Theoph)

Subject Wt Dose Time conc
1 1 79.6 4.02 0.00 0.74
2 1 79.6 4.02 0.25 2.84
3 1 79.6 4.02 0.57 6.57
4 1 79.6 4.02 1.12 10.50
5 1 79.6 4.02 2.02 9.66
6 1 79.6 4.02 3.82 8.58

6.4.3 Imputations

At this point in the assembly process, we know that our columns are appropriately named and
typed, and all our rows are uniquely identifiable and sorted. Now is a good time to impute
any missing values, if necessary. Make sure missing values are actually stored as the special
value NA (not character 'missing', 'unknown',"", etc.). Then decide which type of
imputation is appropriate.

Constant

For a constant imputation, all missing values in a vector receive the same value. (This trivial
example actually does nothing.)

Listing 6.20:
Theoph$Wt[is.na(Theoph$Wt)] <- mean(Theoph$Wt,na.rm=TRUE)

Horizontal

For a horizontal imputation, all the information needed for each NA is contained in the same
row. (Using some invented data ....)

Listing 6.21:
pk <- data.frame(

subject=rep(letters[1:3],each=3),
time=rep(1:3,3),
baseline=rep(70:72,each=3),
weight=c(70,70.5,69,71,NA,70,72, 72,NA)

)
pk
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subject time baseline weight
1 a 1 70 70.0
2 a 2 70 70.5
3 a 3 70 69.0
4 b 1 71 71.0
5 b 2 71 NA
6 b 3 71 70.0
7 c 1 72 72.0
8 c 2 72 72.0
9 c 3 72 NA

Listing 6.22:
pk$weight[is.na(pk$weight)] <- pk$baseline[is.na(pk$weight)]
pk

subject time baseline weight
1 a 1 70 70.0
2 a 2 70 70.5
3 a 3 70 69.0
4 b 1 71 71.0
5 b 2 71 71.0
6 b 3 71 70.0
7 c 1 72 72.0
8 c 2 72 72.0
9 c 3 72 72.0

Vertical

For a vertical imputation, all the information needed for each NA is contained in the same
column. “Last observation carried forward” is a good example. We’ll use locf from the
metrumrg package.

Listing 6.23:
pk

subject time weight
1 a 1 70.0
2 a 2 70.5
3 a 3 69.0
4 b 1 71.0
5 b 2 NA
6 b 3 70.0
7 c 1 72.0
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8 c 2 72.0
9 c 3 NA

Listing 6.24:
library(metrumrg)

Listing 6.25:
pk$weight <- locf(pk$weight)
pk

subject time weight
1 a 1 70.0
2 a 2 70.5
3 a 3 69.0
4 b 1 71.0
5 b 2 71.0
6 b 3 70.0
7 c 1 72.0
8 c 2 72.0
9 c 3 72.0

Stratified

Suppose, however, that one of our subjects is missing the first weight observation.

Listing 6.26:
pk

subject time weight
1 a 1 70.0
2 a 2 70.5
3 a 3 69.0
4 b 1 NA
5 b 2 71.0
6 b 3 70.0
7 c 1 72.0
8 c 2 72.0
9 c 3 NA

Listing 6.27:
pk$weight <- locf(pk$weight)
pk
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subject time weight
1 a 1 70.0
2 a 2 70.5
3 a 3 69.0
4 b 1 69.0
5 b 2 71.0
6 b 3 70.0
7 c 1 72.0
8 c 2 72.0
9 c 3 72.0

Subject b now has a weight imputed using data from subject a! This is Very Bad. Vertical
imputations can be dangerous: they do not necessarily respect subset boundaries.

What we need here is a stratified imputation. Somehow we need to conduct the imputation
independently for subsets of the data. One approach is to break the data into subsets, conduct
the imputation on each set, and reassemble. It is easier, though, to use the function reapply,
discussed later in this chapter.

6.4.4 Derived Variables

Our columns are formatted, our rows are organized and we’ve imputed as many missings as
possible. But the specification calls for some of the data to be presented in a different form.
The tools and techniques we need depend on the type of derivation.

Extractions

An extraction is a piece of text derived from some other column. (Make sure that ‘other
column’ is not a factor!) Suppose you have a universal subject identifier that includes protocol
information. You need a column with just the protocol number. If the column is fixed-width,
you can use the substring function.

Listing 6.28:
substr('PROT123-SITE001-SUBJ200', start=5,stop=7)

[1] "123"

If the the source column has a format that is more variable, you can often achieve satisfying
results using regular expressions. For more information, see regex(), sub(), gsub(),
and strsplit(). Regular expressions constitute an advanced topic and will not be further
dicussed here.
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Combinations

The reverse of an extraction, a combination puts together fragments of text from other columns.
Use paste(). For example, you could create a universal subject identifier by pasting to-
gether Protocol, Site, and Subject columns. The arguments to paste() do not need to be
character, but they will be coerced to character.

Calculations

The Dose column in Theoph is stated in mg/kg. We can calculate the absolute dose from
dose and weight (well, really: mass).

Listing 6.29:
Theoph$Amount <- Theoph$Dose * Theoph$Wt
head(Theoph)

Subject Wt Dose Time conc Amount
1 1 79.6 4.02 0.00 0.74 319.992
2 1 79.6 4.02 0.25 2.84 319.992
3 1 79.6 4.02 0.57 6.57 319.992
4 1 79.6 4.02 1.12 10.50 319.992
5 1 79.6 4.02 2.02 9.66 319.992
6 1 79.6 4.02 3.82 8.58 319.992

The base function with() is easier on the eyes, especially for complicated expressions.

Listing 6.30:
Theoph$Amount <- with(Theoph, Dose * Wt)

You may find transform() an even more elegant alternative.

Listing 6.31:
Theoph <- transform(Theoph, Amount = Dose * Wt)
head(Theoph)

Subject Wt Dose Time conc Amount
1 1 79.6 4.02 0.00 0.74 319.992
2 1 79.6 4.02 0.25 2.84 319.992
3 1 79.6 4.02 0.57 6.57 319.992
4 1 79.6 4.02 1.12 10.50 319.992
5 1 79.6 4.02 2.02 9.66 319.992
6 1 79.6 4.02 3.82 8.58 319.992
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Aggregations

Suppose we want a new column in Theoph representing the maximum concentration per
subject (Cmax). This is really a two-step operation. First, we need to aggregate concentra-
tion by subject, searching for the maximum. Then we need to merge that information with
the existing data frame. The function tapply() (Chapter 5) will do the aggregating for
us, but we haven’t discussed merging yet. reapply() (metrumrg package) is a wrapper
for tapply() that stretches the result to fit the original data: effectively combining both
steps.

Listing 6.32:
args(reapply)

function (x, INDEX, FUN, ...)
NULL

Now we calculate Cmax. (Reverting to the original Theoph ....)

Listing 6.33:
Theoph$Cmax <- with(

Theoph,
reapply(

conc,
INDEX=Subject,
FUN=max

)
)
head(Theoph)

Subject Wt Dose Time conc Cmax
1 1 79.6 4.02 0.00 0.74 10.5
2 1 79.6 4.02 0.25 2.84 10.5
3 1 79.6 4.02 0.57 6.57 10.5
4 1 79.6 4.02 1.12 10.50 10.5
5 1 79.6 4.02 2.02 9.66 10.5
6 1 79.6 4.02 3.82 8.58 10.5

Flags

Typically, data assembly requires creation of indicator variables. Usually these are binary
fields, telling whether a given condition applies. We’ll call these ‘flags’. In R they would
normally be of type logical, but ones and zeros are much easier to read than FALSEs and
TRUEs, especially for data sets with many flags.
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For example, let’s flag all the rows in Theoph where concentration is maximum.

Listing 6.34:
Theoph <- transform(Theoph, Tmax = as.integer(conc == Cmax))
head(Theoph)

Subject Wt Dose Time conc Cmax Tmax
1 1 79.6 4.02 0.00 0.74 10.5 0
2 1 79.6 4.02 0.25 2.84 10.5 0
3 1 79.6 4.02 0.57 6.57 10.5 0
4 1 79.6 4.02 1.12 10.50 10.5 1
5 1 79.6 4.02 2.02 9.66 10.5 0
6 1 79.6 4.02 3.82 8.58 10.5 0

The construct !! is shorthand for
as.logical(). The ! opera-
tor forces R to coerce the zeros and
ones to logical. The second ! re-
stores the reversed logic.

Now we can get some idea when Tmax is occuring.

Listing 6.35:
Theoph$Time[as.logical(Theoph$Tmax)]

Listing 6.36:
#Alternatively....
with(Theoph, Time[!!Tmax])

[1] 1.12 1.92
1.02 1.07 1.00 1.15 3.48 2.02 0.63 3.55 0.98
[12] 3.52

6.4.5 Cell Management

At some point in the assembly process you may discover cell
values that are in error. If they are few, you may wish to correct them in your script. It
is probably better to start with a correct data source: this is really a version management
issue. If that is not possible, and if errors are many, consider tabulating them externally in a
secondary source, and writing code that applies your QC findings systematically.

Altering the values of cells is usually performed by the assignment version of the subset
operator: [<-.

Listing 6.37:
Theoph$conc[with(Theoph, Subject==1 & Time==0)]

[1] 0.74
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Listing 6.38:
Theoph$conc[with(Theoph, Subject==1 & Time==0)] <- 0.85
Theoph$conc[with(Theoph, Subject==1 & Time==0)]

[1] 0.85

It is possible, of course, to identify a particular value by postion:

Listing 6.39:
Theoph$conc[1,5] <- 0.85

However, it is safer to test for values of the key. Positions may change without notice in a
future version of the data.

6.4.6 Restrictions

Dropping noninformative records
should, of course, be sensitive to the
pharmacokinetic context. Dropping
an unknown (NA) value for dose is
likely to be far more consequen-
tial than dropping an unknown sam-
ple concentration. Perhaps the sub-
ject’s remaining history should be
ignored, if the dose datum cannot
be resolved.

It’s time to drop unnecessary rows and columns, if you
haven’t done so already. An alternative to dropping rows
is to flag them somehow to prevent their inclusion in later
analyses. The resulting data set is more informative, and still
usable according to the intended restrictions.

Uninformative columns can often be dropped. For example,
if a Dose column gives essentially the same information as a
Treatment Group column, perhaps only one is needed. Espe-
cially where one column contains only a subset of the data de-
fined in a similar column, prefer the more complete instance.
Some of these decisions may need to be made much earlier
in the assembly process.

Rows and columns can be dropped implicitly by subsetting the data frame to the dimensions
not being dropped. The most direct way to drop a row is to subset with the negative index of
the row in question.

Listing 6.40:
head(Theoph)

Subject Wt Dose Time conc Cmax Tmax
1 1 79.6 4.02 0.00 0.85 10.5 0
2 1 79.6 4.02 0.25 2.84 10.5 0
3 1 79.6 4.02 0.57 6.57 10.5 0
4 1 79.6 4.02 1.12 10.50 10.5 1
5 1 79.6 4.02 2.02 9.66 10.5 0
6 1 79.6 4.02 3.82 8.58 10.5 0
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Listing 6.41:
Theoph <- Theoph[-1,]
head(Theoph)

Subject Wt Dose Time conc Cmax Tmax
2 1 79.6 4.02 0.25 2.84 10.5 0
3 1 79.6 4.02 0.57 6.57 10.5 0
4 1 79.6 4.02 1.12 10.50 10.5 1
5 1 79.6 4.02 2.02 9.66 10.5 0
6 1 79.6 4.02 3.82 8.58 10.5 0
7 1 79.6 4.02 5.10 8.36 10.5 0

That technique works for columns, too. But you can also set a column to NULL, which is
perhaps even more direct.

Listing 6.42:
Theoph$Wt <- NULL
head(Theoph)

Subject Dose Time conc Cmax Tmax
2 1 4.02 0.25 2.84 10.5 0
3 1 4.02 0.57 6.57 10.5 0
4 1 4.02 1.12 10.50 10.5 1
5 1 4.02 2.02 9.66 10.5 0
6 1 4.02 3.82 8.58 10.5 0
7 1 4.02 5.10 8.36 10.5 0

6.4.7 Reorganization

Source data may require rearrangement to be compatible with anticipated output formats.
Suppose you have measurements arranged by occasion. You may need to rearrange to a
‘tall-skinny’ layout (mentioned in Basic Plotting).

Listing 6.43:
days

subject day1 day2 day3
1 a 0.24 -1.60 0.550
2 b 0.29 0.37 -0.075
3 c -0.36 -0.98 0.710
4 d -0.84 -0.35 0.260
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Listing 6.44:
tall <- stack(days)
tall$subject <- days$subject
tall

values ind subject
1 0.240 day1 a
2 0.290 day1 b
3 -0.360 day1 c
4 -0.840 day1 d
5 -1.600 day2 a
6 0.370 day2 b
7 -0.980 day2 c
8 -0.350 day2 d
9 0.550 day3 a
10 -0.075 day3 b
11 0.710 day3 c
12 0.260 day3 d

Use unstack to acheive the reverse.

Listing 6.45:
labs

subject test value
1 a parent 0.540
2 b parent -1.000
3 c parent -0.240
4 d parent 0.840
5 a metabolite -0.220
6 b metabolite -0.041
7 c metabolite -0.660
8 d metabolite -0.930
9 a caffeine 0.710
10 b caffeine 1.000
11 c caffeine 0.390
12 d caffeine 0.720

Listing 6.46:
short <- unstack(labs,form=value ~ test)
short$subject <- unique(labs$subject)
short

parent metabolite caffeine subject
1 0.54 -0.220 0.71 a

103



CHAPTER 6. DATA ASSEMBLY

2 -1.00 -0.041 1.00 b
3 -0.24 -0.660 0.39 c
4 0.84 -0.930 0.72 d

Caution: the unstack example makes dangerous assumptions about the organization of the
data. Try unstacking subject, too, and make sure columns agree.

6.5 Merge Management

Merging is more related to the concept ‘assembly’ than anything we’ve discussed so far.
Merging combines two data frames. In relational database theory, it’s called ‘joining’. In R,
a merge is typically accomplished by the function with the same name.

6.5.1 Order

Only two tables can be merged at a time. Typically, we have more than two source tables
in a project, which must therefore be merged sequentially. Usually one should proceed from
greatest ‘key scope’ to least. For example, first merge tables that are keyed on Subject, Date,
and Time; then add in those keyed on Subject and Date; and finally those keyed on Subject.
Thus, the more general data (simpler key) will be included on all rows where it applies.

6.5.2 Technique

We’ll create some sample data tables to merge.

Listing 6.47:
dose <- data.frame(

subject = rep(letters[1:3], each = 2),
time = rep(c(1,3),3),
amount = rep(c(40,60,80), each = 2)

)
pk <- data.frame(

subject = rep(letters[1:3], each = 4),
time = rep(1:4,3),
conc = signif(rnorm(12),2) + 2

)
demo <- data.frame(

subject = letters[1:4],
race = c('asian','white','black','other'),
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sex = c('female','male','female','male'),
weight = c(75, 70, 73, 68)

)

Listing 6.48:
dose

subject time amount
1 a 1 40
2 a 3 40
3 b 1 60
4 b 3 60
5 c 1 80
6 c 3 80

Listing 6.49:
pk

subject time conc
1 a 1 2.110
2 a 2 1.900
3 a 3 2.400
4 a 4 2.520
5 b 1 2.700
6 b 2 3.100
7 b 3 0.200
8 b 4 0.900
9 c 1 1.917
10 c 2 1.500
11 c 3 1.490
12 c 4 1.000

Listing 6.50:
demo

subject race sex weight
1 a asian female 75
2 b white male 70
3 c black female 73
4 d other male 68

The merge() function combines data frames by examining their keys. You can specify the
keys using the by argument. By default, merge() will use whatever columns the two data
frames have in common. As the help file says, “The rows in the two data frames that match
on the specified columns are extracted, and joined together”.
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Listing 6.51:
merge(dose,pk)

subject time amount conc
1 a 1 40 2.110
2 a 3 40 2.400
3 b 1 60 2.700
4 b 3 60 0.200
5 c 1 80 1.917
6 c 3 80 1.490

Note that a lot of the pk data is missing. That’s because there were no doses at those times.
But we want all the pk data regardless, so the following is better.

Listing 6.52:
merge(dose, pk, all=TRUE)

subject time amount conc
1 a 1 40 2.110
2 a 2 NA 1.900
3 a 3 40 2.400
4 a 4 NA 2.520
5 b 1 60 2.700
6 b 2 NA 3.100
7 b 3 60 0.200
8 b 4 NA 0.900
9 c 1 80 1.917
10 c 2 NA 1.500
11 c 3 80 1.490
12 c 4 NA 1.000

Note the NA amounts. They are structural missings, not logical missings. They arise not from
any deficiency in the data, but from the limitation of representing poly-dimensional data in a
two-dimensional form (Section 3).

Next, we’ll apply the demographic data. Apparently subject d never actually participated in
the study, so we’ll quietly igore by not saying all=TRUE.

