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Course Introduction

MI255: Exposure-Response Modeling of Categorical, Count, and
Time-to-Event Data Using Bayesian Methods provides an introduction
to modeling of categorical, count and time-to-event data, and the
practical use of WinBUGS for such applications. The course duration
and content is equivalent to a single semester 2 credit course at a
typical institution of higher learning. Each week’s topic will consist of a
lecture (one hour) followed by a hands-on lab (one hour). The general
plan will be as follows:

@ Lectures will be on Mondays at 2 PM EDT.

@ Hands-on labs will be on Thursdays at 2 PM EDT (in some cases,
the lecture may finish during the first part of the lab on Thursday).
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Student Expectations and Requirements for Certificate

@ All students are expected to attempt the hands-on exercises prior
to the Thursday lab. Instructors will not grade homework
assignments, but will review solutions with the entire class on a
weekly basis.

@ A midterm take-home exam will be assigned at the midpoint of the
course.

@ A final take-home exam will be assigned at the end of the course
(due one week after it is posted).

@ Students will be required to complete and submit a modeling
project before the end of the course. This project will be based on
a real-world (or similar) problem, and will include components of
data assembly, model development and evaluation, and a brief
report. More details to follow...

@ Course grade will be based on the midterm (25%), final (25%) and
modeling project (50%)
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Getting Started Course Content Management Site

Course Content Management Site

All students should already have an account to access the main course
website. Here’s the link: (http://training.metruminstitute.org). Postings to this
site will automatically generate an email message to your own e-mail
accounts. This site is intended to be the primary repository for all course
resources including:

@ News Forum: Here you’ll find updates about class schedule,
assignments, etc.

@ Discussion Forum: Direct your questions about course content to
instructors or other students here. You can contribute to ongoing
discussions or start a new thread.

@ Technical Support: Use this forum to submit technical support tickets
for problems with any of the Metrum Institute web resources.

@ Link to the GoToWebinar webcast registration form.

@ Course Materials: You'll find course notes, examples, and links to
recorded lectures under each weekly class heading.
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http://training.metruminstitute.org

Computer Fesources

Cloud-based compute server access

@ You should have received an email with a username and
password for the server.

@ Use Remote Desktop Connection to connect to
comp2.metruminstitute.org

@ Set up a shared folder to exchange files between the server and
your computer (to be demo’d).

@ R and WinBUGS are installed and your user folder contains the
initial course materials.

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data  September—December, 2011 5/214

Getting Started Computer resources

Computer resources
Use of your own computer

@ The initial course materials, including the software we will use
throughout the course, are contained in the (rather large) zip file
named MI255USB.zip available on the course website.

@ For the course we recommend you run the software and course
examples directly from a USB flash drive via the shortcuts
provided. Install the contents of MI255USB.zip according to:

@ Download MI255USB.zip to your computer.

@ Unzip MI255USB.zip. This will create a folder named MI255USB.

@ Obtain and insert a USB flash drive with > 1GB capacity.

© Copy the contents of MI255USB (not the MI255USB folder itself) to
the flash drive.

@ Check the software installation by double-clicking on the shortcuts
named “R 2.13.1.cmd” and “WinBUGS14.cmd”. In each case the
corresponding program (R or WinBUGS) should be successfully
launched. If not, please report it via the Technical Support forum on
the course website.
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Course Outline

The following course outline was originally developed for a 2 day
workshop. All of the listed topics and examples will be covered, but you
should anticipate changes to better fit the 1 semester webcast format,
e.g., reordering of topics, subdividing tasks within the hands-on
examples, and adding new topics and examples.
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Course outline

MI255: Exposure-Response Modeling of Categorical,
Count, and Time-to-Event Data Using Bayesian
Methods

Objective

Provide an introduction to modeling of categorical, count and
time-to-event data, and the practical use of WinBUGS for such
applications.

Primary intended audience: pharmacometricians with biological

or statistical modeling skills

Background assumed
@ PK/PD or statistical modeling

@ Some familiarity and hands-on experience with nonlinear
regression, mixed effects modeling, Bayesian modeling using
WinBUGS and use of R (or S-PLUS).
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Course outline

@ Some general theory/background:
e Modeling from a probabilistic point of view: the likelihood function
e Maximum likelihood for continuous data
e Extending ML to odd-type data
e Hierarchical (mixed effects) modeling of odd-type data
e Bayesian modeling of odd-type data

@ Modeling binary data

Logistic regression models

e Bernoulli model for individual binary data
e Binomial model for summary data

o Mixed effects modeling of binary data
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Course outline

@ Hands-on Problem 1: Logistic regression for binary data

@ Model evaluation, esp. simulation-based methods for categorical
data models

@ Hands-on Problem 2: Longitudinal binary data

@ Modeling ordered categorical (ordinal) data

o Cumulative logit models
e Modeling longitudinal ordinal data: Comparative performance of
approximate ML (e.g., NONMEM) and MCMC (e.g., WinBUGS)

@ Hands-on Problem 3: Longitudinal ordinal data
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Course outline

@ Modeling count data
@ The Poisson model
e Variations on the Poisson model to deal with over-dispersion or
zero inflation
@ Hands-on Problem 4: Count data
@ Modeling time-to-event data for a single event per individual

e Principles and methods of survival analysis for modeling censored
data
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Course outline

@ Hands-on Problem 5: Time-to-event data: Constant hazard model

@ Models with time-varying hazard
@ Modeling repeated time-to-event data
e Modeling of inter-event time intervals

@ Hands-on Problem 6: Repeated time-to-event data
@ Closing discussion
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Some general theory and background
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Some general theory and background Modeling from a probabilistic POV: The likelihood function

Modeling from a probabilistic point of view

@ Those of you who, like myself, were initially trained in a physical or
biological science probably started with a deterministic view of
modeling.

e Variability and uncertainty and the statistical tools to deal with them
were obligatory nuisances to deal with “noise” but not the focus of
the modeling.

e This began to turn around for many of us with the increasing use of
mixed effects modeling in which probability distributions are used to
describe the “unexplained” portion of inter-individual variability.

e Even then | suspect most of us continued to view residual variability
as more of a nuisance than as an integral component of the model.

@ What we will see today is that such notions of modeling do not
translate well to modeling of categorical, count or time-to-event
data. A probabilistic perspective is far more useful.
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Some general theory and background Modeling from a probabilistic POV: The likelihood function

Modeling from a probabilistic point of view: The

likelihood function

Start with the notion that the value of a potential future measurement
Y is a random variable

@ It is not predictable with certainty (even if we know all of the model
parameters with certainty)

@ The probabilities of different values are described in terms of a
probability distribution

Y ~p(ylo,x)
where 6 is a vector of model parameters and x is a vector of
covariates.

@ If Y is a continuous random variable then p (y|6, x) is a probability
density function.

@ If Y is a discrete random variable then p (y|0, x) is a probability
function.
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Some general theory and background Modeling from a probabilistic POV: The likelihood function

Modeling from a probabilistic point of view: The
likelihood function

Suppose that future measurement is a plasma drug concentration at
some time t following an IV bolus of a drug where the

pharmacokinetics can be described by a 1 compartment model with
normally distributed residual variation.

Y ~ p (y|CL, V, o2, t, D>

1 _ 1 (y_3 2

CL,V,0%,1,D) = g zz (Y ELD.CLY)
p(ylcL, v, o2 1,D) o
S(tD,CLV) = D%

v

So even if you know the values of CL, V and o2 you cannot say that Y
will be a particular value. However, you can say the probability that Y
will be within some specified interval.
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Some general theory and background Modeling from a probabilistic POV: The likelihood function

Modeling from a probabilistic point of view: The
likelihood function

@ Suppose you already observed a measured value yps.
@ That value is no longer a random variable since we know its value.