Listing 6.53:
merge(

merge(dose, pk, all=TRUE), #like before
demo #new data

)
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subject time amount conc race sex weight
1 a 1 40 2.110 asian female 75
2 a 2 NA 1.900 asian female 75
3 a 3 40 2.400 asian female 75
4 a 4 NA 2.520 asian female 75
5 b 1 60 2.700 white male 70
6 b 2 NA 3.100 white male 70
7 b 3 60 0.200 white male 70
8 b 4 NA 0.900 white male 70
9 c 1 80 1.917 black female 73
10 c 2 NA 1.500 black female 73
11 c 3 80 1.490 black female 73
12 c 4 NA 1.000 black female 73

The merge() function is a good way to combine data frames that have related data but dif-
ferent structures. But there are a few other techniques that are conceptually equivalent. If
two data frames have the same number of rows, and corresponding keys, then cbind() is a
more efficient subsitute for merge(). Similarly, if two data frames have the same number
of columns, with corresponding meanings and types, then rbind() is a more efficient sub-
situte for merge(). In addition to being more efficient, rbind() and cbind() accept
more than two arguments (tables) at a time. The function reapply() discussed earlier is
essentially an aggregate step followed by a one-column merge.

The merge of demographic data above was a little risky. Subject d was in the demographic
data but not in the clinical data. What if someone had been represented in the clinical data,
but not in the demographic data?

Listing 6.54:
merge(

merge(dose, pk, all=TRUE), #like before
demo[-1,] #ignore the first subject

)

subject time amount conc race sex weight
1 b 1 60 2.700 white male 70
2 b 2 NA 3.100 white male 70
3 b 3 60 0.200 white male 70
4 b 4 NA 0.900 white male 70
5 c 1 80 1.917 black female 73
6 c 2 NA 1.500 black female 73
7 c 3 80 1.490 black female 73
8 c 4 NA 1.000 black female 73

Subject a’s clinical data has been silently dropped! While we don’t necessarily want to see
all the demographic data, we do want to see all the dosing and pk data. merge() lets us

107



CHAPTER 6. DATA ASSEMBLY

specify all independently for each data frame.

Listing 6.55:
merge(

merge(dose, pk, all=TRUE), #like before
demo[-1,], #ignore the first subject
all.x=TRUE #show all of x regardless

)

subject time amount conc race sex weight
1 a 1 40 2.110 <NA> <NA> NA
2 a 2 NA 1.900 <NA> <NA> NA
3 a 3 40 2.400 <NA> <NA> NA
4 a 4 NA 2.520 <NA> <NA> NA
5 b 1 60 2.700 white male 70
6 b 2 NA 3.100 white male 70
7 b 3 60 0.200 white male 70
8 b 4 NA 0.900 white male 70
9 c 1 80 1.917 black female 73
10 c 2 NA 1.500 black female 73
11 c 3 80 1.490 black female 73
12 c 4 NA 1.000 black female 73

That’s called a left join. The function stableMerge() in the metrumrg package simplifies
the left join, does some additional error checking, and guarrantees that rows and columns will
not be reordered.

Listing 6.56:
stableMerge(

merge(dose, pk, all=TRUE),
demo[-1,]

)

Results are like those above.

6.5.3 Contextual Alterations

Earlier we discussed at length various imputations, derivations, and restrictions for source
data. Some alterations aren’t meaningful until after the merge: they are sensitive to context
of the complete data. Now is the right time to address. For example, a variable like ‘time after
dose’ can’t be calculated for pk records until the dose records are present. Similarly, we may
want to flag dose records that occur after the last pk record, but again, we need context. Don’t
be tempted to leave all the alterations for the post-merge workup, however. To paraphrase
Einstein, every alteration should be made as soon as possible, but not sooner!
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6.5.4 Characterization

When data assembly is essentially complete, it’s a good idea to do some exploratory analysis.
Some simple diagnostic plots may detect some anomalies that should be addressed before
analysis.

6.6 Exercises

Enter library(metrumrg). Enter data() to see the available data sets.

1. For Theoph, show the first few rows with the column order reversed.

2. For Theoph, change ‘conc’ to ’concentration’.

3. For Theoph, convert Wt to an integer.

4. For ToothGrowth, replace ‘VC’ and ‘OJ’ with ‘vitamin C’ and ‘orange juice’.

5. For Indometh, convert mcg/mL to mg/mL in conc.

6. For CO2, what is the key?

7. For ChickWeight, what is the key?

8. For Indometh, what is the key?

9. For Orange, what is the key?

10. For airquality, what is the key?

11. For beaver1, what is the key?

12. For trees, what is the key?

13. Sort Animals on increasing body size.

14. For Indometh, impute all conc. values over 2 with the mean of the remaining values.

15. For wtloss (package MASS), impute all Weight after 200 days with the last observa-
tion.

16. For women (package datasets), calculate body mass index using bmi().

17. For Puromycin, remove the ’state’ column and the second row.

18. Merge ‘Population’ and ‘Area’ from state.x77 with USArrests.

19. Merge Animals and mammals (both package MASS).

20. Add population density data from road to state.x77.
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Chapter 7

Modeling in R

7.1 Objectives

After completing this chapter, you will be able to . . .

• Recognize and use the formula syntax that is common to most R modeling functions.

• Understand the role of factors with typical R modeling functions.

• Recognize and use some of the generic functions that can be used to interrogate typical
model fit objects.

• Understand how missing values are handled by typical modeling functions in R.

7.2 Introduction

There are many model fitting functions in R. Without attempting to be at all comprehensive,
here are some of the more commonly used modeling functions:

• lm() linear models (regression, ANOVA, ANCOVA) with fixed effects only and un-
correlated, Normally distributed, residuals

• lme() linear models with at least one random effect and Normally distributed residu-
als

• gls() general linear models, i.e. models with fixed effects only and Normally dis-
tributed, possibly correlated, residuals

• nls() nonlinear models with with fixed effects only and uncorrelated, Normally dis-
tributed, residuals
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• nlme() nonlinear models with at least one random effect and Normally distributed
residuals

• glm() generalized linear models (“linearizable” models with possibly non-Normal
residuals, e.g. logistic regression)

• survfit() Cox regression (for time-to-event data)

• gam() generalized additive models (including, e.g. models with splines)

All of the above functions are available in either base or recommended R packages. The
classic Modern Applied Statistics with S and S-plus by Venables and Ripley [3] provides an
excellent survey of model fitting functions, including most of those mentioned above.

We will focus fairly specifically on functions that are consistently relevant in pharmacometric
analyses, namely lm, nls, and nlme. This focus notwithstanding, we will see that there is a
more or less generic framework for modeling in R. If you learn the basics of this framework,
you will be well-positioned to teach yourself some of the other modeling functions that we
will not have time to cover.

We are going to work with the same data set we used in our plotting chapters:

Listing 7.1:

set.seed(1)
nSubj <- 40
doses <- c(0, 10, 30, 100)
times <- seq(0, 9, 3)
dat <- expand.grid(Subject = 1:nSubj,

Month = times)
dat <- as.data.frame(unclass(dat))
dat$Dose <- doses[as.numeric(dat$Subject) %% length(doses) + 1]
dat$Exposure <- dat$Dose * exp(rnorm(nrow(dat), 0, 0.3))
noise <- rep(rnorm(nSubj, 0, 0.2), length(doses)) + rnorm(nrow(dat

), 0, 0.2)
emax <- c(0, 50, 100, 100)[match(dat$Month, times)]
dat$Response <- with(dat, 10 + emax * Exposure / (Exposure + 25))

* exp(noise)
dat$Response <- pmin(dat$Response, 100)
dat$Dose2 <- factor(paste(dat$Dose, "mg"))
dat$Dose2 <- factor(dat$Dose2, levels = levels(dat$Dose2)[c(1, 2,

4, 3)])
dat$Sex <- rep(sample(c("M", "F"), nSubj, replace = TRUE), length(

times))
dat$Response[dat$Month == 9 & dat$Subject == 1] <- NA
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7.3 Fitting a regression model with lm()

We will start by focusing on a subset of the data, excluding the highest dose level and con-
sidering only observations from month 9:

Listing 7.2:

library(lattice)
print(

xyplot(Response ~ Dose,
subset = Month == 9 & Dose < 40,
data = dat)

)
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For this subset of data, a model describing Response as a linear function of Dose seems
reasonable. That is, letting i be an index on patients,
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Responsei = α +βDosei + εi

From our plot, we can plainly see that the εi terms have different variances at the different
dose levels, which violates the assumptions required for standard linear regression, but let’s
ignore this fact for now. We can fit a standard linear regression with:

Listing 7.3:
mod1 <- lm(Response ~ Dose,

subset = Month == 9 & Dose < 40,
data = dat)

Note the similarity of the lm() interface to the xyplot() interface: the response variable
is on the left hand side of the formula and the explanatory variable is on the left hand side,
and if we specify a data argument, lm() will know to look in that data frame for variables
referenced in the formula and the subset argument (and we will see that there are some addi-
tional similarities). Most common modeling functions adhere to similar conventions. While
these conventions are very helpful, some caution is in order: they are only conventions. For
example, one should not necessarily expect that a syntax that works for lm() will also work
with lme(), although that will often be the case.

We now have an object of class “lm”:

Listing 7.4:
class(mod1)

[1] "lm"

As is typical of most R model objects, printing the model object itself is breathtakingly unin-
formative:

Listing 7.5:
mod1

Call:
lm(formula = Response ~ Dose, data = dat, subset = Month == 9 &

Dose < 40)

Coefficients:
(Intercept) Dose

11.534 2.059

We will see in the next section how to get a more informative description of our model fit.
For now, we can at least see/guess that a model has been fit with an intercept and a slope
with respect to Dose. Note that we didn’t explicitly request an intercept, but it was assumed
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by default that we wanted one. To override the default and fit a model with no intercept, we
include a -1 term in the formula:

Listing 7.6:
lm(Response ~ -1 + Dose,

subset = Month == 9 & Dose < 40,
data = dat)

Call:
lm(formula = Response ~ -1 + Dose, data = dat, subset = Month ==

9 & Dose < 40)

Coefficients:
Dose

2.514

Similarly, if we wanted to fit a model with only an intercept term (not advisable for this data
set!), we would do:

Listing 7.7:
lm(Response ~ 1,

subset = Month == 9 & Dose < 40,
data = dat)

Call:
lm(formula = Response ~ 1, data = dat, subset = Month == 9 &

Dose < 40)

Coefficients:
(Intercept)

39.23

7.4 Generic methods for model objects

It seems a bit intimidating to extract information from mod1 “by hand” (try str(mod1) to
see how complicated this object is), and indeed we don’t have to. The information that we
would typically want can be more easily and reliably extracted using some functions we now
demonstrate. These functions are all referred to as “generic methods”, because they can also
be used for other types of model objects.

The generic method summary() gives us, among other things, T-tests (“Wald tests”) for
each coefficient in the model:
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Listing 7.8:
summary(mod1)

Call:
lm(formula = Response ~ Dose, data = dat, subset = Month == 9 &

Dose < 40)

Residuals:
Min 1Q Median 3Q Max

-30.245 -4.475 -2.398 2.047 26.687

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.5338 3.4258 3.367 0.00230 **
Dose 2.0593 0.1854 11.106 1.43e-11 ***
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.

âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 12.65 on 27 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.8204, Adjusted R-squared: 0.8138
F-statistic: 123.4 on 1 and 27 DF, p-value: 1.427e-11

If we want the traditional ANOVA F-tests, we can get this with the anova function:

Listing 7.9:
anova(mod1)

Analysis of Variance Table

Response: Response
Df Sum Sq Mean Sq F value Pr(>F)

Dose 1 19741 19741 123.35 1.427e-11 ***
Residuals 27 4321 160
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.

âĂŹ 0.1 âĂŸ âĂŹ 1

We get some decent diagnostic plots using the plot() function:

Listing 7.10:
plot(mod1, which = 1) # If using R interactively, try this without

"which = 1"
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Listing 7.11:

plot(mod1, which = 2)
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Listing 7.12:

plot(mod1, which = 3)
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(In case we had not noticed it already, this last plot in particular calls attention to the unequal
variances at the different dose levels.)

Additionally, there are generic methods to get estimated coefficients, confidence intervals,
predicted values, and residuals, and model fit statistics such as AIC, among other things:

Listing 7.13:
coef(mod1)

(Intercept) Dose
11.533841 2.059294

Listing 7.14:
confint(mod1)

2.5 % 97.5 %
(Intercept) 4.504658 18.563024
Dose 1.678854 2.439734
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Listing 7.15:
predict(mod1)

122 124 125 126 128 129
73.31267 11.53384 32.12678 73.31267 11.53384 32.12678

130 132 133 134 136 137
73.31267 11.53384 32.12678 73.31267 11.53384 32.12678

138 140 141 142 144 145
73.31267 11.53384 32.12678 73.31267 11.53384 32.12678

146 148 149 150 152 153
73.31267 11.53384 32.12678 73.31267 11.53384 32.12678

154 156 157 158 160
73.31267 11.53384 32.12678 73.31267 11.53384

Note: although we won’t demonstrate it right here, predict can also be used to compute
prediction intervals and confidence intervals for expected values.

Listing 7.16:
resid(mod1)

122 124 125 126
22.15691319 -3.31925088 4.80758926 26.68733372

128 129 130 132
-3.75206922 -3.85748658 0.86758696 -4.07105264

133 134 136 137
10.56422267 -4.47541738 -0.03564804 19.88075107

138 140 141 142
18.53727433 -0.08111633 -6.40211823 -1.39444908

144 145 146 148
-4.49646620 -9.37160127 -30.24470275 -3.27641519

149 150 152 153
1.68398482 -9.90695115 0.87539633 2.04677343

154 156 157 158
-7.89066912 -2.39772798 15.41324865 -25.92537333

160
-2.62255908

Listing 7.17:
AIC(mod1)

[1] 233.4132

Note that, by default, the vectors returned by fitted() and resid() do not include
elements for the observation with the missing value. If we want to keep our fitted val-
ues and residuals aligned with our original data set, we need to tell lm() how to han-
dle missing values. If we specify na.action = na.exclude (whereas the default is
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na.action = na.omit), then predict and resid will pad their return vectors with
NAs in the right places.

Listing 7.18:
mod1.1 <- lm(Response ~ Dose,

subset = Month == 9 & Dose < 40,
data = dat,
na.action = na.exclude)

Listing 7.19:
predict(mod1.1)

121 122 124 125 126 128
NA 73.31267 11.53384 32.12678 73.31267 11.53384
129 130 132 133 134 136

32.12678 73.31267 11.53384 32.12678 73.31267 11.53384
137 138 140 141 142 144

32.12678 73.31267 11.53384 32.12678 73.31267 11.53384
145 146 148 149 150 152

32.12678 73.31267 11.53384 32.12678 73.31267 11.53384
153 154 156 157 158 160

32.12678 73.31267 11.53384 32.12678 73.31267 11.53384

If we want to generate a non-missing prediction for our missing observation, we need to
pretend that our original data set is “new data”:

Listing 7.20:
predict(mod1.1,

newdata = subset(dat,
Month == 9 & Dose < 40,
select = Dose)

)

121 122 124 125 126 128
32.12678 73.31267 11.53384 32.12678 73.31267 11.53384

129 130 132 133 134 136
32.12678 73.31267 11.53384 32.12678 73.31267 11.53384

137 138 140 141 142 144
32.12678 73.31267 11.53384 32.12678 73.31267 11.53384

145 146 148 149 150 152
32.12678 73.31267 11.53384 32.12678 73.31267 11.53384

153 154 156 157 158 160
32.12678 73.31267 11.53384 32.12678 73.31267 11.53384
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7.5 Fitting an “ANOVA model” with lm()

Recall that the behavior of xyplot() depends on the mode of the variables we use:

Listing 7.21:
print(

xyplot(Response ~ factor(Dose),
subset = Month == 9 & Dose < 40,
data = dat)

)
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This is also the case with lm(). If we give lm() a factor version of Dose (rather than a
numeric version, as in the previous example), it will fit an ANOVA-type model, i.e.

Responsei = µ +β1I[Dosei=10]+β2I[Dosei=30]+ εi
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(Again, the heterogeneity of variances violates the assumptions required for standard ANOVA,
but for now we blissfully ignore this.)

Listing 7.22:
mod2 <- lm(Response ~ factor(Dose),

subset = Month == 9 & Dose < 40,
data = dat)

summary(mod2)

Call:
lm(formula = Response ~ factor(Dose), data = dat, subset = Month ==

9 & Dose < 40)

Residuals:
Min 1Q Median 3Q Max

-29.0859 -3.3166 -0.9587 2.2820 27.8462

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.216 3.981 2.315 0.0287 *
factor(Dose)10 26.773 5.784 4.629 8.94e-05 ***
factor(Dose)30 62.938 5.629 11.180 1.98e-11 ***
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.

âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 12.59 on 26 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.8288, Adjusted R-squared: 0.8156
F-statistic: 62.93 on 2 and 26 DF, p-value: 1.086e-10

(As you may know from courses you have taken in regression, an ANOVA model is just a
particular type of regression model using indicator variables. If for some reason you want to
see those indicator variables, do: model.matrix(mod2); compare this to what you get
with model.matrix(mod1).)

Let’s make a plot showing the underlying data and the mod1 and mod2 fits:

Listing 7.23:
print(

xyplot(Response ~ Dose,
subset = Month == 9 & Dose < 40,
data = dat,
panel = function(x, y, ...) {

panel.xyplot(x, y, ...)
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ux <- sort(unique(x))
m1pred <- predict(mod1, newdata = data.frame(Dose =

ux))
m2pred <- predict(mod2, newdata = data.frame(Dose =

ux))
panel.xyplot(ux, m1pred, type = 'l', lwd = 2)
panel.xyplot(ux, m2pred, pch = 19, cex = 1.5)
}

)
)
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As one can guess from looking at the output, lm() has used zero as the reference dose,
and the model coefficients represent contrasts of the other two doses to the zero dose. This
resulted from two distinct but related defaults. The first default that came into play was when
zero became the first level of factor(Dose):

Listing 7.24:
levels(factor(dat$Dose))[1]
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[1] "0"

The second default that came into play was the use of “treatment contrasts". Meaningful
coverage of contrasts would be somewhat technical and is beyond the scope of course. If
you are interested in learning more, the help file ?contrasts is a good place to start. For
our purposes, the key take-home message is that models will be parameterized in terms of
differences in means between factor levels, with the first factor level used as the reference
level.

Interaction contrasts (e.g. if gender is one factor and age is another, and you want to compare
elderly men to elderly women) can be particularly painful to work with using just functions
from base and recommended packages. A very helpful and well-written package if you need
to do this sort of thing is the “contrast” package (available on CRAN).

7.6 Fitting a nonlinear model with nls()

Our residuals versus predicted plot clearly showed that residuals from our regression model
were not identically distributed. In this case a natural approach is to see if variances stabilize
when we log-transform the response:

Listing 7.25:

print(
xyplot(log(Response) ~ Dose,

subset = Month == 9 & Dose < 40,
data = dat
)

)
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This looks pretty good in terms of variance stabilization, but now our mean values don’t fall
in a line. We could try to stay in the linear model world by applying a known transformation
(e.g. log or square root) to Dose, but for illustration purposes, let’s instead try a nonlinear
model. A power relationship might be appropriate, i.e.:

log(Responsei) = α +Doseβ

i + εi

We can fit this with nls(). While nls() is now in the base stats package (which is loaded
by default), some of the related methods (e.g. the method for plotting an nls object) are still
in the nlme pakcage (which is not loaded by default). Therefore, my recommendation is to
always load the nlme package whenever you are going to use nls().

The syntax is similar to lm(), but we need to provide starting values for the iterative fit-
ting algorithm. (There are also such things as “self-starting” models for nls(), for which
one doesn’t need to supply initial values, we will use these in an example in the section on
nlme(); also, if you are interested, look at the functions in package stats whose names begin
with “SS”, e.g. SSlogis, SSmicmen, etc.)
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Listing 7.26:
library(nlme)
mod3 <- nls(log(Response) ~ alpha + Dose^beta,

subset = Month == 9 & Dose < 40,
data = dat,
start = list(alpha = log(10), beta = 0.5)
)

We can now apply some of the same generic methods that we applied to our lm object:

Listing 7.27:
summary(mod3)

Formula: log(Response) ~ alpha + Dose^beta

Parameters:
Estimate Std. Error t value Pr(>|t|)

alpha 2.12418 0.08309 25.56 < 2e-16 ***
beta 0.20802 0.01826 11.39 8.07e-12 ***
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.

âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.282 on 27 degrees of freedom

Number of iterations to convergence: 6
Achieved convergence tolerance: 3.581e-07
(1 observation deleted due to missingness)

Listing 7.28:
confint(mod3)

2.5% 97.5%
alpha 1.9527145 2.2968216
beta 0.1672837 0.2437575

Listing 7.29:
AIC(mod3)

[1] 12.80844

Listing 7.30:
print(

plot(mod3)
)
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Listing 7.31:

print(
xyplot(log(Response) ~ Dose,

subset = Month == 9 & Dose < 40,
data = dat,
panel = function(x, y, ...) {

panel.xyplot(x, y, ...)
xx <- seq(min(x, na.rm = TRUE), max(x, na.rm = TRUE

), length = 100)
m3pred <- predict(mod3, newdata = data.frame(Dose =

xx))
panel.xyplot(xx, m3pred, type = 'l', lwd = 2)

}
)

)
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We could certainly find a better fitting model for these data, but that’s not the point of this
lesson, so let’s move on . . .

7.7 Fitting linear mixed-effects models with lme()

The progression of the response (on the original scale) appears to be pretty linear over the
first six months. Suppose we wanted to estimate the rate of change of the response over the
zero to six month time period for the 30 mg dose group.

First, let’s plot the data with a trellis plot that conditions on subject:

Listing 7.32:
print(

xyplot(Response ~ Month | Subject, data = dat,
subset = Month < 9 & Dose == 30,
panel = function(x, y, ...) {
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panel.xyplot(x, y, ...)
panel.lmline(x, y, ...)

}
)

)
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Observations from the same individual at different time points are correlated, and our model
should reflect this. One way to model this dependence is with subject-level random ef-
fects.

If we just want to add a random subject-level intercept, we could do the following:

Listing 7.33:
mod4 <- lme(fixed = Response ~ 1 + Month,

data = dat,
random = ~ 1 | Subject,
subset = Month < 9 & Dose == 30
)
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mod4

Linear mixed-effects model fit by REML
Data: dat
Subset: Month < 9 & Dose == 30
Log-restricted-likelihood: -115.4605
Fixed: Response ~ 1 + Month

(Intercept) Month
12.76440 9.94345

Random effects:
Formula: ~1 | Subject

(Intercept) Residual
StdDev: 6.241444 11.59604

Number of Observations: 30
Number of Groups: 10

This model that we just fit is (letting j index time points, while i continues to index pa-
tients):

Responsei j = (α +ai)+βMonthi + εi j.

It would also be natural to consider random subject-level slopes, i.e.

Responsei j = (α +ai)+(β +bi)Monthi + εi j.

This could be specified with:

Listing 7.34:
lme(Response ~ 1 + Month,

data = dat,
random = ~ 1 + Month | Subject,
subset = Month < 9 & Dose == 30
)

Error in lme.formula(Response ~ 1 + Month, data = dat, random = ~ 1
+ Month | :

nlminb problem, convergence error code = 1
message = iteration limit reached without convergence (9)

As the error indicates, we have convergence problems with this model. At first blush this may
be surprising: we have an admittedly small data set, but it does seem sufficient to support our
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relatively simple model. In fact our model is not quite as simple as might be expected: our
specification actually allows for arbitrary correlation between the random intercepts and the
random slopes, that is:

(
ai
bi

)
∼Multivariate Normal

((
0
0

)
,

[
σ2

a ρσaσb
ρσaσb σ2

b

])
This is most likely an overparameterized model. A simpler model would require the random
intercepts to be independent of the random slopes:

(
ai
bi

)
∼Multivariate Normal

((
0
0

)
,

[
σ2

a 0
0 σ2

b

])
Unfortunately, the specification of the random argument becomes a lot less intuitive in this
case:

Listing 7.35:
lme(Response ~ 1 + Month,

data = dat,
random = list(Subject = pdDiag( ~ 1 + Month)),
subset = Month < 9 & Dose == 30,
na.action = na.exclude
)

Linear mixed-effects model fit by REML
Data: dat
Subset: Month < 9 & Dose == 30
Log-restricted-likelihood: -112.2853
Fixed: Response ~ 1 + Month

(Intercept) Month
12.76440 9.94345

Random effects:
Formula: ~1 + Month | Subject
Structure: Diagonal

(Intercept) Month Residual
StdDev: 0.0006639948 2.513098 8.982265

Number of Observations: 30
Number of Groups: 10

In this case we have used pdDiag to indicate that we want the covariance matrix of the
random effects to be a (p)ositive (d)efinite (Diag)onal matrix. Statistical theory beyond what
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we have assumed for this course is prerequisite to really understanding this example in depth.
Our goal for now is to make you aware of both the default behavior and flexibility of the
lme() function. For a comprehensive treatment of these models and the nlme package, see
Pinheiro and Bates [4].

While it is possible to get convergence with this last model, some further simplification is
probably desirable (we are only working with three observations per subject over this time
free, so we probably don’t want to estimate two random effects for each subject). Noting that
there is almost no between-subject variability in the intercept, it is probably best if we leave
only the slope as random, forcing all subjects to share the same fixed intercept:

Listing 7.36:
mod5 <- lme(Response ~ 1 + Month,

data = dat,
random = list(Subject = pdDiag( ~ -1 + Month)),
subset = Dose == 30,
na.action = na.exclude
)

mod5

Linear mixed-effects model fit by REML
Data: dat
Subset: Dose == 30
Log-restricted-likelihood: -165.5926
Fixed: Response ~ 1 + Month

(Intercept) Month
18.784719 6.933287

Random effects:
Formula: ~-1 + Month | Subject

Month Residual
StdDev: 1.227169 15.50113

Number of Observations: 40
Number of Groups: 10

Equivalently, we could specify this last model with:

Listing 7.37:
mod5 <- lme(Response ~ 1 + Month,

data = dat,
random = ~ -1 + Month | Subject,
subset = Dose == 30,
na.action = na.exclude
)
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mod5

Linear mixed-effects model fit by REML
Data: dat
Subset: Dose == 30
Log-restricted-likelihood: -165.5926
Fixed: Response ~ 1 + Month

(Intercept) Month
18.784719 6.933287

Random effects:
Formula: ~-1 + Month | Subject

Month Residual
StdDev: 1.227169 15.50113

Number of Observations: 40
Number of Groups: 10

Prediction becomes a more subtle concept in the context of models with random effects. For
our model there are two levels of predictions:

• “individual predictions”, representing expected values of new observations in the same
subjects under the same conditions (such new observations may not always be logis-
tically or even logically possible, but the individual predictions usually will usually at
least make sense in reference to a “thought experiment”).

• “population predictions”, representing expected values of new observations in new sub-
jects from the same population, under the same conditions.

By default, the predict method for lme() will give us individual predictions. More generally
for models with a hierarchy of random effects, the predict method will give us conditional
predictions corresponding to the “innermost” level of the random effects. To get population
predictions, we specify level = 0 in our call to predict.

The following plot shows the difference between the two different types of predictions for
this model:

Listing 7.38:
print(

xyplot(Response ~ Month | Subject, data = dat,
subset = Dose == 30 & Month < 9,
panel = function(x, y, subscripts, ...) {

panel.xyplot(x, y, ...)
subjectData <- dat[subscripts, ]
indPred <- predict(mod5, newdata = subjectData)
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popPred <- predict(mod5, newdata = subjectData,
level = 0)

panel.xyplot(subjectData$Month, indPred, type = "l
", lty = 2)

panel.xyplot(subjectData$Month, popPred, type = "l
", lty = 1)

}
)

)

Month

R
es

po
ns

e

20

40

60

80

100

0 1 2 3 4 5 6

●

●

●

Subject

●

●

●

Subject

0 1 2 3 4 5 6

●

●

●

Subject

●

●

●

Subject

●

●

●

Subject

●

●

●

Subject

●

●

●

Subject

20

40

60

80

100

●

●

●

Subject

20

40

60

80

100

●

●
●

Subject

0 1 2 3 4 5 6

●

●

●

Subject

As with predictions, so with residuals:

Listing 7.39:
print(

xyplot(resid(mod5) ~ fitted(mod5))
)
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fitted(mod5)
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Listing 7.40:

print(
xyplot(resid(mod5, level = 0) ~ fitted(mod5, level = 0))
)
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fitted(mod5, level = 0)
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7.8 Fitting a nonlinear mixed effects model with nlme()

Exposition of this example will be very limited. As with the latter half of the last section, the
goal here is primarily to demonstrate the flexibility of this class of models and its relevance to
pharmacometric modeling. Those interested in learning more are again encouraged to spend
some time with Pinheiro and Bates [4].

Let’s remind ourselves what this data looks like when we plot it all together:

Listing 7.41:
print(

xyplot(log(Response) ~ Exposure,
data = dat,
groups = Month,
panel = function(x, y, ...) {

panel.superpose(x, y, ...)
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},
panel.groups = function(x, y, ...) {

panel.xyplot(x, y, ...)
panel.loess(x, y, ...)

}
)

)
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The loess fits suggest that, at least within each month, it woud be reasonable to describe
the relationship between Exposure and Response using an asymptotic regression model
(i.e. so that Response approaches some horizontal asymptote as Exposure goes to infin-
ity).

Another consideration is that, as soon as we start modeling multiple months simultaneously,
we are going to need to account for correlations amongst observations. For example, if we
focus on months 6 and 9, we would have correlated pairs of observations, as suggested by the
following plot:
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Listing 7.42:
print(

xyplot(log(Response) ~ Exposure,
data = dat,
subset = Month %in% c(6, 9),
groups = Subject,
type = 'b'
)

)
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The models fit by nlme() can be extremely complex, so it is sometimes a reasonable strat-
egy to first ignore correlations to some approximate guesswork with nls() (corresponding
to a “naïve pooling” approach), then move to nlme() only once you are comfortable that
you are in the right ballpark. In this case we are going to start by using nls() to fit a model
to the data from a single month, before moving to nlme() to model data over time.

We are going to use a “self-starting” version of an asymptotic regression model, encoded as
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SSasymp. When using a self-starting model with nls(), it is not necessary to supply initial
values:

Listing 7.43:
tmp1 <- nls(log(Response) ~ SSasymp(Exposure, Asym, R0, lrc),

data = dat,
subset = Month %in% c(6, 9)
)

tmp1

Nonlinear regression model
model: log(Response) ~ SSasymp(Exposure, Asym, R0, lrc)
data: dat

Asym R0 lrc
4.448 2.267 -2.303
residual sum-of-squares: 3.432

Number of iterations to convergence: 5
Achieved convergence tolerance: 5.611e-06

Let’s see if this looks reasonable:

Listing 7.44:
print(

xyplot(log(Response) ~ Exposure,
data = dat,
subset = Month %in% c(6, 9),
panel = function(x, y, ...) {

panel.xyplot(x, y, ...)
xo <- sort(x)
yo <- y[order(x)]
panel.xyplot(xo, predict(tmp1, newdata = data.frame

(Exposure = xo)), type = 'l')
}
)

)

Now if we want to model this data over time, the model will need to change in two ways: we
will want to model the dependence of observations within individuals, and we will want to al-
low the mean responses to vary with time. (For this fake data set, pharmacodynamic response
lags months behind the PK; Exposure actually has no ability to explain the variation over
time).

One way to dealing with the dependence issue is to introduce subject-level random effects on
some of the parameters. Specifically, let’s allow the intercept and the asymptote to vary by

139



CHAPTER 7. MODELING IN R

subject (we will leave the other parameter fixed because we are not working with a lot of data
here).

Here we add the six month data into the mix, but we don’t yet want to add the other months,
because our model doesn’t yet allow the means to vary with time:

Listing 7.45:
mod6 <- nlme(model = log(Response) ~ SSasymp(Exposure, Asym, R0,

lrc),
data = dat,
subset = Month %in% c(6, 9),
fixed = list(Asym ~ 1, R0 ~ 1, lrc ~ 1),
random = list(Asym ~ 1, R0 ~ 1),
groups = ~ Subject,
start = coef(tmp1),
na.action = na.exclude
)

mod6

Nonlinear mixed-effects model fit by maximum likelihood
Model: log(Response) ~ SSasymp(Exposure, Asym, R0, lrc)
Data: dat
Subset: Month %in% c(6, 9)
Log-likelihood: 12.89803
Fixed: list(Asym ~ 1, R0 ~ 1, lrc ~ 1)

Asym R0 lrc
4.441109 2.265896 -2.283917

Random effects:
Formula: list(Asym ~ 1, R0 ~ 1)
Level: Subject
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
Asym 0.11108420 Asym
R0 0.08006043 0.998
Residual 0.18268187

Number of Observations: 79
Number of Groups: 40

(For at least some usages of nlme(), we need to supply initial values even when using a
“self-starting” model; “self-starting” is obviously a misnomer in this case.)

Listing 7.46:
print(
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xyplot(log(Response) ~ Month | Subject, data = dat,
subset = Month %in% c(6, 9),
panel = function(x, y, subscripts, ...) {

panel.xyplot(x, y, ...)
subjectData <- dat[subscripts, ]
indPred <- predict(mod6, newdata = subjectData)
popPred <- predict(mod6, newdata = subjectData,

level = 0)
panel.xyplot(subjectData$Month, indPred, type = "l

", lty = 2)
panel.xyplot(subjectData$Month, popPred, type = "l

", lty = 1)
}
)

)
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Finally, let’s allow the population mean of the intercept and asymptote to vary by Month,

141



CHAPTER 7. MODELING IN R

so that we can throw all the data into the mix. (From the point of view of physiological
interpretation, it would be unsatisfying to have this exposure-response asymptote vary as a
function of month, but one can imagine that there might be a hidden physiological time-
varying covariate for which month is a decent proxy.)

We do this by modifying the fixed component of this model:

Listing 7.47:
p <- coef(tmp1)
mod7 <- nlme(model = log(Response) ~ SSasymp(Exposure, Asym, R0,

lrc),
data = dat,
fixed = list(Asym ~ factor(Month), R0 ~ 1, lrc ~

1),
random = list(Asym ~ 1, R0 ~ 1),
groups = ~ Subject,
start = c(p["Asym"], 0, 0, 0, p[c("R0", "lrc")]),
na.action = na.exclude
)

mod7

Nonlinear mixed-effects model fit by maximum likelihood
Model: log(Response) ~ SSasymp(Exposure, Asym, R0, lrc)
Data: dat
Log-likelihood: 5.053913
Fixed: list(Asym ~ factor(Month), R0 ~ 1, lrc ~ 1)
Asym.(Intercept) Asym.factor(Month)3 Asym.factor(Month)6

2.367357 1.433793 1.998596
Asym.factor(Month)9 R0 lrc

1.989683 2.241898 -2.125852

Random effects:
Formula: list(Asym ~ 1, R0 ~ 1)
Level: Subject
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
Asym.(Intercept) 0.2092539 As.(I)
R0 0.1211240 -0.999
Residual 0.2008435

Number of Observations: 159
Number of Groups: 40

This appears to do something reasonable:
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Listing 7.48:

print(
xyplot(log(Response) ~ Month | Subject, data = dat,

panel = function(x, y, subscripts, ...) {
panel.xyplot(x, y, ...)
subjectData <- dat[subscripts, ]
indPred <- predict(mod7, newdata = subjectData)
popPred <- predict(mod7, newdata = subjectData,

level = 0)
panel.xyplot(subjectData$Month, indPred, type = "l

", lty = 2)
panel.xyplot(subjectData$Month, popPred, type = "l

", lty = 1)
}
)

)
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7.9 Homework

Use the month 9 data to fit an ANOVA model to the log transformed response. Do some basic
model diagnostics and model summary, including characterizing treatment differences on the
original scale.
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Chapter 8

Modeling Outside of R

8.1 Objectives

After completing this chapter, you will be able to . . .