@ If we insert that observed value into our probability distribution
function we now refer to that function as a likelihood function.

@ It is the same function as before but we now view it as a function
of the parameters given the data instead of as a function of the
data given the parameters.

L(0]Yobs, X) = P (Yobs|0, X)

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data =September—December, 2011 17 /214

Some general theory and background Modeling from a probabilistic POV: The likelihood function

Modeling from a probabilistic point of view: The
likelihood function

L(0]Yobs, X) = P (Yobs|t, X)

@ During model development we generally do not know the values of
the parameters 0 and use the observed data to estimate those
parameters.

@ The likelihood function contains information about what those
parameter values might be.

@ We will talk about two different approaches that exploit the
likelihood function to estimate 6:

e Maximum likelihood estimation
o Bayesian statistical analysis
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Some general theory and background Maximum likelihood for continuous data

Maximum likelihood for continuous data

@ Apply this idea to our one compartment model example.

@ Suppose we observed a plasma drug concentration on two
occasions.

@ The resulting likelihood function is:

2
L<CL’ V’ 02‘y0b81ay0b827t17t27D> = ““L<CL, V, Uz‘Yobsi,ti,D>

i=1

2 1 - 2

- 11 o 52z (Yobsi—C(11:D.CL,V))

o Vero

i=1
~ D
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Some general theory and background Maximum likelihood for continuous data

Maximum likelihood for continuous data

@ The above equation generalizes to any number of observations.

@ For n observations described by a normal distribution where the
mean is a function f (x, 0) of the parameters ¢ and covariates x:

n
L(0|Yobs, X) = H L (6]yobsi, Xi)

i=1
n 1 1 2
_ H e_m(}’obsi_f(xhe))
i—1 V2o

@ The maximum likelihood estimate of 0 is the value of 0 that
maximizes this likelihood function.
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Some general theory and background Maximum likelihood for continuous data

Maximum likelihood for continuous data

@ Rather than maximize the likelihood directly, many ML algorithms
minimize the transformation —2/og (L (6|Yops; X))
@ For the above normally-distributed case this becomes:

n

—2l0g (L(0]Yops, X)) = > —2log (L(6]Yopsi: Xi))

i=1

n
1 1 e 0))2
_ 210 o 5z obsi = 1(,0)) )
; g <\/ 2mo

n

2
= > <Iog (2m) + log (0®) + (Yobsi = f2(X,-,9)) )

p g
i=1

f (x,0))°
2

= nlog(27) + nlog (0®) + ) (Yobsi —

- g
i=1

@ This shows that the least-squares estimates of 6 are also the ML
estimates for this case.
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Some general theory and background Extending ML to “odd-type” data

Extending ML to “odd-type” data
Binary data

@ Most often binary data is used to represent the occurrence or
non-occurrence of an event.

@ We often use numerical values such as 1 and 0 to represent those
two possible outcomes, e.g., 1 for “it happened” and 0 for “it didn’t
happen”.

@ Suppose we want to model the occurrence of a particular adverse
event. Let’s start with one patient. The random variable Y
representing the possible AE occurrence is 1 if the AE occurs and
0 if it doesn’t. This is just a Bernoulli trial that is modeled as:

{pAE(97X)7 y:1
1_pAE(97X)a .y:O
= pae (0, %) (1 — pag (6, %))

where pae (0, x) is the probability that the AE occurs shown as a
function of one or more parameters 6 and covariates x.

Y ~p(ylo,x)
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Some general theory and background Extending ML to “odd-type” data

ML modeling of binary data

Now suppose we observe whether or not the AE occurs in 100 patients
in a dose response study with the following results:

Number of patients
Treatment Total AE occurred

Placebo 25 5
10 mg/d 25 7
20 mg/d 25 12
40 mg/d 25 20
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Some general theory and background Extending ML to “odd-type” data

ML modeling of binary data

Let’s try modeling the probability of an AE in the i patient as a
function of dose according to a linear logistic model:

|Ogit (pAE (9, D/)) = 6y + 01D

The logit transformation is commonly used to transform between the
range of probability (0,1) and the entire real line:

logit(p) = Iog(%), O<p<i

logit™ (x) = —00 < X < 00

The inverse logit is also sometimes referred to as the expit function.
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Some general theory and background Extending ML to “odd-type” data

ML modeling of binary data

So the likelihood for that patient is:

L (0]Yobsi> Dj) = P (Yobsil0, Dj) = pag (8, D;)" (1 — pag (6, D;))' s
The overall likelihood for the study results is:

100
L(0|Yobs, D) = HP(YObsi|07Di)

i=1
100

_ HPAE (0, Di)}’obsi (1 — pae (6, Di))1—}’obsi
=1

where yobs and D are vectors of the individual patient values.

The value of 0 that maximizes the likelihood value is the ML estimate.
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Some general theory and background Extending ML to “odd-type” data

Likelihood function for binary data example

©
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Some general theory and background Bayesian modeling of odd-type data

A brief review of Bayesian inference
Bayes Rule

Bayes Rule is the basis for inference about model parameters () given
data (y) and prior knowledge about model parameters (p (6)):

p@)p(ylo)  p(8)p(yf)
p(y) Jp(©)p(yl0)do
x p(0)p(yl0)

The p’s are probabilities or probability densities of the specified
random variables.

p0ly)
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Bayesian modeling/inference process

@ Assess prior distribution p (6)
e 6 viewed as random variables
e Subjective
o lIdeally base on all available evidence/knowledge (or belief)
e Or deliberately select a non-informative (or weakly informative)
prior (e.g., reference, vague or improper prior)
@ Construct a model for the data p(y|6), also known as the
likelihood function when viewed as a function of 6.
@ Calculate posterior distribution p (6]y).
o Use for inferences regarding parameter values
@ Calculate posterior predictive distribution p (ynew|y)-
e Use for inferences regarding future observations

D (Voewly) = / D (ynewl8) P (6]y) d6
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Some general theory and background Bayesian modeling of odd-type data

Bayesian modeling of odd-type data
@ Return to the linear logistic regression example where we observe
whether or not an AE occurs in each of 100 patients and the
probability of an AE is given by

logit (pAE (9, D/)) =01+ 0-D;

@ The likelihood function is the same as before.

@ Now we must also specify a prior distribution for the model
parameters 6. The resulting expression for the posterior
distribution of @ is:

P (01Yobs, D) o< p(Yobs|f, D) p(6) = L(0]yobs, D) p(6)
100
o | | P(Yobsil®, D) p(6)
=1
100
o [[ pag (6. D)™ (1 — pag (6, D)) p(0)
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Some general theory and background Bayesian modeling of odd-type data

Bayesian modeling of odd-type data

Now suppose we have a little prior information about the value of and
choose to represent that knowledge as a bivariate normal distribution
with relatively large variances and no correlation, i.e.,

0 o< N(u,X)

where
(102 s-|1© 0
p=1=hvy | 0 022
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Some general theory and background Bayesian modeling of odd-type data

Joint prior and posterior distributions
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Some general theory and background Bayesian modeling of odd-type data

Marginal prior and posterior distributions
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Modeling binary data
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Modeling binary data Logistic regression

Modeling binary data: Logistic regression

Logistic regression refers to the fitting of binary data with models of the
form:

logit (p) = f(x,0)
where p is the probability that some event (e.g., an AE) occurs and x is
a vector of covariates.
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Bernoulli model for individual binary data

@ Suppose we want to model the incidence of a potentially
dose-limiting AE as a function of dose in order to support dose
selection.

@ The data consists of individual patient results from the following
study design:
o Parallel dose-finding study
e 100 subjects per dose arm
o Treatment arms: 5, 10, 20 and 40 mg
o Possible covariates: age, weight, gender
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Modeling binary data Logistic regression

10 20 30 40
1 1 1 1 1 1 1

Il
male female

Exploratory analysis indicates:

@ Dose-response apparent from
summary stats

@ Possible effects of gender,
weight and age

fraction of patients with AE

60 80 100 120

e ¢« =10
- 0.8
- 0.6
- 0.4
- 0.2

fraction of patients with AE

fraction of patients with AE
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Proposed model

Linear logistic regression model for AE occurrence as a function of
dose, gender, age and weight:

AE; ~ Bernoulli(pag,)
logit (Pae,i) = 61+ 62D; + 63 (age; — 40) + 64 (weight; — 70) + #sgender;

Weakly informative priors:
0; ~ N (0, 106)
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WinBUGS implementation

model{

for(i in 1:nobs){
ae[i] ~ dbern(p.ael[i]) ## likelihood
logit(p.ael[i]) <- thetal[l] + theta[2]*dosel[i] +
theta[3]*(age[i]-40) + theta[4]*(weight[i]-70) +
theta[5] *gender [i]

ae.pred[i] ~ dbern(p.ael[il]) ## posterior predictions

¥

for(i in 1:5){
thetal[i] ~ dnorm(0,1.0E-6)
}
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Modeling binary data Logistic regression

Results

@ 10000 x 3 chains
@ burn-in = 4000/chain, thin by 5 (i.e., keep every 5th sample)
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Modeling binary data Logistic regression

|
male

@ Plot compares observed !
fractions of patients with the
AE to the posterior medians
and 90% prediction intervals.

@ This is simulated data where
the true 0 vector is (-2.94, 0.1,
0.05, -0.015, -0.7).

fraction of patients with AE

10 20 30 40
dose

parameter mean sd 25%ile 25%ile median 75%ile 97.5%ile effective N
deviance 315 3.12 311 313 315 317 323 3290

04 -3.13 0358 -384 -336 —-3.12 288 246 1880
0> 0.112 0.0115 0.0896 0.104 0.112 0.12 0.135 1990
03 0.052 0.0206 0.0114 0.038 0.052 0.0656 0.0937 3320
04 —0.0212 0.0113 —0.0435 —0.0286 —0.0211 —0.0136 0.00101 3260
05 -0.821 0316 —-145 —-1.03 -0.812 -0.605 -0.218 3400
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Binomial model for summary data

@ A sum of (0,1) Bernoulli distributed (binary) data items is a
binomially distributed random variable, i.e., x successes in n trials
is equivalent to summing over n (0,1) binary data items where 1 is
a “success.”

@ Probability of a success is modeled in the same manner as for a
binary random variable.

@ The only difference is in the likelihood function.
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Modeling binary data Logistic regression

Example: Dose-response model for nausea during
treatment with desvenlafaxine

Nausea incidence reported in the Pristiq package insert

dose  number of patients total number % reporting

(mg/d)  reporting nausea of patients nausea
0 64 636 10
50 70 317 22
100 110 424 26
200 111 307 36
400 130 317 41
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Modeling binary data Logistic regression

Example: Dose-response model for nausea during

treatment with desvenlafaxine
Nausea incidence reported in the Pristiq package insert

1 1 1 1 1 1 1 1 1 1

0.4 r
—05 4 L

|
[
o

1

T

0.3 r

-15 4 L
0.2 r

fraction of patients with nausea
logit(fraction of patients with nausea)

-2.0 4 L

0.1+ r

T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400

dose (mg/d) dose (mg/d)
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Proposed model

Nonlinear logistic regression model for nausea occurrence in the
dose group as a function of dose:

Mnausea,i ~ Binomial (pnausea,i, ni)
logit (pnausea,i) = a+ 8D/

where Npaysea i 1S the number of patients reporting nausea and n; is the
total number of patients in the i dose group, respectively.

Weakly informative priors:

@~ N<o,106) B ~ N(o,106) v~ U(0.1,10)
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[ WVodoingbmaydaia legsforegesson
WinBUGS implementation

model{

for(i in 1:nobs){
## likelihood
nNauseal[i] ~ dbin(pNauseali],nTotalli])
logit(pNausea[i]) <- alpha + beta*pow(dose[i],gamma)

## posterior prediction
nNauseaPred[i] ~ dbin(pNauseali] ,nTotall[i])

by

alpha ~ dnorm(0,1.0E-6)
beta ~ dnorm(0,1.0E-6)
gamma ~ dunif(0.01,10)
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Modeling binary data Logistic regression

Results

@ 100000 x 3 chains
@ burn-in = 10000/chain, thin by 50

gamma

000 005 010 015 020
L L L L L

value

-2.6 -20 000408 35 45 010305
T AT L i

g alpha beta

00 05 10 15 20 25 30
P S M N

T T T T T T T T T T T T
0 500 1000 1500 -28 26 24 22 20 -18 00 02 04 06 08 10
sample value
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Modeling binary data Logistic regression

0.0

-0.5

o
>

Plot compares observed
fractions of patients
reporting nausea to the
posterior medians and 90%
prediction intervals

-1.0 4

o
w

-15 4

I
Ny
logit(fraction of patients with nausea)

fraction of patients with nausea

-2.0

T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400
dose (mg/d) dose (mg/d)

parameter mean sd 2.5%ile 25%ile median 75%ile 97.5%ile effective N
deviance 349 254 32 33 34.2 36 41.6 4560

e -221 0131 —-248 -23 -221 -212 —-1.96 3520
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Modeling binary data Hands-on examples

Hands-on examples: Fictional development program
for a mucolytic to treat cystic fibrosis

@ Metrum Pharmaceuticals is developing ME-2, a CF treatment that seeks to
restore salt transport in the lungs. This is hypothesized to reduce mucous
viscosity to near normal thereby increasing mucous clearance from the lungs
and improving lung function. The primary efficacy endpoint in confirmatory trials
will be the occurrence of pulmonary exacerbations. A pulmonary exacerbation is
variously defined in the literature. It generally refers to a deterioration of
pulmonary function that requires one or more of a specified set of interventions,
e.g., hospitalization, administration of intravenous antibiotics or administration of
oral antibiotics.

@ In the Metrum trials acute pulmonary exacerbations were defined as an acute
exacerbation of CF respiratory symptoms that, in the opinion of the patient’s
physician, required administration of new oral or intravenous antibiotics.

@ Secondary endpoints and biomarkers include pulmonary function measurements
such as FEV1 and sputum viscosity. Our hands-on examples will involve the
analysis of results from clinical trials conducted in Phases 2 and 3. The order of
the examples will not follow the chronological order of the development program.
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Modeling binary data Hands-on examples

Hands-on examples: Fictional development program
for a mucolytic to treat cystic fibrosis

@ Hands-on Problem 1: Logistic regression for binary data
o Dose-response model for exacerbation occurrence within 24 weeks.
@ Hands-on Problem 2: Longitudinal binary data

o Repeated measures (e.g. each inter-visit period) for AE (e.g.,
coughing) in Phase Il

e The team hypothesizes that patients will exhibit tolerance for a
particular AE, i.e., for a given drug exposure the AE will occur less
frequently over time. We will explore this by fitting a longitudinal
binary model to the AE data observed in a dose-response study
using a model where the probability of an AE can decline with time.
This will be used to assess the strength of the evidence supporting
the tolerance hypothesis and to explore the effects of dose
escalation regimens to reduce AE incidence.
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Modeling binary data Hands-on examples

Hands-on examples: Fictional development program
for a mucolytic to treat cystic fibrosis

@ Hands-on Problem 3: Longitudinal ordinal data
o Repeated measures QOL score (3 point scale) in Phase 2
@ Hands-on Problem 4: Count data

e Number of coughing episodes in a Phase 2 study
e Focus on exploring different count models. This is a good setting for
hands-on learning about model evaluation and selection.
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Modeling binary data Hands-on examples

Hands-on examples: Fictional development program
for a mucolytic to treat cystic fibrosis

@ Hands-on Problem 5: Time-to-event data: Constant hazard model

@ ME-3, a more potent analog of ME-2, is also a mucolytic that is being developed as a treatment for cystic fibrosis.
Phase | trials are in progress, so the current focus is on the design of Phase 2 PoC and dose-finding.