• Understand the usage of the metrumrg package

• Understand the usage of metaSub() and resample()

• Read in and plot results of a population PK analysis from NONMEM

• Read in and plot results of a simple WinBUGS analysis

• Understand the usage of rlog()

8.2 Introduction

The varied nature of the data that are analyzed by the pharmacometrician necessitate the avail-
ability and use of various software applications. More often than not, each application has
a set of unique data requirements that are not easily interchangeable. Each application also
varies greatly as to the content of the output, ease of use of the output, and post-processing ca-
pabilities. The utility of R for preparing data has been demonstrated in the “Data Assembly”
chapter and will be expanded upon in the upcoming chapter “Advanced Data manipulation”.
In this chapter we will explore some techniques for evaluating the ouput of some common
applications (NONMEM, WinBUGS) utilized by the pharmacometrician. Instructions for
developing models in NONMEM and WinBUGS is outside the scope of this chapter so in-
struction and examples will focus on pre- and post-processing steps in R. We will utilize a
number of the functions available in the metrumrg package.
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Listing 8.1:
library(metrumrg)

8.3 Usage of the metrumrg package

The metrumrg package was developed at Metrum Institute to provide a suite of tools for
data set preparation, running NONMEM (locally or on a cluster), creating post-run plots
and tables, creating logs for tracking a NONMEM analysis, and simulation and model based
inference. Source code is available from GoogleCode (http://metrumrg.googlecode.com).
We can access the list of available metrumrg functions from the RStudio help button. (The
metrumrg package assumes that NONMEM has been installed using nmqual (http://nmqual.googlecode.com/),
the open source NONMEM installation tool from Metrum Institute (http://metruminstitute.org).)

We will explore the NONR72() , PLOTR() , rlog(), resample.data.frame, and
metaSub.character() functions. The workhorse of the metrumrg package is the NONR72()
function. We can review the arguments for NONR72().

Listing 8.2:
args(NONR72)

function (run, command, project = getwd(), boot = FALSE,
grid = boot, concurrent = grid, urgent = !boot, udef = FALSE,
invisible = udef, compile = TRUE, execute = TRUE,
split = FALSE, checkrunno = TRUE, checksum = TRUE,
diag = !boot, fdata = TRUE, logtrans = FALSE,
nice = TRUE, epilog = NULL, dvname = NULL, grp = NULL,
grpnames = NULL, cont.cov = NULL, cat.cov = NULL,
par.list = NULL, eta.list = NULL, missing = -99, ...,
interface = "autolog.pl", q = "all.q")

NULL

We will not go through all of the arguments but we will hit on a few relevant ones. If we
wanted to execute a NONMEM run in our directory for this weeks lecture we would execute
the code block below.

Listing 8.3:
NONR72(project = "/home/billk/MI205/modelingoutr/", command="/opt/

NONMEM/nm72gf/nmqual/autolog.pl", run= c(1), grid=TRUE )

This function call and set of arguments represents the minimum information necessary for
a successful NONR72() call. We basically need to tell NONR72() what directory contains
the relevant control stream, the perl script being used to call NONMEM, and the number of
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the control stream(s). At this point, the NONR72() function checks to ensure that the control
stream (1.ctl) exists and exits with a message to the R console upon failure. If 1.ctl exists,
NONMEM is executed using the specified control stream. Upon successful completion of
NONMEM, the output files are used by PLOTR() to create a set of diagnostic plots.

Listing 8.4:
NONR72(project = "/home/billk/MI205/modelingoutr/", command="/opt/

NONMEM/nm72gf/nmqual/autolog.pl", run= c(1), grid=TRUE )

As is demonstrated from the output of the above command on RStudio, NONMEM is in-
stalled and has run successfully. Assuming the 1.ctl file was setup correctly, we would have
an output file and set of diagnostic plots that can be viewed to judge the adequacy of the
model we fit to the data.

8.4 Preparing input files and data for modeling programs

For this chapter, the terminology “external modeling programs” will be used to refer to any
software other than R. In many cases, the “controlling” parameters for external modeling
programs reside in a simple ASCII text file that is read and interpreted during or immediately
prior to execution. For example, the control stream in NONMEM and the model file in
WinBUGS are simple ASCII text files. An entire analysis may result in 30+ NONMEM
control streams not including the model evaluation steps (bootstrapping, predictive check)
that may add 500 or 1000 more. For WinBUGS, the number of model files would likely be
less. In either situation, the pharmacometrician is left with the unenviable task of editing
and tracking changes to a large number of the “controlling” files. It would be preferable to
edit the files programmatically so the process could be easily tracked and reproduced. This
could be accomplished via an R script that utilizes external command-line programs like
grep, sed, and awk to edit and save the relevant files. However, we would still be relying on
programs outside of R that may or may not be available on all operating systems. Another
approach would be to use the metaSub() in the metrumrg package. Lets take a look at the
arguments and help file for the metaSub() function. (metaSub() is a generic function
with methods available for character items within a file and/or entire files so we will ask for
the arguments for the character class.)

Listing 8.5:
args(metaSub.character)

function (x, names, pattern = NULL, replacement = NULL,
out = NULL, suffix = ".txt", fixed = TRUE, ...)

NULL
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The key portions of this function are the information passed to the pattern and replacement
arguments. These arguments can accept a simple character vector or a list of substitutions
that may then contain a single or set of “regular” expressions to be evaluated. For this dis-
cussion we will limit these arguments to a character vector containing multiple pattern and
replacement arguments. (The use of regular expressions will not be covered but an example
piece of R code will be provided demonstrating their use in metaSub.)

Lets use metaSub() to generate additional control streams using the 1.ctl file as a template.
We will want to take a quick look at 1.ctl to understand what we want to replace. For this
example, 1.ctl will represent the final model and we are going to bootstrap the data set (more
on this later) and use the final model against the new data set. We will want to replace
the original data set name (found in $DATA) and remove the $TABLE items. (It is not
important for todays exercise to understand why we are altering these items but it is important
to understand how to do it.) Lets take a look at the portion of R code below.

Listing 8.6:
# metaSub() is part of the metrumrg package and will need to be

loaded via the library command
# library(metrumrg)

metaSub(
as.filename("1.ctl"),
names=100,
pattern=c("ex1_R.csv",

"$TABLE"),
replacement=c("1.csv",

";$TABLE"),
out=".",
suffix = ".ctl"
)

In the “modelingoutr” directory there is now a new contol stream (100.ctl) that is an exact
copy of 1.ctl with the exception of the items we changed in the R code above. A more realistic
bootstrap would be to fit the model to 100 or even 1000 resampled data sets. The snippet of
R code below will generate 10 new control streams but could easily be modified to generate
100 or even 1000 control streams.

Listing 8.7:
metaSub(

as.filename("1.ctl"),
names=100:110,
pattern=c("ex1_R.csv",

"$TABLE"),
replacement=list(expression(paste(as.numeric(name), ".csv

",sep="")),

148



CHAPTER 8. MODELING OUTSIDE OF R

expression(paste(";$TABLE"))
),

out=".",
suffix = ".ctl"
)

The main difference in these 10 control streams is the name in the $DATA block. The name
of the data set in each new control stream matches the numeric portion of the file name. for
example, in 100.ctl the data set name is 100.csv. A metaSub call using regular expres-
sions to perform a similar task in a slightly different way is provided as a reference example
below.

Listing 8.8:
metaSub(

as.filename("1.ctl"),
names=100:110,
pattern=list("\\$DATA[^$]*",

"\\$TABLE[^$]*"
),

replacement=list(expression(paste("$DATA ../",as.numeric(
name), ".csv \n",sep="")),

expression(paste(";$TABLE")
)

),
out=".",
fixed=FALSE,
suffix = ".ctl"
)

The input file to metaSub() could be any ASCII file so its use is not limited to NONMEM
control streams. The example below uses metaSub to revise a WinBUGS model file.

Listing 8.9:
metaSub(

as.filename("linear.txt"),
names="linear1",
pattern=list("x[i]",

"a ~ dnorm(0,0.0001)"
),

replacement=list("x[i] + pow(c,2)",
"a ~ dunif(0,10000) \n c ~ dnorm(0,0.0001)

"
),

out=".",
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suffix = ".txt"
)

The replacement argument will also accept rows or columns from a dataframe. Using
this approach, a set of initial estimates could be generated in R then passed to metaSub to
populate specific “controller” file areas. In the case of NONMEM, this approach could be
used to generate control streams for clinical trial simulation.

In addition to generating multiple “controller” files, there is a frequent need to generate per-
mutations of the analysis data set. One typical scenario in population PK or PKPD analysis
involves the generation of bootstrap data sets to use as input for the “final” model to aid in
the generation of confidence intervals on the parameters. We often generate 500 to 1000
bootstrapped data sets using a resampling with replacement approach with some level of
stratification on dose, covariates, etc . . . The resample() function is a generic method
with a class for dataframe that can be used for permutating a data set. Lets take a look at the
arguments for resample.

Listing 8.10:
args(resample.data.frame)

function (x, names, key = NULL, rekey = FALSE, out = NULL, stratify
= NULL,
ext = ".csv", row.names = FALSE, quote = FALSE, sep = ",",
replace = TRUE, ...)

NULL

For our example, we are interested in generating 20 additional data sets resampled on “ID”
and stratified on “weight” and “sex” using the prob1 dataframe. In the function call below,
“ID” is the key that identifies unique individuals, “rekey” = TRUE tells resample to generate
a new “ID” variable in each data set starting from 1, “names” indicates the naming convention
for the output *.csv files, and “out” controls the location of the new data sets. If “out” is not
specified, the resampled data sets are combined into a list with elements corresponding to
“names”.

Listing 8.11:
prob1<-read.table(file="prob1.tab", skip=0, header=TRUE)
head(prob1)

C ID DV AMT II ADDL TIME RATE HT WT CLCR SEX AGE
1 0 1 0.00 900 12 9 0.0 300 103 91 101.48 0 46
2 0 1 6.99 0 0 0 1.5 0 103 91 101.48 0 46
3 0 1 12.66 0 0 0 3.0 0 103 91 101.48 0 46
4 0 1 5.31 0 0 0 8.0 0 103 91 101.48 0 46
5 0 1 2.39 0 0 0 11.9 0 103 91 101.48 0 46
6 0 1 2.87 0 0 0 23.9 0 103 91 101.48 0 46

150



CHAPTER 8. MODELING OUTSIDE OF R

Listing 8.12:
summary(prob1$WT)

Min. 1st Qu. Median Mean 3rd Qu. Max.
34.00 50.50 58.00 60.52 70.25 96.00

Listing 8.13:
resample(

prob1,
key="ID",
rekey=TRUE,
names=1:20,
out=".",
stratify=list(prob1$WT>60, prob1$SEX)
)

Each of the resulting data sets will contain the same number of subjects (n=40), a similar
split of subjects less than 60 kg, and a similar number of males and females in each weight
grouping. Due to resampling with replacement, some of the individuals may be present in
each data set more than once or not at all.

8.5 Reading and plotting NONMEM output

For every model that is run in NONMEM, there are some typical diagnostic plots that are
evaluated. These include Predicted and Individual Predicted vs Observed and Weighted/-
Conditional Weighted Residuals vs Predictions and Time. If NONR72() is used to run
NONMEM these plots are generated following every run by a call to the PLOTR() func-
tion. Additional arguments to NONR72() can be provided to evaluate the inter-individual
random effects, categorical and continuous covariates, and the relationship between the inter-
individual random effects and covariates. An example of a NONR72 call that demonstrates
the full plotting capabilities of PLOTR() is shown below.

Listing 8.14:
NONR(project = "/home/billk/MI205/modelingoutr/",

command="/opt/NONMEM/nm72gf/nmqual/autolog.pl",
run = c(4),
grid=TRUE,
cont.cov = c("WT","AGE", "CLCR"),
cat.cov = c("SEX"),
eta.list = c("ETA1","ETA2","ETA3"),
par.list = c("CL","V"),
grp = c("SEX"),
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dvname = "Test ng/mL"
)

A pdf file (DiagnosticPlotReview_4.pdf) has been generated containing all of the diagnostic
and covariate plots. Since we specified the “grp” argument the diagnostic portion of the
plots were generated twice, once for each level of the “grp” variable. The plots created by
NONR72() and PLOTR() provide a set of standardized plots for evaluating models. In many
situations, there are other plots that the pharmacometrician would like to evaluate for each or
at least for a subset of runs. The epilog argument to NONR72() will run a user defined R
script following completion of the standard plots. The script “epilogEx.R” is distributed with
the metrumrg package as an example. A NONR72() call implementing an epilog script is
shown below. ( Lets take a quick look at the “epilogEx.R” script. )

Listing 8.15:
NONR(project = "/home/billk/MI205/modelingoutr/",

command="/opt/NONMEM/nm72gf/nmqual/autolog.pl",
run = c(4),
grid=TRUE,
cont.cov = c("WT","AGE", "CLCR"),
cat.cov = c("SEX"),
eta.list = c("ETA1","ETA2","ETA3"),
par.list = c("CL","V"),
grp = c("SEX"),
dvname = "Test ng/mL",
epilog = paste(" ~ /MI205/modelingoutr/epilogEx.R")
)

The epilog script is not limited to plotting functionality. Any type of post-run analysis,
plotting, data formatting, etc. . . can be performed with the script. This approach allows for
the automatic generation of additional plots or analysis after the completion of a NONMEM
run and provides access to a few variables that would not typically be available outside of the
NONR72() call.

8.6 Reading and plotting WinBUGS output

The application of Bayesian analysis in the field of pharmacometrics is growing and is a
tool being applied to aid in decision making during the drug development process. The
main tool used in pharmacometrics for Bayesian analysis is WinBUGS (http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml. We will limit todays information to reading
and plotting WinBUGS output. (Those interested in the application of Bayesian analysis
can review the WinBUGS webpage or the Metrum Institute (http://www.metruminstitute.org/
course offerings.)
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For our example today, we will be using the WinBUGS output from a simple linear regression
model. The model is described below.

yi = a+b∗ xi +σi (8.1)

The output was saved to a file (linear1b.fit.save) using save() and we will load it back
into R using load(). During the actual WinBUGS run the parameters that were monitored
were a, b, and sigma. A set of functions found in the “bugs.tools.R” script were used to run
WinBUGS, save the model output, and format the data for plotting. This script is part of
the bugsParallel (http://code.google.com/p/bugsparallel) project on GoogleCode and has also
been placed in the directory of files for this lecture.

Listing 8.16:
load(" ~ /MI205/modelingoutr/linear/linear1b/linear1b.fit.Rsave")

There is a new R object “bugs.fit” that contains all of the information from the WinBUGS
run as a list. We can generate some diagnostic plots and a table of the output using the
code below.

Listing 8.17:
courseDir = "."
model.name = "linear1b" # root names of model file
example.dir = "linear" # subdirectory containing model file
setwd(courseDir)
library(coda)
library(lattice)
source("bugs.tools.R")
# create WinBUGS data set
bugs.data = list(

x = c(1,2,3,4,5,6,7,8,9,10),
y = c(5.19,6.56,9.19,8.09,7.6,7.08,6.74,9.3,8.98,11.5)

)
# specify the variables for which you want history and density

plots
parameters.to.plot =c("a","b","sigma")
######################################################
# rename and reformat MCMC results
# to facilitate later calculations and plots

sims.array = bugs.fit$sims.array
posterior = array(as.vector(sims.array),dim=c(prod(dim(sims.array)

[1:2]),dim(sims.array)[3]),
dimnames=list(NULL,dimnames(sims.array)[[3]]))

######################################################
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# posterior distributions of parameters

# open graphics device
pdf(file = paste(courseDir,"/",example.dir,"/",model.name,"/",

model.name,".plots.pdf",sep=""),width=6,height=6)
# subset of sims.array containing selected variables
x1 = sims.array[,,unlist(sapply(c(paste("^",parameters.to.plot,"$

",sep=""),
paste("^",parameters.to.plot,"\\[",sep="")),grep,x=dimnames

(sims.array)[[3]]))]
# create history, density and Gelman-Rubin-Brooks plots, and a

table of summary stats
ptable = parameter.plot.table(x1)
write.csv(signif(ptable,3),paste(example.dir,"/",model.name,"/",

model.name,".summary.csv",sep=""))
######################################################
# posterior predictive distributions

pred = posterior[,grep("ypred\\[",dimnames(posterior)[[2]])]
x1 = data.frame(x=bugs.data$x,y=bugs.data$y)
x1$type =rep("observed",nrow(x1))
x2 = rbind(x1,x1,x1)
x2$y = as.vector(t(apply(pred,2,quantile,probs=c(0.05,0.5,0.95))))
x2$type = rep(c("5%ile","median","95%ile"),ea=nrow(x1))
x1 = rbind(x1,x2)
xyplot(y ~ x,x1,groups=type,panel=panel.superpose,

type=c("l","l","l","p"),lty=c(3,3,1,0),col=c(2,2,4,1),
pch=c(NA,NA,NA,19),cex=1.5,lwd=3,
scales=list(cex=1),xlab=list(xlab="x",cex=1.2),
ylab=list(ylab="y",cex=1.2))

dev.off()

The plots can be found in the “linear1b” directory as a pdf (linear.1b.plots.pdf) and the sum-
mary table of the model parameters as a csv file (linear.1b.summary.csv).