@ The development team’s preferred primary endpoint for efficacy assessment is time to the first pulmonary
exacerbation event, but trials using conventional hypothesis tests require large sample sizes and/or durations in
order to achieve adequate statistical power.

@ A model relating FEV1 to exacerbation hazard was developed by meta-analysis of results from past ME-2 trials
plus summary data for other mucolytics reported in public sources. It is believed that the model is qualitatively
and quantitatively applicable to the new drug candidate because the drugs work by the same mechanism and the
patient population is essentially the same.

@ It may be possible to reduce sample sizes or trial duration for a Phase 2 PoC and dose-finding trial by analyzing
both exacerbation and FEV1 data using a joint model that incorporates the aforementioned model relating FEV1
to exacerbation hazard—including the informative prior distribution of its parameters. This would permit
inferences regarding exacerbations conditioned on prior knowledge and the observed FEV1 and pulmonary
exacerbation data.

@ Based on this idea the team conducted a study with fewer patients and half the treatment duration (12 weeks)
than a typical study for a CF mucolytic. We analyze the results in this hands-on example.

@ Hands-on Problem 6: Repeated time-to-event data
@ Constant hazard model for time between pulmonary exacerbation events
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Modeling binary data Hands-on problem 1

Hands-on problem 1: Logistic regression for binary
data

@ Phase 2 dose-finding trial in CF patients

o Parallel design

e 100 patients per dose arm

e Multiple doses of ME-2

@ Placebo, 20, 40 and 60 mg qd administered by inhalation for 24
weeks

e Primary efficacy measurement: Occurrence of > 1 pulmonary
exacerbation event within 24 weeks

e Covariates of possible relevance: age, baseline FEV1, concomitant
medications (rhDNase or chronic antibiotic such as azithromycin or
inhaled tobramycin)

@ Hands-on exercise:
e Construct a model for occurrence of pulmonary exacerbation as a
function of dose and possibly patient-specific covariates.

@ Data file: handsOn1/ME2ExacerbationData.csv
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Modeling binary data Hands-on problem 1

EDA: Fraction of patients with > 1 pulmonary
exacerbation as a function of dose & selected
covariates
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Modeling binary data Hands-on problem 1

EDA: Fraction of patients with > 1 pulmonary
exacerbation as a function of dose & selected
covariates
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EDA: Relationship between age and baseline FEV1
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Modeling binary data Hands-on problem 1

Proposed models
Binomial “base” model

@ Linear logistic regression model for the number of patients in the i dose
arm with > 1 pulmonary exacerbation as a function of dose:

Nexac,i ~ Binomial (Pexac,i)
|Og|t (pexac’i) — 0/ + 92Di

@ Weakly informative priors: 6; ~ N (0, 10°)
Binary “full” model

@ Linear logistic regression model for pulmonary exacerbation occurrence
in the /™ patient as a function of dose, baseline FEV1 (% of predicted),
concomitant medications (chronic antibiotics or rnDNase) and age:

Iexac’/' ~ BernOU”i (pexac’i)
logit (Pexac,i) = 0i+ 62D; + 03 (FEV1; —70) + 04 Lantiviotic,i +

@ Weakly informative priors: 6; ~ N (O, 106)
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Mixed effect modeling of “odd-type” data

Hierarchical (mixed effects) modeling of “odd-type”
data
@ Suppose that each patient is treated for 4 weeks and reports
whether or not the AE occurred each week.
@ Now there are 4 binary AE measurements for each patient.

@ To account for within patient correlation we will use a mixed effects
model that includes inter-patient variation in the model
parameters.

@ The patient-specific parameter values ¢; are modeled according to
a parametric probability distribution where the parameters of that
distribution (usually the mean) may be functions of patient-specific
covariates.

@ For our example assume that the inter-patient variation may be
described by a normal distribution:
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Mixed effect modeling of “odd-type” data

Hierarchical (mixed effects) modeling of “odd-type”
data

The likelihood for an observation in an individual patient y,ps; is the
same as before except that the parameter values ¢; are unique to each
patient, i.e.:

L (¢;|yobsis D;) = P (Yobsiiljs ;) = pae (¢j, D) (1 — pae (9, D/))1_y0b5ij
where
|Ogit (pAE (¢j, Dj)) = (901' + 01ij
The overall likelihood for the j patient is:

4

L (¢}|Yobs.j» Dj) = H L (| Yobsij» D))
i—1
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Mixed effect modeling of “odd-type” data

Hierarchical (mixed effects) modeling of “odd-type”
data

To make inferences about the population parameters we need to
construct the likelihood in terms of 8 = (u, X).

L(9|yObS7D) = /L(¢17¢27---7¢100|y0b57D)p(¢17¢27---7¢100|9)d¢17d¢27'--7d¢100

100

- H/L(¢j|}’obs.j,Dj)p(¢j|9) de;
j=1

100

4
1 / [T L (S/lyoesi D)) p (#116) de;
=17 =

NONMEM approximates this likelihood function using a Laplacian
approximation for the integration assuming p (¢;|6) is a normal
distribution. NONMEM 7 now includes additional algorithms that do not
use such an approximation.
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Mixed effect modeling of “odd-type” data

Bayesian treatment of hierarchical (mixed effects)
modeling of odd-type data

@ Consider again the example where the occurrence of an AE is
observed over 4 intervals for each patient.

@ In this case we are probably interested in the posterior
distributions of the population (¢) and individual parameters (¢;’s).
The joint posterior distribution of ¢ and the ¢;’s is described by:

p(0,¢1,¢27-~~;¢100|y0b37D) X p(y0b3’9a¢17¢2a"'7¢100>D)p(¢17¢27"'7¢100|0)p(0)
100
ox Hp(yobs.j|¢j: Dj) p (¢/|9) p(@)
j=1
100 4

oc [T 11 P (vessiles. Dy) p(4116) P (6)

j=1 i=1
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Mixed effects modeling of binary data

@ Meta-analysis of factor
Xa inhibitor effect on
VTE incidence

@ Published VTE rates
from 7 dose-finding
trials comparing new
factor Xa inhibitors to
enoxaparin. Horizontal
lines show observed
values for enoxaparin
40-60 mg/d.
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Mixed effect modeling of “odd-type” data

Proposed model

@ Linear logistic regression model for VTE occurrence in the i" treatment
arm of the j study as a function of dose:

NvTE,jj

logit (pvre,j)
Edrug,ij

Epj

Y

Y

Binomial (
Ep,j + Edru

PVTE ij> Ni)

9,

Oarug l0g (Dj + 1)

N (Gp, 02)

where nyre jj is the number of patients experiencing a VTE and nj is the
total number of patients in the in the i treatment arm of the % study,

respectively.

@ Weakly informative priors for drug effects:
edrug ~/ N (O, 106)

@ Informative priors for placebo effects (fictional but it illustrates the idea of
using historical knowledge about control treatment response):

0p ~ N (logit(0.45),0.12) log (o) ~ N (log (0.4),0.5%)

©2011 Metrum Institute

Categorical, Count, and Time-to-Event Data = September—December, 2011

62/214



WinBUGS implementation

model{

for(i in 1:nobs){
## likelihood
vte[i] ~ dbin(p.vtel[i],n[i])
## posterior prediction for new observations in same study
vte.cond[i] ~ dbin(p.vtel[il,n[i])
logit(p.vte[i]) <- eplstudy[il] + edruglil
## +1 added so that intercept still corresponds to dose = O
edrug[i] <- thetaldrugli]l]*log(dose[i]+1)

## posterior predictions for new observations

## in new study of same design

vte.pred[i] ~ dbin(p.vte.pred[i],n[i])

logit(p.vte.pred[i]) <- ep.pred[study[i]] + edruglil
X

for(i in 1:nstudy){
## interstudy variation in the intercept
ep[i] ~ dnorm(ep.hat,tau)
ep.pred[i] ~ dnorm(ep.hat,tau)

}
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WinBUGS implementation (cont.)

## informative prior on placebo response

ep.hat ~ dnorm(ep.hat.prior.mean, ep.hat.prior.precision)
ep.hat.prior.mean <- logit(0.45)

ep.hat.prior.precision <- 1/pow(0.1,2)

log.sigma ~ dnorm(log.sigma.prior.mean, log.sigma.prior.precision)
log.sigma.prior.mean <- log(0.4)

log.sigma.prior.precision <- 1/pow(0.5,2)

log(sigma) <- log.sigma
tau <- 1/(sigma*sigma)
for(i in 1:6){
thetal[i] ~ dnorm(0,1.0E-6)
}
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Mixed effect modeling of “odd-type” data
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Mixed effect modeling of “odd-type” data

Prediction of new data in same Prediction of new data in new
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YM150 study 7 YM150 study 7
LI'_J T T T T T T 2 Lu T T T T T T 3
> 10 20 30 40 50 60 '; 10 20 30 40 50 60
£ rivaroxaban study 1_|_rivaroxaban study 2_| _rivaroxaban study 3 06 < rivaroxaban study 1 | rivaroxaban study 2 | _rivaroxaban study 3
; -1 ~ V. s -
(%] 1 - 0.5 i
c . 04 = J
.% . 03 é
- 0.2 © i
= 01 =
8 ° T T T T 71 L L N | T T T T - 00 g B T T T T 1T T T T T 1T T T T T
B 102030405060 102030405060 10 20 30 40 = 102030405060 102030405060 10 20 30 40
g apixaban study 4 LY517717 study 5 ezaRahanbdyIoN| © apixaban study 4 LY517717 study 5 razaxaban study 6
L P —
T T T T T T T T T T : T T T T T T T 1 T T T
5 10 15 20 50 100 1560 100 150 200 5 10 15 20 50 100 150 100 150 200
dose dose

Horizontal lines show observed (gray) and predicted values for enoxaparin
40-60 mg/d

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data = September—December, 2011 66 /214




Model parameter estimates

parameter mean sd 2.5%ile 25%ile median 75%ile 97.5%ile effective N
deviance 217 537 209 214 217 220 230 2420

Op —0.247 0.0976 —0.44 —0.313 —0.248 —0.183 —0.0509 3450
o 0.59 0.164 0.351 0.472 0.564 0.682 0.984 1710
04 —0.17 0.052 -0.267 —0.205 —0.171 —0.136 —0.0629 708
0> —0.379 0.0693 —0.514 —0.426 —0.38 —0.332 —0.241 809
03 —0.579 0.123 —-0.817 —0.662 —0.579 —0.498 —0.331 1130
04 —0.168 0.0689 —-0.3 —-0.215 —-0.17 —-0.122 —0.031 1430
05 —0.466 0.0861 —0.64 —0.523 —0.465 —0.409 —0.299 1840
05 —0.371 0.117 —0.597 —0.454 —0.369 —0.293 —0.145 2290
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Hands-on Problem 2: Longitudinal binary data

@ In the Phase 2 dose-finding trial many patients report moderate to
severe coughing.

@ Exploratory data analysis suggests that the coughing is
drug-related but that it also exhibits tolerance, i.e., the incidence
decreases with time.

@ We will explore this by fitting a longitudinal binary model to the
cough data observed in a dose-response study using a model
where the probability of coughing can decline with time.

@ This will be used to assess the strength of the evidence
supporting the tolerance hypothesis and to explore the effects of
dose escalation regimens to reduce AE incidence.
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Hands-on Problem 2: Longitudinal binary data

@ Phase 2 dose-finding trial in CF patients (same as hands-on
problem 1)
o Parallel design

e 100 patients per dose arm
e Multiple doses of ME-2

@ Placebo, 20, 40 and 60 mg qd administered by inhalation for 24
weeks

e AE measurement: Occurrence of moderate to severe coughing
during each 4 week inter-visit period.

@ Hands-on exercise:

e Construct a model for occurrence of coughing as a function of dose
and time

@ Data file: handsOn2/ME2CoughData.csv
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Mixed effect modeling of “odd-type” data Hands-on problem 2

EDA: Fraction of patients reporting moderate to severe
coughing as a function of dose and time
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Mixed effect modeling of “odd-type” data Hands-on problem 2

EDA: Fraction of patients reporting moderate to severe
coughing as a function of dose and time
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Mixed effect modeling of “odd-type” data Hands-on problem 2

Proposed model

Logistic regression model where the probability of coughing in each 4 week
study period exhibits tolerance described by a model similar to that described
by Porchet (JPET 244:231-236 (1988)). Cough occurrence in the j1 patient
during the i study period as a function of dose and time:

Icough’ij ~ BernOU”i (pcough’ij)

_ aD;
logit (Pcough,ij) = Eo+ 1 X{o/,i/
+ X50
Xolj = D (1 o e_kwltij)

By ~ N<Eo,02)
Weakly informative priors:
Ey ~ N(0,10°) o~ N(0,10°)

log (xs0) ~ N (0,10°) log (Kts) ~ N (0,10°)
o ~ U(0,10%)
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Model evaluation

Model evaluation, esp. simulation-based approaches
for categorical data models
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Bayesian model evaluation & comparison

Typical practical Bayesian model development
@ Propose initial model structure based on available prior
information.
o Realistically exploratory analysis of the new data also influences
this process,
@ Assess whether model is consistent with the data and prior
information
o Posterior predictive checking
e Are model inferences, predictions and values of parameters or
other derived quantities consistent with other knowledge?
@ Assess sensitivity to potentially influential assumptions, e.g.,
choice of prior distributions

@ If deficiencies are discovered that could adversely affect important
inferences then explore model revisions and reassess as before.
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Bayesian model evaluation & comparison

Typical practical Bayesian model development (cont.)

@ Use the model resulting from this process for pre-planned
inferences.
@ Optionally there may be additional hypothesis-generating
activities, e.g.,
e Data mining efforts to explore the influence of covariates not
considered in the original model
o Further exploration of alternative model structures not considered
in the previous sensitivity analyses
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Model evaluation Posterior predictive checking (PPC)

Posterior predictive checking (PPC)

@ Graphical checks

e Comparing data & predictions
e Comparing data summaries and model predictions/inferences
o Residuals

@ Formal numerical checks
o Posterior predictive p-values based on a test statistic
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Model evaluation Posterior predictive checking (PPC)

Graphical checks: Comparing data & predictions

@ Binary data: Plots superimposing posterior predictive distributions
and observed data are not very informative.