8.7 Summarizing a set of NONMEM runs

Following a series of NONMEM runs, it is convenient to view all of the parameter estimates
in one file. The metrumrg package contains a function called rlog() that will generate a
*.csv file containing the relevant results of each completed run. The arguments to rlog are
a subset of those required for NONR72.
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Listing 8.18:
args(rlog)

function (run, project = getwd(), boot = FALSE, append = TRUE,
tool = "nm6", file = filename(project, "CombRunLog.csv"),
rundir = filename(project, run, if (boot) ".boot" else ""),
nmlog = file.path(rundir, "NonmemRunLog.csv"), nmout = filename

(rundir,
run, ".lst"), pattern = c("^F[ISRCMP]", "^OU", "^nonmem",
"^nul$", "WK", "LNK$", "fort", "^nm", "lnk$", "set$",
"^gar", "INT", "^temp", "^tr", "^new", "^FD", "^Run\\d+\\.o

\\d+$",
"^prsizes"), ...)

NULL

To generate a summary of the two runs (1 and 4) we performed earlier in class we could use
the following code.

Listing 8.19:
rlog(project="/home/billk/MI205/modelingoutr.",

run=c(1,4),
tool="nm7",
append=FALSE)

rlog reads in a subset of output files created in the run directory for each run when NONR72()
is used to run NONMEM and collates the results into one file. It is best to view the resulting
file (CombRunLog.csv) in a spreadsheet-type (MSExcel, Numbers, etc. . . ) program. This file
can also be used to generate the “Model Building Summary Table” that is usually included
as part of a population PK or PKPD report.

8.8 Homework

• In the metaSub example 10 new control streams (100.ctl - 110.ctl) were generated
from 1.ctl. How could this code be changed to generate 100 control streams using
numbering that starts from 200? Would it be possible to number the control streams by
starting from 200 but use only even numbers? If so, how might we do it?

• Use resample() to generate 10 new versions of the prob1 data set. Plot a his-
togram of WT for the original data and for each of the resampled data sets. Does the
distribution of WT in the resampled data sets appear similar to the original?
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• Using the same scenario, generate the resampled data sets and the plots of the resam-
pled data sets in two function calls. HINT: One call to resample() and one call to
lapply.

• Read in output and generate 3 - 4 diagnostic plots for any modeling performed outside
of R. (You do not need to share this with the class.) What problems, if any, did you
encounter? What types of plots did you create?
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Chapter 9

Advanced Function Writing

9.1 Objectives

After completing this chapter, you will be able to . . .

• Locate errors in the execution of a function.

• Test assumptions about supplied arguments.

• Provide performance information to the user.

• Control function behavior conditionally.

• Manage repetition of function steps.

• Override default print behaviors.

• Implement new methods for generic functions.

9.2 Introduction

Writing useful functions contributes enormously to the power, convenience, and elegance
of R (R help, Introduction to R, Section 10). Chapter 4 above focused on the externals of
function writing: names, arguments, storage, etc. This chapter focuses on the internals. In
general, we examine techniques for refining the function body for better performance. We
also take a first look at the power of object orientation.
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9.3 Debugging

You won’t get very far writing your own functions if you don’t have a debugging strategy.
The problem is that, even if a function is syntactically correct, many kinds of errors can
occur at runtime (during function execution). These include programming errors as well as
unanticipated characteristics of the supplied arguments. It is essential to be able to examine
errors as they occur.

The strategy used here emphasizes traceback(), debug(), and to some extent browser
(). Other strategies exist (see, for example, the CRAN package debug). The function
traceback() generally gives us a good idea of where things went wrong. debug() lets
us step through a named function line-by-line, examining inputs and outputs. browser()
does something similar for anonymous functions.

As you know, functions can call functions, which call other functions, and so on, creating
a ‘stack’ of functions that all contribute to a single result. traceback(), typed on the
command line, shows us the stack of functions that were active at the time the last error
occured.

To illustrate, let’s create a system of toy functions for calculating root mean squared er-
ror.

Listing 9.1:
deviation <- function(x)x-mean(x)
squared <- function(x)x**2
root <- function(x)x**0.5
values <- c(1,'NA',3,4,5)
root(mean(squared(deviation(values))))

Error in x - mean(x) : non-numeric argument to binary operator
In addition: Warning message:
In mean.default(x) : argument is not numeric or logical: returning

NA

In this case, its fairly obvious where the error occured. To verify, we type on the command
line:

Listing 9.2:
traceback()

4: deviation(values)
3: squared(deviation(values))
2: mean(squared(deviation(values)))
1: root(mean(squared(deviation(values))))
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So, root() called mean(), mean() called squared(), squared() called deviation
(), and deviation() gave an error. We have the complete pathway back to the function
in which the error occured.

Now we wish to explore the problem in greater detail. What was the value of x at the time
of the error? We issue the command debug(deviation), and then recreate the problem.
When deviation() is called, execution pauses, and we get a command prompt. We can
execute arbitrary expressions, or we can hit return to step through the code one line at a
time, or Q to quit.

Listing 9.3:
debug(deviation)
root(mean(squared(deviation(values))))

debugging in: deviation(values)
debug: x - mean(x)

Listing 9.4:
Browse[1]>ls()

[1] "x"

Listing 9.5:
Browse[1]>x

[1] "1" "NA" "3" "4" "5"

Listing 9.6:
Browse[1]>mean(x)

[1] NA
Warning message:
In mean.default(x) : argument is not numeric or logical: returning

NA

Listing 9.7:
Browse[1]>class(mean(x))

[1] "numeric"
Warning message:
In mean.default(x) : argument is not numeric or logical: returning

NA
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Listing 9.8:
Browse[1]>class(x)

[1] character

When we evaluate mean(x), we get a warning, because x is character. Even though
mean() doesn’t like getting character, it returns a numeric NA, which is a legal argument
to the binary operator -. The real problem is x itself, which is not a legal argument for
subtraction.

At this point, we enter Q to quit, and undebug(deviation) to turn off debugging on that
function (debugging turns off automatically if we redefine the function).

9.4 Testing Input

Now that we understand the problem, we can improve our function to reduce (unexplained)
errors. Specfically, we can test each argument to make sure it corresponds to our expectations.
We’ll try to do something intellligent if it does not.

Listing 9.9:
deviation <- function(x){

if(!is.numeric(x))return(NULL)
return(x-mean(x))

}
root(mean(squared(deviation(values))))

NaN

This time, we have trapped the condition where x is character, rather than simply letting
an error occur. Now we fix our data, and try again.

Listing 9.10:
values <- c(1,NA,3,4,5)
root(mean(squared(deviation(values))))

NA

No complaints here, but the NA is still preventing a defined result.
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9.5 Alerting the User

What started out looking like a relatively simple problem is getting complicated. Maybe its
time to throw some of the burden back on the user. There are three communication functions,
analogous to green, yellow, and red traffic signals: message() provides neutral informa-
tion; warning() tells the user that a problem may exist; stop() signals an error and halts
function execution.

Listing 9.11:
deviation <- function(x){

message('calculating differences from the reference value ...')
if(any(is.na(x)))warning('removing NA values in x')
if(!is.numeric(x))stop('x must be numeric')
return(x-mean(x,na.rm=TRUE))

}

Listing 9.12:
deviation(1:5)

calculating differences from the reference value ...
[1] -2 -1 0 1 2

Listing 9.13:
deviation(c(1,NA,2,3,4,5))

calculating differences from the reference value ...
[1] -2 NA -1 0 1 2
Warning message:
In deviation(c(1, NA, 2, 3, 4, 5)) : removing NA values in x

Listing 9.14:
deviation(c(1,'NA',2,3,4,5))

calculating differences from the reference value ...
Error in deviation(c(1, "NA", 2, 3, 4, 5)) : x must be numeric

9.6 Branching

A program branches when it does one of several possible things, depending on some condi-
tion. Above we branched to a warning when an NA was detected, using the familiar if()
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syntax. Like many languages, R also supports the use of else to handle instances not match-
ing the condition passed to if(). Let’s revisit that example, but this time make sure that our
function gives a message or a warning or an error, but never two of these.

Listing 9.15:
deviation <- function(x){

if(!is.numeric(x))stop('x must be numeric')
else if(any(is.na(x)))warning('removing NA values in x')
else message('calculating differences from the reference value

...')
return(x-mean(x,na.rm=TRUE))

}
deviation(c(1,NA,2,3,4,5))

[1] -2 NA -1 0 1 2
Warning message:
In deviation(c(1, NA, 2, 3, 4, 5)) : removing NA values in x

Note that the neutral message is not printed this time.

As illustrated, conditions can be chained together with else if.

Do not confuse the if...else construct with the function ifelse(), which has a very
different purpose. In particular, ifelse() accepts a vector (any length) of TRUEs and
FALSEs, whereas if() always takes exactly one expression evaluating to TRUE or FALSE
.

By the way, this was a fairly simple example. For something a little more complicated, curly
braces could be used to group the statements that follow if() or else.

9.7 Looping

R has syntactical features that support evaluating (sets of) expressions repeatedly. These
include for(), repeat, and while(). By far the most common is for(); the others
will not be further discussed here.

for() iterates across a sequence of values, evaluating the same expressions for each value
in turn. The value itself is available to the expressions, and can be used to influence the
result.

Note that the use of for() is often discouraged in favor of sapply() or lapply(). In
comparison, for() is much easier to understand, but is also much slower. Generally you
should prefer an apply solution if there is a straight-forward way to write one, especially
when writing functions that will be used a lot. In some cases though, the extra time you spend
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writing may be greater than the time you save running the the function! Furthermore, for
() has that iteration-specific value for guiding outcomes: hard to emulate with apply()
solutions.

To illustrate, we’ll solve the same problem both ways. We want a function that accepts a
data.frame and returns a logical vector telling whether each column is numeric.

Listing 9.16:
numerics <- function(x){

result <- logical(ncol(x))
for(col in 1:ncol(x)){
result[[col]] <- is.numeric(x[[col]])
names(result)[[col]] <- names(x)[[col]]

}
return(result)

}
numerics(Theoph)

Subject Wt Dose Time conc
FALSE TRUE TRUE TRUE TRUE

Listing 9.17:
numerics <- function(x)sapply(x,is.numeric)
numerics(Theoph)

Subject Wt Dose Time conc
FALSE TRUE TRUE TRUE TRUE

Even though the first example has 8 times as many lines of code, one might argue that it’s
easier to understand. col takes on the values 1 through 5, one at a time, and does something
explicit with them. The second example is elegant and takes about 1/7th the time to run.
But you may have to spend some time to understand it if you’re not already familiar with
sapply.

9.8 Controling Visibility

Expressions evaluated on the command line are implicitly printed.

Listing 9.18:
names(Theoph[1])

[1] "Subject"
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Inside for() loops and functions, however, implicit printing is turned off.

Listing 9.19:
dfnames <- function(x)for(name in names(x))name
dfnames(Theoph)

No visible result. To force visibility within a function or for() loop, we need to print
explicitly.

Listing 9.20:
dfnames <- function(x)for(name in names(x))print(name)
dfnames(Theoph)

[1] "Subject"
[1] "Wt"
[1] "Dose"
[1] "Time"
[1] "conc"

lapply() has the opposite problem: sometimes it leaves a noisy command line record,
where silence was preferred. Suppose we want to unpack a data.frame by assigning each
column as a separate object in the global environment.

Listing 9.21:
unpack <- function(x)lapply(

names(x),
function(name)assign(

name,
x[[name]],
pos=1

)
)
unpack(Theoph[1:2,])

[[1]]
[1] 1 1
12 Levels: 6 < 7 < 8 < 11 < 3 < 2 < 4 < 9 < 12 < ... < 5

[[2]]
[1] 79.6 79.6

[[3]]
[1] 4.02 4.02

[[4]]
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[1] 0.00 0.25

[[5]]
[1] 0.74 2.84

Now, the intent was to create ‘column’ objects in the global environment, not to print all that
data on the console. to suppress unwanted printing, we wrap the return value (in this case,
the whole function body) in a call to invisible().

Listing 9.22:
unpack <- function(x)invisible(

lapply(
names(x),
function(name)assign(

name,
x[[name]],
pos=1

)
)

)
unpack(Theoph[1:2,])

This time, silence! (But take my word for it that the global objects were created.)

9.9 Writing Methods

9.9.1 Background

Many modern computer languages support object orientation. Indeed, some (like Java and
C++) are completely object-oriented. Others, (like Perl and R) are accommodating, but sup-
port older programming paradigms as well.

Object orientation means that the result of an action depends on the type of thing acted on.
In R, an example of an action is the print() function, and “the type of thing” could mean
the class of an argument. In object-oriented languages, data and procedures are tightly con-
nected.

Object orientation also means that properties of things can be hierarchically arranged. In
R, for example, everything is an object, and everything has the property length. But data
frames have more properties than that (such as names) and special kinds of data frames have
even more.
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R has two systems for implementing object-oriented behavior. S3 is older, easy to learn,
but somewhat brittle (difficult to use for complex tasks). S4 is more modern and robust, but
rather hard to learn. Even though S4 is “recommended for new projects”, S3 is likely not
going away anytime soon, since much of the base behavior of R continues to rely on it. Here
we will use S3.

Now for the “all around you” monologue: in R, object orientation is all around you. You
use it all the time without thinking about it. Consider the summary function. When you
summarize something, R tries to find a method appropriate for the class of that thing. The
summary function is called a generic function; its main purpose is to trigger the search for
an appropriate method.

Listing 9.23:
summary

function (object, ...)
UseMethod("summary")
<environment: namespace:base>

UseMethod() does the magic. When x is a data.frame, it searches for a function
called summary.data.frame() and redirects your request to that, if it exists. Actually,
the class of an object is a character vector of arbitrary length; UseMethod() will try
all the elements in the class vector until it finds something. If it finds nothing, it will look one
more time for a default method, e.g. summary.default().

So, what specific methods have been defined for the generic function summary?

Listing 9.24:
methods(summary)

[1] summary.Date summary.POSIXct
[3] summary.POSIXlt summary.aov
[5] summary.aovlist summary.aspell*
[7] summary.connection summary.data.frame
[9] summary.default summary.ecdf*

[11] summary.factor summary.glm
[13] summary.infl summary.lm
[15] summary.loess* summary.manova
[17] summary.matrix summary.mlm
[19] summary.nls* summary.packageStatus*
[21] summary.ppr* summary.prcomp*
[23] summary.princomp* summary.srcfile
[25] summary.srcref summary.stepfun
[27] summary.stl* summary.table
[29] summary.tukeysmooth*
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Non-visible functions are asterisked

Note the method summary.data.frame(). Recalling the tight connection in object ori-
entation between data and procedures, we can invert the previous question and ask: what
specific methods have been defined for the class data.frame?

Listing 9.25:
methods(class='data.frame')

[1] $<-.data.frame Math.data.frame
[3] Ops.data.frame Summary.data.frame
[5] [.data.frame [<-.data.frame
[7] [[.data.frame [[<-.data.frame
[9] aggregate.data.frame anyDuplicated.data.frame

[11] as.data.frame.data.frame as.list.data.frame
[13] as.matrix.data.frame by.data.frame
[15] cbind.data.frame dim.data.frame
[17] dimnames.data.frame dimnames<-.data.frame
[19] droplevels.data.frame duplicated.data.frame
[21] edit.data.frame* format.data.frame
[23] formula.data.frame* head.data.frame*
[25] is.na.data.frame mean.data.frame
[27] merge.data.frame na.exclude.data.frame*
[29] na.omit.data.frame* plot.data.frame*
[31] print.data.frame prompt.data.frame*
[33] rbind.data.frame row.names.data.frame
[35] row.names<-.data.frame rowsum.data.frame
[37] split.data.frame split<-.data.frame
[39] stack.data.frame* str.data.frame*
[41] subset.data.frame summary.data.frame
[43] t.data.frame tail.data.frame*
[45] transform.data.frame unique.data.frame
[47] unstack.data.frame* within.data.frame

Non-visible functions are asterisked

In other words, all those generics (aggregate, by, dim, edit, ...) have special meaning
for data frames.

9.9.2 Implementation

How can we take advantage of the S3 mechanism to achieve desired results? The simplest
strategy is:
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1. Define a new method for an existing generic and class.

For example, no one has defined a method for generic summary and class numeric. We
could create summary.numeric(), and then all numerics everywhere would be forced to
summarize as we specify.

Despite the intoxicating attraction of its raw power, we might rightly guess that such an
approach could have unintended consequences. A slightly more sophisticated (and safer)
approach:

1. Define a new class.
2. Define a new method for an existing generic and the new class.

We’ll try this later. If we were really ambitious (not today), we would:

1. Define a new class.
2. Define a new generic.
3. Define a new method for the new generic and the new class.

Feel free to try that on your own!

For now, let’s try the second approach. Suppose we wish to have a more parametric statistical
summary of conc column in Theoph. First, we reclassify conc.

Listing 9.26:
class(Theoph$conc) <- 'parametric'

Next, we write the appropriate method for parametric.