@ Binomial data: Plots of the observed and predicted number or
fraction of patients are good model fitting diagnostics.
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Model evaluation Posterior predictive checking (PPC)

Graphical checks: Comparing data summaries and

model predictions/inferences

Binary data: If the individual binary data can be meaningfully grouped
then we can calculate and compare the observed and predicted
fraction of patients with a response of 0 or 1 within each group.
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Model evaluation Posterior predictive checking (PPC)

Graphical checks: Residuals

@ Conventional residuals, y; — E (y;), are not as informative or
intuitively interpretable for categorical data (particularly in the case
of binary data).

@ A number of alternatives have been proposed, e.g., normalized,
adjusted and deviance residuals.

@ In the Bayesian context residuals are distributions that reflect
uncertainty in model predictions.
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Model evaluation Posterior predictive checking (PPC)

Bayesian residual analysis

@ In the binary case residuals are useful for outlier detection (but not
much more).

@ Let’s assume a logistic regression model for binary data of the
form:

yi ~ Bernoulli(p;)
logit (pi)) = f(x;,0)

@ Albert & Chib proposed 2 types of Bayesian residuals: response
residuals and latent response residuals
e J Albert, S Chib. Bayesian residual analysis for binary response
regression models. Biometrika 82(4):747-769 (1995).
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Model evaluation Posterior predictive checking (PPC)

Response residual

li=Yi— Pi

@ Posterior distributions of the residuals may be plotted.

@ Outliers may be detected by identifying residuals with absolute
values greater than some specified value.

@ But binary response residuals do not have a known sampling
distribution, so selection of a critical value based on probability is
not easily obtained.
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Model evaluation Posterior predictive checking (PPC)

Latent response residual

@ The latent variable interpretation of the model may be used to
construct a different type of residual.

@ The model may be written in the form:

o 1, z>0
Y= Vo, z<o
zi = f(x,0)+e

e; ~ Logistic(0,1)

@ In terms of the latent response z; we can construct the residual:
¢j =z — f(x;,0)
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Model evaluation Posterior predictive checking (PPC)

Latent response residual
¢ =z — f(x,0)

@ The posterior density of ¢; can be simulated using the posterior

distribution of f (x;, #) and the known distribution of ¢; given
f(x;,0):

Pogistic (€/) B
fj?(xi,g)gpltogistic(x)dx ! (€i > —f (Xi’ 0)) o Yi= 1

Progistic (€7) [(e: < —f(x:. 0 =0
fo_f(Xi’e)Plogistic(X)dX (6, (I, ))’ 4

p(€lf (xi,0)) =

@ The resulting latent response residual distribution can be
compared to quantiles of the standard logistic distribution.

@ This approach has the additional advantage that it is more readily
extended to ordinal data.
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Model evaluation Posterior predictive checking (PPC)

Bayesian residual examples from Hands-on Problem 1

Response residuals Latent response residuals
no chronic antibiotic  ©

r antp no chronic antibiotic -
chronic antibiotic ° chronic antibiotic

02 04 06
| | |
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| | |

residual
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o
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Modeling ordered categorical (ordinal) data
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Cumulative logit models

@ Suppose we measure some response in terms of an ordinal scale. For
example pain measurements might be reported as none, mild,
moderate, moderately severe or severe. Often such measurements get
reported on a numerical scale such as the integers 1 to 5.

@ The basic notion of a cumulative logit model is to convert those ordinal
measurements to a collection of binary outcomes

@ One general form of a cumulative logit model for an ordinal score from 1

to Mis:
y; ~ categorical (p;|0, x;)
pim = Pr(Y =m|0,x;)
= Pr(Y<m0,x;)—Pr(Y<m-—110,x;)
logit(Pr(Y <m|0,x;)) = am—Ff(X,0), a1 <az<...<apy_q

Thus the cumulative probabilities of the ordinal scores share a common
model except for the intercept a,, which is unique to each value.
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Cumulative logit models

yi ~ categorical (pi|0, x;)
pm = Pr(Y =m0, x)
= Pr(Y <ml|0,x;) —Pr(Y <m-—110, x)
logit (Pr(Y <ml|0,x;)) = am—7f(x,0), a1 <ap<...<apy_q

@ There is one less o than the number of levels.

@ Often the s are parametrized as sums: ay, = >, Aa; where
Acaj > 0 for i > 2. This is the usual way to enforce the order
constraint.
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Cumulative logit models

The inequality may also be reversed, i..e.,

y; ~ categorical (p;|¢, ;)
pim = Pr(¥Y =mio,x)
= Pr(Y>m|0,x)—Pr(Y>m+1|0,x;)
logit (Pr(Y >m|0,x;))) = am+Tf(x,0), co>az>...>ay

In this case am = Y., Aa; where Aa; < 0 for i > 2.
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Modeling ordinal data Cumulative logit models

Cumulative logit models

@ The cumulative logit model has the property of proportional odds:

Pr(Y <mld,x;)/(1 —Pr(Y <ml,x;)) e ¢80 _ of (2.0)~1(x1.0)
Pr(Y <m|f,x2) /(1 —=Pr(Y <m|f,x2)) e 00

In other words the cumulative odds ratio of the same score for 2
different sets of covariate values are independent of the score (m).

@ Similarly the cumulative odds ratio of different scores for the same
set of covariate values are independent of the covariates:

Pr(Y <ml|0,x)/(1—Pr(Y <ml|d,x;)) _oeam
Pr(Y<nlo,x)/(1—-Pr(Y<n|f,x)) e

am—Q
:em n
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Modeling ordinal data Cumulative logit models

Cumulative logit models:
Latent variable interpretation

Cumulative logit models may also be interpreted in terms of an
underlying continuous regression model. Suppose the observed
ordinal variable Y equals m when the unobserved continuous
response (a.k.a. latent variable) Z has a value between a,,_1 and a,
le.,

Y=m<—Z¢<[ap_1,am)
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Modeling ordinal data Cumulative logit models

Cumulative logit models:
Latent variable interpretation

If Z is distributed according to a logistic distribution with mean f (x;, 6)
and scale parameter equal to 1:

Pr(Y<m|f,x) = Pr(Z<anlb,x)
am g (2—1(x;.,6))
= / 50z
oo (1 + e—(z—f(Xiﬂ)))
1

1 + e (am—1(x;,0))
= logit™" (am — f(x;,0))

which is identical to the cumulative logit model described in he
previous section.
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Modeling ordinal data Approximate ML vs MCMC

Modeling longitudinal ordinal data: Comparative performance of
approximate ML (e.g., NONMEM) and MCMC (e.g., WinBUGS)

Context & motivation

The AAPS Journal 2004; 6 (3) Article 19 (http://www.aapsj.org).

The Back-Step Method — Method for Obtaining Unbiased Population

Parameter Estimates for Ordered Categorical Data
Submitted: October 6, 2003; Accepted: February 20, 2004; Published: August 11, 2004.

Maria C. Kjellsson,! Siv Jénsson,! and Mats O. Karlsson!