Listing 9.27:
summary.parametric <- function(x,...)c(

mean=mean(x),
var=var(x),
std=sd(x),
lo=mean(x)-1.96*sd(x),
hi=mean(x)+1.96*sd(x)

)

Now conc will summarize as desired.

Listing 9.28:
summary(Theoph$conc)

mean var std lo hi
4.9604545 8.2215204 2.8673194 -0.6594914 10.5804005
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Listing 9.29:
summary(Theoph)

Subject Wt Dose
6 :11 Min. :54.60 Min. :3.100
7 :11 1st Qu.:63.58 1st Qu.:4.305
8 :11 Median :70.50 Median :4.530
11 :11 Mean :69.58 Mean :4.626
3 :11 3rd Qu.:74.42 3rd Qu.:5.037
2 :11 Max. :86.40 Max. :5.860
(Other):66

Time conc
Min. : 0.000 mean: 4.9605
1st Qu.: 0.595 var : 8.2215
Median : 3.530 std : 2.8673
Mean : 5.895 lo :-0.6595
3rd Qu.: 9.000 hi :10.5804
Max. :24.650

9.10 Exercises

1. This function sorts a data frame by the levels in index. Use traceback() and
debug() to identify why the second example doesn’t work.

Listing 9.30:
sort.my <- function(x,index){

index <- as.factor(index)
order <- order(index)
x <- x[order,]
return(x)

}
sort.my(Theoph,Theoph$Subject)
sort.my(Theoph[,'conc'],Theoph$Subject)

2. Modify sort.my() so that it sends a message if x is a matrix, warns if index is not
as long as nrow(x) and stops if x is not a data.frame or matrix.

3. Modify sort.my() so that if index is a length-one character vector, it is as-
sumed to be a column name in x.

4. Modify sort.my() so that it rounds every numeric column to 2 significant digits.

5. Modify sort.my() so that the result is invisible. What use is an invisible result?
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6. Reclassify Theoph as c('my','data.frame') and sort it using a generic func-
tion.

170



Chapter 10

Advanced Exercises

10.1 Objectives

After completing this chapter, you will be able to . . .

• Understand the usage of do.call()

• Understand the usage of ifelse()

• Understand the usage of all() and any()

• Gain an understanding of what R GUI’s are available and their pros and cons

10.2 Introduction

Up to this point, the chapters have followed a weekly theme. In this chapter, we will move
away from that approach and explore a set of functions that have general applicability across
plotting, data formatting, and function writing.

10.3 The use of ifelse()

We will start this exploration with the ifelse() function. ifelse() is used for “condi-
tional” element selection. The set of arguments are limited to three.

Listing 10.1:
args(ifelse)
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function (test, yes, no)
NULL

“test” represents the vector and condition that will be evaluated, “yes” is the return values
if “test” is TRUE and “no” is the return value if “test” is FALSE. A simple example of
ifelse() is shown below.

Listing 10.2:
a <- c(1,2,3,-3,-4,4,6,7)
sqrt(a) # this results in a warning message for the negative

values

[1] 1.000000 1.414214 1.732051 NaN NaN 2.000000
[7] 2.449490 2.645751

What if we were aware of the negative values and wanted to calculate the sqrt(a) without
getting warning methods or producing NaN values? Lets conditionally test “a” for negative
values and evaluate only those values of “a” that are positive.

Listing 10.3:
sqrt(ifelse(a > 0, a, NA)) # no warnings

[1] 1.000000 1.414214 1.732051 NA NA 2.000000
[7] 2.449490 2.645751

The example above could likely be executed in other ways. However, one of the strengths
of ifelse() is the ability to string together nested calls to ifelse() to create a new
variable. We will create a data.frame that we can use to demonstrate the functionality of
ifelse().

Listing 10.4:
set.seed(21345)
tage <- data.frame("AGE"=runif(100, 18, 45),

"WT"=runif(100,40,100),
"SEX"=c(rep(0,50),rep(1,50)),
# 0 = female, 1 = male
"SCR"=c(runif(100,0.5,1.8))
)

summary(tage)

AGE WT SEX
Min. :18.70 Min. :40.53 Min. :0.0
1st Qu.:24.07 1st Qu.:53.15 1st Qu.:0.0
Median :31.11 Median :68.76 Median :0.5
Mean :30.99 Mean :70.14 Mean :0.5
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3rd Qu.:37.88 3rd Qu.:86.11 3rd Qu.:1.0
Max. :44.91 Max. :98.59 Max. :1.0

SCR
Min. :0.5213
1st Qu.:0.8453
Median :1.2370
Mean :1.1995
3rd Qu.:1.5736
Max. :1.7927

Now, we can use ifelse() to create a new variable that will create “bins” of age.

Listing 10.5:
tage$bin <- ifelse(tage$AGE < 20, 1,

ifelse(tage$AGE < 30, 2,
ifelse(tage$AGE < 40, 3,

4
)

)
)

head(tage, 10)

AGE WT SEX SCR bin
1 27.39694 80.64919 0 0.7656902 2
2 44.09735 87.38638 0 1.7577789 4
3 27.34969 95.57867 0 1.6070393 2
4 39.11794 83.00141 0 1.2589200 3
5 26.96996 67.93889 0 0.6574091 2
6 28.58650 59.40342 0 0.6801658 2
7 19.19439 94.04131 0 1.2084703 1
8 27.64331 49.65341 0 1.2464154 2
9 23.33059 62.84055 0 1.7408042 2
10 40.11902 47.78716 0 1.7566697 4

The use of nested ifelse() commands allows for the creation of unique age bins based on
the results of the “test” argument. This can be contrasted to the use of multiple subset argu-
ments based on the value of AGE that will not provide the same results. For example,

Listing 10.6:
tage$bin2[tage$AGE<20] <- 1
tage$bin2[tage$AGE<30] <- 2
tage$bin2[tage$AGE<40] <- 3
head(tage, 10)
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AGE WT SEX SCR bin bin2
1 27.39694 80.64919 0 0.7656902 2 3
2 44.09735 87.38638 0 1.7577789 4 NA
3 27.34969 95.57867 0 1.6070393 2 3
4 39.11794 83.00141 0 1.2589200 3 3
5 26.96996 67.93889 0 0.6574091 2 3
6 28.58650 59.40342 0 0.6801658 2 3
7 19.19439 94.04131 0 1.2084703 1 3
8 27.64331 49.65341 0 1.2464154 2 3
9 23.33059 62.84055 0 1.7408042 2 3
10 40.11902 47.78716 0 1.7566697 4 NA

We can compare the results in tage$bin2 to tage$bin and demonstrate that the re-
sults are very different. The assignments in “bin2” are not correct because each row is not
“conditioned” on the “test” executed in the previous row. We could also use ifelse() to
conditionally apply a function. We can demonstrate this by calculating creatine clearance
(CRCL). As a reminder, CRCL is based on weight, age, sex, and serum creatinine using the
following equation.

CRCL(ml/min) = ((140−Age(yr))∗weight(kg))/(serumcreatinine∗72)∗0.85forfemales
(10.1)

Given the equation above, we can write an R function then use ifelse to apply it condi-
tionally to males and females.

Listing 10.7:
crclx <- function(age, wt, scr){
tmp <- (140-age)*wt/(scr*72)
return(tmp)
}
tage$CRCL <- ifelse(tage$SEX==1,

crclx(tage$AGE, tage$WT, tage$SCR),
crclx(tage$AGE, tage$WT, tage$SCR) * 0.85
)

head(tage)

AGE WT SEX SCR bin bin2 CRCL
1 27.39694 80.64919 0 0.7656902 2 3 140.01790
2 44.09735 87.38638 0 1.7577789 4 NA 56.28550
3 27.34969 95.57867 0 1.6070393 2 3 79.09578
4 39.11794 83.00141 0 1.2589200 3 3 78.52134
5 26.96996 67.93889 0 0.6574091 2 3 137.89961
6 28.58650 59.40342 0 0.6801658 2 3 114.87378
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It is important to differentiate between ifelse and the if() and else(). The latter two
are not really “functions” in the manner that we have been describing “functions”. They are
control-flow constructs of the R language. (See Chapter 9 for a demonstration of the use of
if and else. ) One obvious difference between ifelse() and if is that if expects a
length-one logical vector but ifelse() can read and act on a vector of any length. NOTE:
If a vector of length greater than one is supplied to if() a warning is generated, only the first
element is used, and the code block continues. This can and often will result in unexpected
outcomes.

10.3.1 Exercises

• Use ifelse to create a new variable in the tage dataframe that codes SEX as M and
F rather than 1 and 0.

• How would we need to change the ifelse call to calculate CRCL to utilize the revised
SEX variable?

10.4 The use of do.call()

do.call() constructs and executes a function call from a name or a function and a list of
arguments to be passed to it. The arguments for the function are taken from an object of mode
“list”. A simple example is the application of rbind to a list of results to “bind” the list into
one large dataset. We will create the data then demonstrate the use of do.call.

Listing 10.8:
tauc <- data.frame("AGE"=runif(10000, 2, 12),

"AUC"=runif(10000,500,5000),
"TRIAL"=sort(rep(c(1:100),100))
)

tauc$bins <- ifelse(tauc$AGE < 4, 1,
ifelse(tauc$AGE < 6, 2,

ifelse(tauc$AGE < 9, 3,
4
)

)
)

head(tauc)

AGE AUC TRIAL bins
1 10.436888 1466.439 1 4
2 9.912768 2259.733 1 4
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3 9.108265 2922.912 1 4
4 10.415998 4773.869 1 4
5 6.036194 3478.515 1 3
6 7.163238 1973.059 1 3

Listing 10.9:
table(tauc$bins)

1 2 3 4
2111 1986 2942 2961

Listing 10.10:
sauc <- aggregate(tauc$AUC, list(TRIAL=tauc$TRIAL,AGEB=tauc$bins),

median)
saucq <- tapply(sauc$x, list(sauc$AGEB), quantile, probs=c(0.025,

0.5, 0.975))
# saucq is a list object containing the results of applying

quantile by AGE bin to sauc
rsaucq <- do.call("rbind",saucq)
head(rsaucq)

2.5% 50% 97.5%
1 1961.512 2693.799 3656.879
2 1712.728 2712.024 3788.206
3 2026.808 2762.735 3520.773
4 2061.857 2802.863 3456.310

Another example would be the use of do.call following split. For this example, we
will use the prob1 data set. We will subset prob1 by “ID”, perform some operations on
the individual subsets, then use do.call and rbind to put the subsets back together into
one dataframe.

Listing 10.11:
prob1<-read.table(file="prob1.tab", skip=0, header=TRUE)
head(prob1)

C ID DV AMT II ADDL TIME RATE HT WT CLCR SEX AGE
1 0 1 0.00 900 12 9 0.0 300 103 91 101.48 0 46
2 0 1 6.99 0 0 0 1.5 0 103 91 101.48 0 46
3 0 1 12.66 0 0 0 3.0 0 103 91 101.48 0 46
4 0 1 5.31 0 0 0 8.0 0 103 91 101.48 0 46
5 0 1 2.39 0 0 0 11.9 0 103 91 101.48 0 46
6 0 1 2.87 0 0 0 23.9 0 103 91 101.48 0 46
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Listing 10.12:
prob1.ind <- split(prob1, prob1$ID)
# use lapply to calculate the median DV for each individual
# and return the results to a new list of dataframes called res
res <- lapply(prob1.ind, function(df){

df$mDV <- median(df$DV, na.rm=TRUE)
return(df)
}

)
# look at the first item in the res list
head(res[1])

$`1`
C ID DV AMT II ADDL TIME RATE HT WT CLCR SEX AGE

1 0 1 0.00 900 12 9 0.0 300 103 91 101.48 0 46
2 0 1 6.99 0 0 0 1.5 0 103 91 101.48 0 46
3 0 1 12.66 0 0 0 3.0 0 103 91 101.48 0 46
4 0 1 5.31 0 0 0 8.0 0 103 91 101.48 0 46
5 0 1 2.39 0 0 0 11.9 0 103 91 101.48 0 46
6 0 1 2.87 0 0 0 23.9 0 103 91 101.48 0 46
7 0 1 2.91 0 0 0 35.9 0 103 91 101.48 0 46
8 0 1 1.36 0 0 0 47.9 0 103 91 101.48 0 46
9 0 1 2.34 0 0 0 71.9 0 103 91 101.48 0 46
10 0 1 2.13 0 0 0 107.9 0 103 91 101.48 0 46
11 0 1 4.97 0 0 0 109.5 0 103 91 101.48 0 46
12 0 1 10.46 0 0 0 111.0 0 103 91 101.48 0 46
13 0 1 5.85 0 0 0 116.0 0 103 91 101.48 0 46
14 0 1 2.13 0 0 0 119.9 0 103 91 101.48 0 46
15 0 1 0.05 0 0 0 144.0 0 103 91 101.48 0 46

mDV
1 2.87
2 2.87
3 2.87
4 2.87
5 2.87
6 2.87
7 2.87
8 2.87
9 2.87
10 2.87
11 2.87
12 2.87
13 2.87
14 2.87
15 2.87
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Listing 10.13:
# use do.call to rbind the list of dataframes into one dataframe
prob2 <- do.call("rbind", res)
head(prob2)

C ID DV AMT II ADDL TIME RATE HT WT CLCR SEX AGE
1.1 0 1 0.00 900 12 9 0.0 300 103 91 101.48 0 46
1.2 0 1 6.99 0 0 0 1.5 0 103 91 101.48 0 46
1.3 0 1 12.66 0 0 0 3.0 0 103 91 101.48 0 46
1.4 0 1 5.31 0 0 0 8.0 0 103 91 101.48 0 46
1.5 0 1 2.39 0 0 0 11.9 0 103 91 101.48 0 46
1.6 0 1 2.87 0 0 0 23.9 0 103 91 101.48 0 46

mDV
1.1 2.87
1.2 2.87
1.3 2.87
1.4 2.87
1.5 2.87
1.6 2.87

In this second example, we see a very efficient way of operating on subsets of an origi-
nal dataframe without looping or needing to formally track the individual dataframes. This
approach could be used to perform multiple operations on a dataframe subset followed by
binding back together.

10.4.1 Exercises

• Read in data5.csv, split by SEX, change the AMT to 800 if SEX==0 and 1000 if
SEX==1, and combine with do.call

• Read in test1.csv and paste the columns together using do.call

10.5 Usage of all() and any()

In many cases, it can be very helpful to “test” on a vector or group of vectors prior to perform-
ing additional manipulations or calculations. The all() and any() functions are concise
ways of performing these tests. all returns TRUE if all of the values in “x” are TRUE and
FALSE if at least one of the values in “x” are false. Otherwise the valies is NA. any returns
TRUE if at least one value is TRUE and FALSE if all of the values are FALSE. Lets say
we want to test the “AMT” column in prob1 prior to summarizing or performing additional
data set manipulations.
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Listing 10.14:
prob1<-read.table(file="prob1.tab", skip=0, header=TRUE)
# AMT should be equal to zero when DV > 0
any(prob1$AMT[prob1$DV>0]==0)

[1] TRUE

For all, we can demonstrate its use in the situation when we want to populate a dataframe
(prob1) with a column from another dataframe (prob2). Lets say we have a column in prob2
that contains systolic blood pressure (SBP) measured at the same time as the “DV” variable in
prob1. If we can be assurred that the TIME and ID columns match in the two dataframes,
we can simply add the SBP column to the prob1. We can test this belief using the all
function.

Listing 10.15:
prob2 <- prob1
prob2$SBP <- runif(length(prob2$ID),120,160)
# test if ID and TIME are the same in both dataframes
all(prob1$ID==prob2$ID)

[1] TRUE

Listing 10.16:
all(prob1$TIME==prob2$TIME)

[1] TRUE

Listing 10.17:
# both results are TRUE so we can copy SBP over to prob1
prob1$SBP <- prob2$SBP

Since the result of all and any is a length-one logical vector, you could pass the results to
if as part of a function call or as part of a simple branch in an R script. Lets use a data set
similar to what we created earlier for the CRCL calculation to demonstrate an example of
using these functions with an if statement.

Listing 10.18:
tage <- data.frame("AGE"=runif(100, 18, 45),

"WT"=runif(100,40,100),
"SEX"=c(rep(0,30),rep(1,50), rep(NA,20)),
# 0 = female, 1 = male
"SCR"=as.character(c(round(runif(75,0.5,1.8),2)

,rep("NA",25)))
)

179



CHAPTER 10. ADVANCED EXERCISES

crclx <- function(age, wt, scr){
tmp <- (140-age)*wt/(scr*72)
return(tmp)
}
crclx(tage$AGE, tage$WT, tage$SCR)
# The above function results in an error because not all variables

are
# numeric. Lets say we wanted to test for numeric values and

report
# the problem rather than getting this error.
crclx2 <- function(age, wt, scr){
if(any(!is.numeric(age)|!is.numeric(wt)|!is.numeric(scr)))stop('

variables must be numeric')
tmp <- (140-age)*wt/(scr*72)
return(tmp)
}
crclx2(tage$AGE, tage$WT, tage$SCR)
str(tage)
tage$SCR <- as.numeric(as.character(tage$SCR))
crclx(tage$AGE, tage$WT, tage$SCR)

The above example demonstrates the use of any to performing some initial testing inside of
a function and demonstrates a way to test for a variable type in a situation when we know a
numeric is required for the successful completion of the function.