IDivision of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Box
591, SE-751 24 Uppsala, Sweden

Journal of Pharmacokinetics and Pharmacodynamics, Vol. 31, No. 4, August 2004 (© 2004
Estimating Bias in Population Parameters for Some
Models for Repeated Measures Ordinal Data using
NONMEM and NLMIXED

Siv Jonsson,'* Maria C. Kjellsson,l and Mats O. Karlsson'
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Context & motivation

Kjellsson, Jonsson & Karlsson simulation exercises:

@ Ordered categorical responses (4 levels)
@ NONMEM Laplacian method results in estimation and prediction
biases
e Particularly when the data are skewed to one extreme and/or
inter-individual variation (lIV) is large
e Probabilities of rare events are overestimated
@ lllustrated 2 approaches for remedying that bias:

e The back step method, an iterative application of NONMEM
e A Gaussian quadrature method (NLMIXED in SAS)
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Modeling ordinal data Approximate ML vs MCMC

Back step method corrects biases due to the
Laplacian approximation

Condition (1) Condition (2) Condition (3)
Method: STD Method: STD Method: STD Qo STD = NONMEM
g 10 10 T : ; Laplacian method
o 2
P _ 05. _ @ BSM = back step
5 0.0 --g—é‘é-i-%- = oor- % T % 1 _ methOd
@ 05 05 4L otz E- —_E _____ . .
N N EREL e Involves iterative
1 . .
Method: BSM Method: BSM Method: BSi EF)Oplklcl\j.E(K/ln ff tre .
aplacian
3
g " _ " method
m 05 = 051 &
o —_ =
-% 0.0 --E—ﬁ'E§'¥‘g" oot-F - Ei ;i 1 B
& 05 05 0 -—%—%-%%é’-%-' Figure 2 from Kjellsson,
10 40 . = Jénsson & Karlsson. The
AAPS Journal 2004; 6 (3)
o e ey oF & oo e g & o 0 00 o & Article 19.
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Modeling ordinal data Approximate ML vs MCMC

Centering helps but some bias remains
Gaussian quadrature shows little or no bias

Scenario E,n? = 4

| _Laplace (NM) | Laplace (SAS) Center noad GQ noadscale GQ ad GQ ° SAS N LM IX E D u Sed
8 .
for Gaussian

o
|

5 8
gl quadrature methods
£ o051 . .
" ; :?Eé EEQILI . @ Laplacian methods
;g%é U ELE orrm %gf% %55‘%% 5%% from both NONMEM
nf_o_si [¢)
4 L o L L and SAS were tested
016203040502 0162636040502 010203040502 010203040502 0162636040502 010263 0405w2 ° Center refers to
Scenario E,n? = .
_ | Laplace (NM) LgL‘I‘a?:e(SAS) Center noad GQ noadscale GQ ad GQ NONMEM LaplaC|an
: method with centering
_% 1.0 % % é % Figure 2 from Jénsson,
¢ | 0 | _ % lergeHolszzzntlars % T2 Kjellsson & Karlsson. J
L % g % "33 %E%E%% %%%% é%%%; Pharmacokin
— L8y Pharmacodyn 31(4):
010203040502 010203040502 010203040502 010203040502 010203040502 01 02030405m2 299_320 (2004).

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data =September—December, 2011 95/214

Modeling ordinal data Approximate ML vs MCMC

Bayesian modeling using Markov chain Monte Carlo
(MCMC) simulation

@ Provides results in the form of samples from the joint posterior
distribution of the model parameters

@ Should not produce the same biases as the Laplacian
approximation

@ The work presented here tests that expectation by applying
MCMC to the same simulated cases as Kjellson et al
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Methods

@ Trial simulations performed using R

@ Same model & parameter values as Kjellsson et al
@ Trial design:

@ 4 dose arms: 0, 7.5, 15, 30

e 250 patients per arm

e 4 observations per patient (baseline + 3)
e 100 trial replicates per scenario
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Modeling ordinal data Approximate ML vs MCMC

Model used for simulation and analysis
The score (0, 1, 2 or 3) at the i occasion in the j individual (Yj) is

described by:
Yj ~ categorical (p;|6,w)
Pm,j = I:,r(Ylj = m|97waDj: tlj)
= PF(Y,] > m|9,w,Dj,t,-j) — PF(YU > m+1|9,w,Dj, t,j)

|Og|t (Pr (Y/] > mlea w, D]7 tlj)) ~ N (/’Lm,fja w2>

m
HEmjj = Zek + Ity>0 (64 +050;) , 02 <0, 63<0
k=1

Parameter values

Case 01 ) 03 04 05 w?
1 1.85 -1.85 -1.85 0.483 0.0459 4
2 -4.88 -0.548 -1.18 1.55 0.0303 4
3 -11.8 -1.32 -2.96 3.85 0.717 40
Expected fraction of baseline scores
Case 0 1 2 3

1 0.24 0.26 0.26 0.24
2 0.965 0.0122 0.0144 0.0084
3 0.965 0.0122 0.0144 0.0084
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NONMEM implementation

$PRED

; indicator for post-baseline data
IPOST = 0

IF (TIME .GT. 0) IPOST =1

; treatment effect
ETREAT = IPOST#*(THETA(4) + THETA(5)*DOSE)

; logits for cumulative probabilities

LPCUM1 = THETA(1) + ETREAT + EXP(THETA(6))*ETA(1) ; SCORE >= 1
LPCUM2 = LPCUM1 - EXP(THETA(2)) ; SCORE >= 2
LPCUM3 = LPCUM2 - EXP(THETA(3)) ; SCORE >= 3

; cumulative probabilities

PCUM1 = (1/(1+EXP(-LPCUM1)))
PCUM2 = (1/(1+EXP(-LPCUM2)))
PCUM3 = (1/(1+EXP(-LPCUM3)))
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NONMEM implementation

; probabilities for each score (likelihood)
PO = 1 - PCUM1

P1 = PCUM1 - PCUM2
P2 = PCUM2 - PCUM3
P3 = PCUM3

; indicators for each score
I0=0

I1=0

I2=0

I3=0

IF (DV.EQ.O) IO=1

IF (DV.EQ.1) Ii=1

IF (DV.EQ.2) I2=1

IF (DV.EQ.3) I3=1

; likelihood
Y = PO*xI0 + P1xI1 + P2xI2 + P3%I3

$ESTIMATION MAX=9999 PRINT=1 METHOD=COND LAPLACE LIKE NOABORT
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OpenBUGS implementation

Simulated trials analyzed using OpenBUGS + BRugs (R interface to
OpenBUGS)

@ Model identical to that used for simulation except for presence of
prior distributions
@ Weakly informative priors

@ MCMC settings:

e 3 chains
e Burn-in for 4001 samples/chain
e 5010 post-burn-in samples/chain (keep every 15)
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OpenBUGS implementation

model{
for(i in 1:npat){

## interpatient variability
etal[i] ~ dnorm(0,tau.eta)
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OpenBUGS implementation

for(i in 1:nobs){

## likelihood for observed score
score[i] ~ dcat(pli,1:4]1)

## probabilities for each score
pli,1] <- 1 - pcum[i,1]

pli,2] <- pcum[i,1] - pcum[i,2]
pli,3] <- pcum[i,2] - pcum[i,3]
pli,4] <- pcuml[i,3]

## treatment effect model & calculation of cumulative probabilities

logit(pcum[i,1]) <- theta[l] + (thetal[4] +
theta[5]*dose[i])*(1-equals(time[i],0)) + etalpatient[i]]

logit(pcum[i,2]) <- logit(pcum[i,1]) + thetal[2]

logit(pcum[i,3]) <- logit(pcum[i,2]) + thetal[3]
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OpenBUGS implementation

## prior distributions

thetal[1] ~ dnorm(0,0.00001)
thetal[2] ~ dnorm(-1,0.00001)I(,0)
thetal[3] ~ dnorm(-1,0.00001)I(,0)
thetal[4] ~ dnorm(0,0.00001)
theta[5] ~ dnorm(0,0.00001)
sigma.eta ~ dunif(0,1000)

tau.eta <- 1/(sigma.eta*sigma.eta)
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Relative bias in parameter estimates
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' Ch <] ~| posterior means show
e Mohe Mche Mche minimal bias for all 3
£ case 1 case 2 case 3
® <) o, N cases
- ] e o
olm e bt sl By
bkl b I NN A :
R . | P I
I I GRS e O Iq,&’&q,\\\é@é&\é&\é&\
o@& S O@Q S 0@99 RSN SR,
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Modeling ordinal data Approximate ML vs MCMC