10.6 Using/Choosing an R graphical user interface (GUI)

R, like most statistical programming languages, was initially available only from the com-
mand line. In the last few years, a number of GUI or GUI-like interfaces have become
available for R. The benefit of a true point-n-click GUI rapidly declines as an individual
users skills increase. Users quickly realize that finer control is available when scripts are
written versus being generated from a point-n-click interface. Since R is open-source, the
development of point-n-click interfaces has been limited. (This is in contrast to the highy
developed GUI available in S-PLUS.) With that being said, the GUI’s available in R are less
about point-n-click and more about a programming environment. Lets take a look at some of
the available programming environments for R and the benefits and drawbacks of each.

1. R for windows offers an interface to the R command line.

Benefits

• available as part of the base R install
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• offers line by line and code block submission to R

• allows for the easy installation of R packages

Drawbacks

• no syntax highlighting

• no ability or limited ability to add/customize features

2. R for Mac OS X offers a well developed interface to R.

Benefits

• available as part of the base R install

• offers line by line and code block submission to R

• allows for the easy installation of R packages

• provides syntax highlighting

• automatically indents function code each time a script is opened

Drawbacks

• no ability or limited ability to add/customize features

3. RStudio for windows/Mac OS X/linux offers a nice graphical interface to R.

Benefits

• freely available via web download

• offers line by line and code block submission to R

• allows for the easy installation of R packages

• provides windows for viewing plots

• offers a client/server version that can be run via web browser

Drawbacks

• no ability or limited ability to add/customize features

• client/server version may not work with all browsers.

4. Emacs is the swiss army knife of text editors and offers a highly customizable interface,
Emacs Speaks Statistics (ESS), to many statistical packages.

Benefits

• available on Windows, Mac OS X, linux, as well as many other operating systems
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• can be used in graphical mode (point-n-click) as well as via a text based connec-
tion, like ssh

• highly customizable with many add-on packages

• provides syntax highlighting

• automatically indents function code

• provides a one-stop shop for programming environments (C++, R, Splus, SAS,
WinBUGS, etc..)

Drawbacks

• highly customizable

• learning curve can be high when using text based connections for those used to a
GUI environment

There are a number of other R GUI’s available, including Tinn-R, JGR, SciViews-R and
others. Additional information on R GUI’s and the pros and cons can be found on the R GUI
project page (http://www.sciviews.org/_rgui).

10.7 Homework

• Load the built in R data set Indometh, create a new variable called WT that contains
one unique value per Subject (the WT variable should range from 50 - 100 kilograms)
, and use ifelse to create a WTbin variable that is “1” for the lowest three weights
and “2” for the highest three weights.

• Perform the same operation above but demonstrate the use of split and do.call
(and any other necessary functions) during the process.

• Demonstrate the use of do.call to run make a call to xyplot using any data of
your choosing. Hint: do.call expects exactly two arguments, a named function, and
an associated list of arguments. For this exercise you will need to create a list of
the arguments to be used by xyplot.
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Chapter 11

Advanced Data Assembly

After completing this chapter, you will be able to . . .

• Extract information from a character column of irregular format.

• Impute a variable using stratified vertical information.

• Transform tables dynamically.

• Calculate variables by combining vertical and horizontal criteria.

• Interconvert row-level and column-level distinctions among table cells.

11.1 Introduction

An important step in most pharmacokinetic analyses is the preparation of the analysis data
set. In Chapter 6, we studied the basic techniques of data assembly. Here, we’ll examine
some advanced techniques of data assembly and manipulation.

11.2 Irregular Extraction

Earlier we used substr() to extract specific sections of character vectors. Some character
vectors, however, are rather irregular in format. Consider these subject identifiers, which are
combinations of protocol names and subject numbers.

Listing 11.1:
id <- c('PROT300-1', 'PROT10-35', 'PROT5-281')
data.frame(id=id)
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id
1 PROT300-1
2 PROT10-35
3 PROT5-281

Even though these identifiers happen to be the same length, there’s no simple way to extract,
say, the protocol specifier using substr(). Fortunately, there is a dash that separates the
protocol name from the subject number. We can use it to isolate the information of interest,
using strsplit().

Listing 11.2:
splits <- strsplit(id,'-', fixed=TRUE)
splits

[[1]]
[1] "PROT300" "1"

[[2]]
[1] "PROT10" "35"

[[3]]
[1] "PROT5" "281"

Note that strsplit() returns a list of vectors. We can extract protocol names for each
row using sapply() and the subset operator.

Listing 11.3:
prot <- sapply(splits,`[`,1)
prot

[1] "PROT300" "PROT10" "PROT5"

Things would be more complicated if strings had more than one dash, but the example here
illustrates the principle. We say fixed=TRUE above because the split argument is other-
wise interpreted as a regular expression, giving special meaning to dots and slashes, etc.

11.3 Stratified Imputation

Recall that in Chapter 6, we tried to perform a vertical imputation of weight, where one of
our subjects was missing the first weight observation (Listing 6.27). locf() won’t work
here, because Subject b will have a weight imputed using data from subject a.
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Listing 11.4:

pk <- data.frame(
subject=rep(letters[1:3],each=3),
time=rep(1:3,3),
weight=c(70,70.5,69,NA,71,70,72, 72,NA)

)
pk

subject time weight
1 a 1 70.0
2 a 2 70.5
3 a 3 69.0
4 b 1 NA
5 b 2 71.0
6 b 3 70.0
7 c 1 72.0
8 c 2 72.0
9 c 3 NA

What we need here is a stratified imputation. That is, we need to conduct the imputation
independently for subsets of the data. In Listing 6.33, we used reapply for aggregation.
reapply can also be used for stratified imputation, because it always returns a vector as
long as its primary input.

Listing 11.5:

library(metrumrg)
pk$WEIGHT <- reapply(pk$weight,INDEX=pk$subject,FUN=locf)
pk

subject time weight WEIGHT
1 a 1 70.0 70.0
2 a 2 70.5 70.5
3 a 3 69.0 69.0
4 b 1 NA NA
5 b 2 71.0 71.0
6 b 3 70.0 70.0
7 c 1 72.0 72.0
8 c 2 72.0 72.0
9 c 3 NA 72.0

Note that the first value for subject b is still missing, as it should be. The last value for subject
c has been imputed correctly.
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11.4 Dynamic Transformations

Consider these data tables (source is in the Example Code section at the end of the chap-
ter).

Listing 11.6:
dose

subject time amount
1 a 0 40
2 a 2 40
3 b 1 60
4 b 3 60
5 c 0 80
6 c 2 80

Listing 11.7:
pk

subject time conc pain
1 a 0 3.30 5
2 a 1 1.70 NA
3 a 2 3.30 4
4 a 3 3.30 3
5 b 0 2.40 NA
6 b 1 0.46 6
7 b 2 1.10 4
8 b 3 1.70 3
9 c 0 2.00 4
10 c 1 4.40 5
11 c 2 2.80 3
12 c 3 1.20 NA

Suppose we wish to analyze a compartmental model with half the dose going into compart-
ment 1 and half to compartment 2. We could make two copies our dose data, rescale the
amounts, and add a compartment variable to each. Then of course we would merge them
with our pk data. However, if we discovered later that the dose data needed changes, we
would have to be sure to make the same changes to each copy. And if we want to consider
a traditional model simultaneously, we may need three copies of the dose data, one like the
original.

A better way to approach the problem is to leave the source data untouched (it’s already as
‘correct’ as we can make it) but change the way it is used. We’ll call this dynamic transfor-
mation. The compartmental datasets we suggested earlier will never actually exist as stored
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objects. We’ll create them on the fly, as needed. The fewer ‘versions’ of the data that are
lying around, the better.

The transform() function lets us create variables dynamically (their names are the names
of the supplied arguments). Values can be specified in terms of columns present in the original
table.

Listing 11.8:

merge(
merge(
transform(dose, amount=amount/2,compartment=1),
transform(dose, amount=amount/2,compartment=2),
all=TRUE

),
pk,
all=TRUE

)

subject time amount compartment conc pain
1 a 0 20 1 3.30 5
2 a 0 20 2 3.30 5
3 a 1 NA NA 1.70 NA
4 a 2 20 1 3.30 4
5 a 2 20 2 3.30 4
6 a 3 NA NA 3.30 3
7 b 0 NA NA 2.40 NA
8 b 1 30 1 0.46 6
9 b 1 30 2 0.46 6
10 b 2 NA NA 1.10 4
11 b 3 30 1 1.70 3
12 b 3 30 2 1.70 3
13 c 0 40 1 2.00 4
14 c 0 40 2 2.00 4
15 c 1 NA NA 4.40 5
16 c 2 40 1 2.80 3
17 c 2 40 2 2.80 3
18 c 3 NA NA 1.20 NA

Listing 11.9:

We may also want to specify the compartment for the pk values, and think carefully about
the row order for pk and dose records occuring at the same time.

187



CHAPTER 11. ADVANCED DATA ASSEMBLY

11.5 Complex Criteria

Consider this data set, which uses Example Code data.

Listing 11.10:
data <- merge(

transform(dose,evid=1),
transform(pk,evid=0),
all=TRUE

)
data

subject time evid amount conc pain
1 a 0 0 NA 3.30 5
2 a 0 1 40 NA NA
3 a 1 0 NA 1.70 NA
4 a 2 0 NA 3.30 4
5 a 2 1 40 NA NA
6 a 3 0 NA 3.30 3
7 b 0 0 NA 2.40 NA
8 b 1 0 NA 0.46 6
9 b 1 1 60 NA NA
10 b 2 0 NA 1.10 4
11 b 3 0 NA 1.70 3
12 b 3 1 60 NA NA
13 c 0 0 NA 2.00 4
14 c 0 1 80 NA NA
15 c 1 0 NA 4.40 5
16 c 2 0 NA 2.80 3
17 c 2 1 80 NA NA
18 c 3 0 NA 1.20 NA

Suppose we wish to ignore all non-zero concentrations that occur before the first dose. How
can we identify the ignorable rows? The criteria are complex: evid should be zero, and
conc should be non-zero: horizontal criteria. But evid 0 should also appear before all
evid 1: a vertical criterion. Additionally, the evaluation should be stratified: that is, within
subject.

The problem becomes simpler when we realize that, in the end, we will have made one
evaluation per row. Essentially, then, we will have to reduce the ‘vertical’ elements of the
problem to ‘horizontal’ elements, whether implicitly or explicitly.

To make this clearer, let’s solve the problem first for just one subject.
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Listing 11.11:
b <- data[data$subject=='b',]

The vertical comparison involves ‘before’, which is generally a question about time, and
specifically a question about record order. If we can calculate a ‘before’ value for each
record, the problem becomes strictly horizontal.

Listing 11.12:
b$before1stDose <- before(b$evid==1)
b

subject time evid amount conc pain before1stDose
7 b 0 0 NA 2.40 NA TRUE
8 b 1 0 NA 0.46 6 TRUE
9 b 1 1 60 NA NA FALSE
10 b 2 0 NA 1.10 4 FALSE
11 b 3 0 NA 1.70 3 FALSE
12 b 3 1 60 NA NA FALSE

Now we can do the horizontal evaluations (one per row) all at once.

Listing 11.13:
b$ignore <- with(

b,
evid==0 &
!is.na(conc)
& conc > 0
& before1stDose

)
b

subject time evid amount conc pain before1stDose ignore
7 b 0 0 NA 2.40 NA TRUE TRUE
8 b 1 0 NA 0.46 6 TRUE TRUE
9 b 1 1 60 NA NA FALSE FALSE
10 b 2 0 NA 1.10 4 FALSE FALSE
11 b 3 0 NA 1.70 3 FALSE FALSE
12 b 3 1 60 NA NA FALSE FALSE

The same approach works when solving simultaneously for all subjects. We specify within
to nest the calculation within subject.

Listing 11.14:
data$before1stDose <- with(

data,
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before(
evid==1,
within=subject

)
)
data$ignore <- with(data, evid==0 & !is.na(conc) & conc > 0 &

before1stDose)
data

subject time evid amount conc pain before1stDose ignore
1 a 0 0 NA 3.30 5 TRUE TRUE
2 a 0 1 40 NA NA FALSE FALSE
3 a 1 0 NA 1.70 NA FALSE FALSE
4 a 2 0 NA 3.30 4 FALSE FALSE
5 a 2 1 40 NA NA FALSE FALSE
6 a 3 0 NA 3.30 3 FALSE FALSE
7 b 0 0 NA 2.40 NA TRUE TRUE
8 b 1 0 NA 0.46 6 TRUE TRUE
9 b 1 1 60 NA NA FALSE FALSE
10 b 2 0 NA 1.10 4 FALSE FALSE
11 b 3 0 NA 1.70 3 FALSE FALSE
12 b 3 1 60 NA NA FALSE FALSE
13 c 0 0 NA 2.00 4 TRUE TRUE
14 c 0 1 80 NA NA FALSE FALSE
15 c 1 0 NA 4.40 5 FALSE FALSE
16 c 2 0 NA 2.80 3 FALSE FALSE
17 c 2 1 80 NA NA FALSE FALSE
18 c 3 0 NA 1.20 NA FALSE FALSE

For this particular data set, ignore happens to be identical to before1stDose, but that
may not be true in other cases.

11.6 Table Reorganization

In section 6.4.2, we said that the key columns of a table should identify unique objects and
the other columns should list attributes of those objects. More generally, we could say that
a table is just a collection of values that are distinguished either by row criteria or column
criteria. The values here are the object attributes, and the row criteria are the keys.

The attribute-centric view of table structure raises an interesting possibility. If values can
be distinguished either by rows or by columns, perhaps we can interconvert row-level dis-
tinctions and column-level distinctions. The following two tables give the same informa-
tion.
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subject side injections
1 a left 5
2 a right 6
3 b left 7
4 b right 8

subject left right
1 a 5 6
2 b 7 8

In the first table, all the distinctions among injection counts are made with row-level com-
binations of values, e.g. ‘a-left’. In the second table, the counts are distinguished partly by
rows, and partly by columns.

The ability to convert easily between row-level and column-level distinctions is of great value.
The package reshape by Hadley Wickham gives us a general strategy for doing just that.
Wickham’s technique is to create an intermediate table where all distinctions are row-level
distinctions, using the function melt(). This ‘molten’ table can be ‘cast’ into any desired
combination of row-level and column-level distinctions, using the function cast().

11.6.1 melt

Consider this blood pressure data.

Listing 11.15:
a <- data.frame(

subject=c('a','a','b','b'),
position=c('sit','stand','sit','stand'),
SBP=c(120,130,115,125),
DBP=c(80,90,75,85)

)
a

subject position SBP DBP
1 a sit 120 80
2 a stand 130 90
3 b sit 115 75
4 b stand 125 85

We can convert everything to a row-level distinction with melt(). We identify the key
columns with the argument id.var, and we identify the values columns with the argument
measure.var.
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Listing 11.16:
molten <- melt(

a,
id.var=c('subject','position'),
measure.var=c('SBP','DBP')

)
molten

subject position variable value
1 a sit SBP 120
2 a stand SBP 130
3 b sit SBP 115
4 b stand SBP 125
5 a sit DBP 80
6 a stand DBP 90
7 b sit DBP 75
8 b stand DBP 85

11.6.2 cast

In the original data, we knew ‘120’ was systolic because of a column-level distinction. We
knew it was a sitting blood pressure because of a row-level distinction. Let’s swap the
two.

The function cast() expects a molten data frame and a formula. The formula has the
form X~Y, where X indicates the row-level distinctions and Y indicates the column-level
distinctions. Here, we use rows to distinguish subject and type, while using columns to
distinguish position.

Listing 11.17:
cast(molten, subject + variable ~ position)

subject variable sit stand
1 a SBP 120 130
2 a DBP 80 90
3 b SBP 115 125
4 b DBP 75 85

We could easily get the original form back as well.

Listing 11.18:
cast(molten, subject + position ~ variable)
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subject position SBP DBP
1 a sit 120 80
2 a stand 130 90
3 b sit 115 75
4 b stand 125 85

The functions melt() and cast() are very powerful. Proper use of the formula requires
practice, but effort here will be rewarded. Reshaping a data set can simplify plotting tasks;
frequently, a molten data.frame is just what you need as an argument to xyplot(). Also,
cast() gives a powerful alternative for aggregating data.frames. If your formula does not
completely distinguish all values from each other, groups of values with matching distinctions
will be aggregated as specified by the argument fun.aggregate(). See the help for
details.

11.7 Exercises

1. For the id variable in Listing 11.1, extract just the subject numbers.

2. For pk in the Example Code below, impute missing pain scores using locf().

3. Merge dose and pk in the Example Code, dynamically creating a type variable that
is ‘dose’ or ‘pk’, respectively.

4. For data in Listing 11.10 (using dose and pk from the Example Code), create an
ignore flag that is TRUE for positive conc values that occur before the first dose,
except where pain is not NA.

5. For data in Listing 11.10, create an ignore flag for doses that occur after the last
sample.

6. Convert the data in Listing 11.15 so that ‘subject’ is a column-level distinction and
sit/stand and SBP/DBP are row-level distinctions.

7. For data in Listing 11.10, combine conc and pain into a single column. Sort the
result on subject, time, and evid. Then create an ignore flag for conc values that
occur before the first dose.

8. For pk from the Example Code, drop the pain scores and arrange the conc values
using a separate column for each time.

11.8 Example Code
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Listing 11.19:
set.seed(0)
dose <- data.frame(

subject = rep(letters[1:3], each = 2),
time = c(0,2,1,3,0,2),
amount = rep(c(40,60,80), each = 2)

)
pk <- data.frame(

subject = rep(letters[1:3], each = 4),
time = c(0,1,2,3,0,1,2,3,0,1,2,3),
conc = signif(rnorm(12)+2,2),
pain =c(5,NA,4,3,NA,6,4,3,4,5,3,NA)

)
demo <- data.frame(

subject = letters[1:4],
race = c('asian','white','black','other'),
sex = c('female','male','female','male'),
weight = c(75, 70, 73, 68)

)
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Advanced Graphics

12.1 Objectives

After completing this chapter, you will . . .

• understand the fundamentals of grid units, including “null”, “npc”, and “native” units

• understand the fundamentals of navigating grid viewports

• understand the fundamentals of grid layouts

12.2 Introduction

As was discussed in Chapter 2, much of the important graphics functionality in R builds upon
the lattice package or builds directly upon the grid graphics package. In previous chapters
we examined the basic functionality provided by the lattice package; we now turn to the grid
package.

We begin with some truth in advertising: for day-to-day applied pharmacometric work, it
may not be worth the effort to construct customized displays “from scratch” using grid. In
general, if you can find a way to get the job done with lattice, you will save yourself a lot of
time. Having said that, knowledge of grid will help you better understand how lattice works,
so that you can augment and make changes to basic lattice functionality.

A comprehensive treatment of grid graphics is provided in the book R Graphics by Paul
Murrell (the author of the grid package) [1].
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12.3 Grid Basics

We begin by loading the grid package:

Listing 12.1:

library(grid)

To create a blank slate that we can draw on with grid commands, we can do:

Listing 12.2:

grid.newpage()

12.3.1 Units

We can draw right in the ROOT viewport using grid primitives such as grid.text() and
grid.points():

Listing 12.3:

grid.newpage()
grid.text("Hello world")
grid.text("Hello again", 0.1, 0.1, gp = gpar(col = "red"))
grid.text("Hello again", 0.9, 0.1, gp = gpar(col = "blue",

fontface = "italic"))
grid.text("Hello again", 0.1, unit(1, "inches"), gp = gpar(col = "

grey", fontface = "bold"))
grid.text("Hello again", 0.1, unit(0.1, "npc") + unit(1, "inches")

, gp = gpar(fontface = "oblique"))
grid.points(0.9, 0.9, default.units = "npc") # normalized parent

coordinates
grid.rect(gp = gpar(fill='transparent'))
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Hello world

Hello again Hello again

Hello again

Hello again

●

In our first call to grid.text(), the default positioning was used, putting the text right
in the middle of the plot (technically, right in the middle of the current viewport - see next
section). In our next two calls to grid.text(), we specified both coordinates on a 0–1
scale. In grid terminology, 0–1 coordinates are referred to as normalized parent coordinates
(npc). The function grid.text uses npc units by default, so we didn’t need to specifically
request this. In our fourth call to grid.text(), we specified the x coordinate in terms of
npc units and the y coordinate in terms of inches. This easy mixing and matching of different
units is part of the power of grid. We can even do basic artithmetic on different types of units:
see the fifth call to grid.text().

The function grid.points() uses a different default type of unit to interpret coordinates,
however we were still able to use npc units by explicitly specifying
default.units = ``npc'' The default units used by grid.points() are called
native units. In order to use native units, we first need to create a new viewport.

12.3.2 Viewports

All grid drawing takes place inside of “viewports”. Each viewport has its own coordinate
system, and grid functionality allows one to navigate between these different coordinate sys-
tems. When we first start, we are in the ROOT viewport.

Listing 12.4:
grid.newpage()
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current.viewport()

viewport[ROOT]

The ROOT viewport does not have any native units associated with it. Native units are a type
of units defined by the user-defined scale of a plotting region. Here we “push on” on a view-
port with native units ranging from 0 to 10 on both axes, and we draw two points in the same
place in order to show the correspondance between the npc and native coordinates.

Listing 12.5:
grid.newpage()
pushViewport(viewport(xscale = c(0, 10), yscale = c(0, 10)))
grid.points(6, 7, pch = 1) # circle plot character
grid.points(0.6, 0.7, default.units = "npc", pch = 3) # cross plot

character
grid.rect(gp=gpar(fill='transparent'))

●

The lattice panel functions that we used in previous chapters are designed to do most of
their drawing using native coordinates. We can take advantage of this to use panel functions
outside the context of a complete lattice display:

Listing 12.6:
grid.newpage()
fakedata <- data.frame(X = rnorm(100), Y = rnorm(100))
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pushViewport(viewport(xscale = range(fakedata$X),
yscale = range(fakedata$Y)
)

)
library(lattice)
panel.xyplot(fakedata$X, fakedata$Y)
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One helpful function to know about for this kind of work is extend.limits from the
lattice package. This function is not generally exposed to the user, but we can fish it out from
the lattice namespace as follows:

Listing 12.7:
extend.limits <- lattice:::extend.limits

The mundane but important job of extend.limits() is to add a bit of padding to around
the extremes of the data:

Listing 12.8:
range(fakedata$X)

[1] -3.233152 2.919140

Listing 12.9:
extend.limits(range(fakedata$X))

199



CHAPTER 12. ADVANCED GRAPHICS

[1] -3.663813 3.349801

The example above shows how to use lattice functionality within a general grid graphic. We
can also do the reverse: leverage grid functions when making our lattice plots:

Listing 12.10:

print(xyplot(Y ~ X, data = fakedata,
panel = function(x, y, ...) {

panel.xyplot(x, y, ...)
grid.text("Minimum x value -->",

unit(min(x), "native"),
unit(0.05, "npc"),
just = "left",
rot = 90
)

}
)

)
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12.4 Layouts

We now turn to the concept of the grid layout. In the following example, we divide the total
graphics area into a 3×3 layout, and position our scatterplot in the second column and first
row of this layout:

Listing 12.11:

grid.newpage()
lyt <- grid.layout(3, 3)
pushViewport(viewport(layout = lyt))
current.vpTree()

viewport[ROOT]->(viewport[GRID.VP.5])

Listing 12.12:

xlim <- extend.limits(range(fakedata$X))
ylim <- extend.limits(range(fakedata$Y))
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 1,

xscale = xlim,
yscale = ylim
)

)
current.vpTree()

viewport[ROOT]->(viewport[GRID.VP.5]->(viewport[GRID.VP.6]))

Listing 12.13:

grid.rect(gp = gpar(fill='transparent'))
panel.xyplot(fakedata$X, fakedata$Y)
popViewport()
current.vpTree()

viewport[ROOT]->(viewport[GRID.VP.5])

Listing 12.14:

grid.rect(gp = gpar(fill='transparent', lwd = 3, lty = 2))
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In the previous example, all elements of our layout were sized relative to the overall size of
the plotting area (and will scale with the overall size of the figure). Sometimes we instead
want to reserve an absolute amount of space for some parts of the graphic. In the following
example, we reserve a fixed height of 1 cm for the height of the title, and allow the plot to
occupy whatever space is left (this is the meaning of 1 “null” unit).

Listing 12.15:

grid.newpage()
lyt2 <- grid.layout(2, 1, heights = unit.c(unit(1, "cm"), unit(1,

"null")))
pushViewport(viewport(layout = lyt2))
pushViewport(viewport(layout.pos.row = 1))
grid.text("This is my title")
popViewport()
pushViewport(viewport(layout.pos.row = 2, xscale = xlim, yscale =

ylim))
panel.xyplot(fakedata$X, fakedata$Y)
panel.axis("bottom", half = FALSE)
panel.axis("left", half = FALSE)
grid.rect(gp=gpar(fill='transparent'))
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12.5 A Practical Example

The HH package implements a number of graphical representations for adverse event data,
as proposed in a recent paper by Heiberger and Holland [5]. As an illustrative exercise,
we are going to modify a function called ae.dotplot(), found in this package. This
function makes a plot that is generally useful for situations where proportions are being com-
pared.

We take some lines from the help file for ae.dotplot() to construct an example data
set:

Listing 12.16:
library(HH)
# From the HH documentation:
aewide <- data.frame(Event=letters[1:6],

N.A=c(50,50,50,50,50,50),
N.B=c(90,90,90,90,90,90),
AE.A=2*(1:6),
AE.B=1:6)

aewtol <- aeReshapeToLong(aewide)
xr <- logrelrisk(aewtol)
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Here is what you get when you use ae.dotplot() “out of the box”:

Listing 12.17:
print(

ae.dotplot(xr)
)

Most Frequent On−Therapy Adverse Events Sorted by Relative Risk
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f
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Relative Risk with 95% CI
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This “out-of-the-box” behavior is likely to be sufficient for most purposes. However, as an
exercise let’s suppose that we want the panel on the right to be only half as wide as the panel
on the left.

Listing 12.18:
grid.newpage()
pctlim <- extend.limits(range(xr$PCT))
lrrlim <- extend.limits(range(xr[c("logrelriskCI.lower", "

logrelriskCI.upper")]))
preflim <- extend.limits(c(1, length(unique(xr$PREF))))
pushViewport(viewport(layout = grid.layout(1, 2,

widths = c(2, 1)
)

)
)

pushViewport(viewport(layout.pos.col = 1, xscale = pctlim, yscale
= preflim))
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panel.dotplot(xr$PCT, xr$PREF,
pch = (1:2)[as.factor(xr$RAND)],
col = c("blue", "red")[as.factor(xr$RAND)]
)

grid.rect(gp =gpar(fill='transparent'))
popViewport()
pushViewport(viewport(layout.pos.col = 2, xscale = lrrlim, yscale

= preflim))
panel.dotplot(xr$logrelrisk, xr$PREF)
panel.segments(xr$logrelriskCI.lower, xr$PREF, xr$logrelriskCI.

upper, xr$PREF)
grid.rect(gp = gpar(fill='transparent'))
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We are still a long way from having a production quality plot. To finish the job, we would
need to make space for tick marks, tick mark labels, axis labels, a legend, and a title (one
comes to appreciate the burden that is usually carried by xyplot() and other high level
plotting functions). These remaining steps, while tedious, would not require any knowledge
beyond what we have already discussed.
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Creative Commons Legal Code

Attribution-NonCommercial-ShareAlike 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL

SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT

RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS.

CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED,

AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE

COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT

AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED

UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE

BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED

TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN

CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing

works, such as a translation, adaptation, derivative work, arrangement of music or other alterations

of a literary or artistic work, or phonogram or performance and includes cinematographic

adaptations or any other form in which the Work may be recast, transformed, or adapted including

in any form recognizably derived from the original, except that a work that constitutes a Collection

will not be considered an Adaptation for the purpose of this License. For the avoidance of doubt,

where the Work is a musical work, performance or phonogram, the synchronization of the Work in

timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose

of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and

anthologies, or performances, phonograms or broadcasts, or other works or subject matter other

than works listed in Section 1(g) below, which, by reason of the selection and arrangement of their

contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified

form along with one or more other contributions, each constituting separate and independent works

in themselves, which together are assembled into a collective whole. A work that constitutes a

Collection will not be considered an Adaptation (as defined above) for the purposes of this

License.

c. "Distribute" means to make available to the public the original and copies of the Work or

Adaptation, as appropriate, through sale or other transfer of ownership.

d. "License Elements" means the following high-level license attributes as selected by Licensor and

indicated in the title of this License: Attribution, Noncommercial, ShareAlike.

e. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the

terms of this License.

f. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity

or entities who created the Work or if no individual or entity can be identified, the publisher; and in



addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons

who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or

expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal

entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of

broadcasts, the organization that transmits the broadcast.

g. "Work" means the literary and/or artistic work offered under the terms of this License including

without limitation any production in the literary, scientific and artistic domain, whatever may be the

mode or form of its expression including digital form, such as a book, pamphlet and other writing; a

lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work;

a choreographic work or entertainment in dumb show; a musical composition with or without

words; a cinematographic work to which are assimilated works expressed by a process analogous

to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a

photographic work to which are assimilated works expressed by a process analogous to

photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work

relative to geography, topography, architecture or science; a performance; a broadcast; a

phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work

performed by a variety or circus performer to the extent it is not otherwise considered a literary or

artistic work.

h. "You" means an individual or entity exercising rights under this License who has not previously

violated the terms of this License with respect to the Work, or who has received express

permission from the Licensor to exercise rights under this License despite a previous violation.

i. "Publicly Perform" means to perform public recitations of the Work and to communicate to the

public those public recitations, by any means or process, including by wire or wireless means or

public digital performances; to make available to the public Works in such a way that members of

the public may access these Works from a place and at a place individually chosen by them; to

perform the Work to the public by any means or process and the communication to the public of

the performances of the Work, including by public digital performance; to broadcast and

rebroadcast the Work by any means including signs, sounds or images.

j. "Reproduce" means to make copies of the Work by any means including without limitation by

sound or visual recordings and the right of fixation and reproducing fixations of the Work, including

storage of a protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from

copyright or rights arising from limitations or exceptions that are provided for in connection with the

copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a

worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to

exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce

the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including any translation

in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that

changes were made to the original Work. For example, a translation could be marked "The original

work was translated from English to Spanish," or a modification could indicate "The original work

has been modified.";

c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats whether now known or hereafter devised.

The above rights include the right to make such modifications as are technically necessary to exercise the

rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are

hereby reserved, including but not limited to the rights described in Section 4(e).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the

following restrictions:



a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must

include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the

Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work that

restrict the terms of this License or the ability of the recipient of the Work to exercise the rights

granted to that recipient under the terms of the License. You may not sublicense the Work. You

must keep intact all notices that refer to this License and to the disclaimer of warranties with every

copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform the

Work, You may not impose any effective technological measures on the Work that restrict the

ability of a recipient of the Work from You to exercise the rights granted to that recipient under the

terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this

does not require the Collection apart from the Work itself to be made subject to the terms of this

License. If You create a Collection, upon notice from any Licensor You must, to the extent

practicable, remove from the Collection any credit as required by Section 4(d), as requested. If You

create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove

from the Adaptation any credit as required by Section 4(d), as requested.

b. You may Distribute or Publicly Perform an Adaptation only under: (i) the terms of this License; (ii) a

later version of this License with the same License Elements as this License; (iii) a Creative

Commons jurisdiction license (either this or a later license version) that contains the same License

Elements as this License (e.g., Attribution-NonCommercial-ShareAlike 3.0 US) ("Applicable

License"). You must include a copy of, or the URI, for Applicable License with every copy of each

Adaptation You Distribute or Publicly Perform. You may not offer or impose any terms on the

Adaptation that restrict the terms of the Applicable License or the ability of the recipient of the

Adaptation to exercise the rights granted to that recipient under the terms of the Applicable

License. You must keep intact all notices that refer to the Applicable License and to the disclaimer

of warranties with every copy of the Work as included in the Adaptation You Distribute or Publicly

Perform. When You Distribute or Publicly Perform the Adaptation, You may not impose any

effective technological measures on the Adaptation that restrict the ability of a recipient of the

Adaptation from You to exercise the rights granted to that recipient under the terms of the

Applicable License. This Section 4(b) applies to the Adaptation as incorporated in a Collection, but

this does not require the Collection apart from the Adaptation itself to be made subject to the terms

of the Applicable License.

c. You may not exercise any of the rights granted to You in Section 3 above in any manner that is

primarily intended for or directed toward commercial advantage or private monetary compensation.

The exchange of the Work for other copyrighted works by means of digital file-sharing or otherwise

shall not be considered to be intended for or directed toward commercial advantage or private

monetary compensation, provided there is no payment of any monetary compensation in con-

nection with the exchange of copyrighted works.

d. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless

a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work

and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original

Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor

designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution

("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable means,

the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably

practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such

URI does not refer to the copyright notice or licensing information for the Work; and, (iv) consistent

with Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the

Adaptation (e.g., "French translation of the Work by Original Author," or "Screenplay based on

original Work by Original Author"). The credit required by this Section 4(d) may be implemented in

any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a

minimum such credit will appear, if a credit for all contributing authors of the Adaptation or

Collection appears, then as part of these credits and in a manner at least as prominent as the

credits for the other contributing authors. For the avoidance of doubt, You may only use the credit

required by this Section for the purpose of attribution in the manner set out above and, by

exercising Your rights under this License, You may not implicitly or explicitly assert or imply any

connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution

Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written



permission of the Original Author, Licensor and/or Attribution Parties.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to

collect royalties through any statutory or compulsory licensing scheme cannot be waived,

the Licensor reserves the exclusive right to collect such royalties for any exercise by You of

the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect

royalties through any statutory or compulsory licensing scheme can be waived, the Licensor

reserves the exclusive right to collect such royalties for any exercise by You of the rights

granted under this License if Your exercise of such rights is for a purpose or use which is

otherwise than noncommercial as permitted under Section 4(c) and otherwise waives the

right to collect royalties through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties, whether

individually or, in the event that the Licensor is a member of a collecting society that

administers voluntary licensing schemes, via that society, from any exercise by You of the

rights granted under this License that is for a purpose or use which is otherwise than

noncommercial as permitted under Section 4(c).

f. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by

applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part

of any Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory

action in relation to the Work which would be prejudicial to the Original Author's honor or

reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the

right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be

a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's

honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the

fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your

right under Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING AND TO THE

FULLEST EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR OFFERS THE WORK AS-IS AND

MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK,

EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,

WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE

PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME

JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THIS

EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO

EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,

INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS

LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You

of the terms of this License. Individuals or entities who have received Adaptations or Collections

from You under this License, however, will not have their licenses terminated provided such

individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will

survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration

of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to

release the Work under different license terms or to stop distributing the Work at any time;
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