Relative root mean square error
MCMC estimated posterior

o cese? means consistently result in
RMSE < that for NONMEM
151 vowe_ = estimates
NONMEM
_ 1.0
2 0.5
E 0.0 1
8 case 1 case 2
1S
° 0.6 1
© 0.201
2 0.5
% 0.15 04 1
0.10 - 0.31
0.2 4
0.05 014
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Predicted fraction of responses by score

score @ When IV is Iarge
oFm ER 2R s biased NONMEM

highest dose highest dose highest dose .
ol 0.95- ool cause overestimation of
’ 0.90 ’

0.4 0.851 rare event rates.
2 027 0857 0.80
S 0.0 0.80 0.75 I
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Modeling ordinal data Approximate ML vs MCMC

The case for Bayesian modeling of ordinal data using
MCMC

@ Better estimation and prediction performance than methods using
linear or Laplacian approximation to the likelihood

@ Yields an estimate of the entire joint posterior distribution of the
model parameters

@ Describes uncertainty in parameters
e Uncertainty in derived quantities, e.g., predictions, is easily
calculated from MCMC samples

@ Can easily and rigorously include prior information

@ Available tools, e.g., WinBUGS/OpenBUGS, permit very flexible
model specification:
e Rich collection of built-in probability distributions
@ No limit on levels of variability
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Modeling ordinal data Approximate ML vs MCMC

The case against Bayesian modeling of ordinal data
using MCMC

Requires more computation time

@ ~ 15-45 minutes per trial (elapsed time with Intel Core Duo 2.33
GHz, 2 GB RAM)
@ Limited benefit from parallel computation
e Though substantial gains are possible by running multiple chains in
parallel
@ NONMEM requires substantially less time to obtain point
estimates

@ SAS NLMIXED using Gaussian quadrature is also faster

e But if you want rigorous characterization of uncertainty with ML
methods:
@ Bootstrapping is probably the best option
@ And that also requires sizable computation time
@ But it is readily accelerated via parallel computation
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Modeling ordinal data Generalizations of the cumulative logit model

Generalizations of the cumulative logit model:

Other cumulative link models
Models for ordinal data may be constructed using link functions other
than the logit function:

g(Pr(Yi<mlf,x)) =am—f(x,0), a1 <az<...<amy-

g can be the inverse of any cumulative distribution function (cdf). A
couple more commonly used link functions are:

@ Cumulative probit models where g is the inverse of the standard
normal cdf: x
g—1 (X):(b(X):/ _eu2/2du

o 2T

@ Complementary log-log models where g is the inverse cdf of the
extreme value distribution:

g (x) =log(=log (1 —x))
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Modeling ordinal data Generalizations of the cumulative logit model

Generalizations of the cumulative logit model:
Other latent variable models

@ The latent variable interpretation of cumulative logit models
suggests a whole range of models that could be constructed
based on continuous latent variables with distributions other than
the logistic distribution with a constant scale parameter.

@ That is a conceptually attractive approach when there is a
mechanistic rationale, e.g., when there is a causal relationship
between some well-understood but unobserved continuous
response and the observed ordinal value.
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Hands-on problem 3: Longitudinal ordinal data

@ At each visit during a Phase 3 confirmatory trial patients indicated
whether their health-related quality of life (HRQOL) was worse,
unchanged or better than it was prior to the trial.

@ Thus HRQOL is a 3 level ordinal scale.

@ Exploratory data analysis suggests that HRQOL initially worsens
for those patients assigned to ME-2 compared to those on
placebo (perhaps due to the coughing), but improves over time.

@ We will explore this by fitting a longitudinal cumulative logit model
to the HRQOL data observed in the Phase 3 study.
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Hands-on problem 3: Longitudinal ordinal data

@ Phase 3 confirmatory trial in CF patients
o Parallel design
e 250 patients per treatment arm
e Multiple doses of ME-2
e Placebo vs. 40 mg qd administered by inhalation for 24 weeks
o HRQOL measurement: 3 level ordinal score (worse, unchanged,
better) reported every 4 weeks.

@ Hands-on exercise:

@ Construct a model for the HRQOL score as a function of dose and
time.

@ Data file: handsOn3/ME2QO0OLData.csv
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Modeling ordinal data Hands-on problem 3

EDA: Fraction of patients reporting each level of the
HRQOL score as a function of dose and time
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Modeling ordinal data Hands-on problem 3

EDA: Fraction of patients reporting an HRQOL score
< 1 or 2 as a function of dose and time

worse (<=1 ¢ — worse (<=1 ¢ —
worse or unchanged (<=2) ¢ —— worse or unchanged (<=2) ¢ ——
5 10 15 20 5 10 15 20
1 1 1 1 1 1 1 1 1 1
0 40 0 40
2 L
0.8 -

@ 14 L
[2] c
= 3]
g 0.6 .
g =

= S 0+ L
2
= - = Q
2 0.4 8

o T -14 -
= g
o

0.2 L }\H\%\H
_2 — -
T T T T T T T T T T T T
5 10 15 20 5 10 15 20
time (weeks) time (weeks)

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011 115/214

Modeling ordinal data Hands-on problem 3

Proposed model
Cumulative logit model for the HRQOL score on the i visit of the j
patient:

QOL; ~ categorical (p;)

pmj = Pr(QOL;j=m), me {1,2,3}
= Pr(QOL; <m)—Pr(QOL; <m-—1)
logit (Pr(QOL; < m)) = am — (Eplacebo,ij + Edrug,ii) + 1
Eplacevo,j = Bt
Earg,j = /Dj>0 (a +b (1 — e"“’"))

n o~ N (o, 02)
Weakly informative priors:
ar ~ N (0, 106) as — aq ~ truncated N (O, 106) L az—aq >0
8 ~ N(010°) a~nN(0,10°) b~ N (0,10°)
log(k) ~ N (o, 106) o~ U (o, 104)
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Modeling count data

Modeling count data
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Modeling count data

Modeling count data

@ “Count data” (number of times an event occurs within a specified
time interval) is another type of discrete random variable.

@ Unlike ordinal data it does not have a fixed upper bound.
@ Event counts may be conceptualized as observed manifestations
of the underlying hazard for event occurrence.

@ A hazard is (loosely speaking) the instantaneous probability
density for event occurrence (more on this when we get to
time-to-event data) or, somewhat more intuitively, it is the
expected instantaneous event rate.
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Modeling count data

Modeling count data: Examples

Vomiting events: E H Cox, C Veyrat-Follet, S L Beal, E Fuseau, S Kenkare, L
B Sheiner. A Population Pharmacokinetic-Pharmacodynamic
Analysis of Repeated Measures Time-to-Event
Pharmacodynamic Responses: The Antiemetic Effect of
Ondansetron. J Pharmacokin Biopharm 27:625-644 (1999).

Seizures: R Miller, B Frame, B Corrigan, P Burger, H Bockbrader, E
Garofalo, R Lalonde. Exposure-response analysis of
pregabalin add-on treatment of patients with refractory partial
seizures. Clin Pharmacol Ther 73:491-505 (2003).

Urinary incontinence events: S K Gupta, G Sathyan, E A Lindemulder, P-L
Ho, L B Sheiner, L Aarons. Quantitative characterization of
therapeutic index: Application of mixed-effects modeling to
evaluate oxybutynin dose-efficacy and dose-side effect
relationships. Clin Pharmacol Ther 65:672—684 (1999).

Neonatal apneic events: C J Godfrey. Mixed effects modeling analysis of
count data. In E | Ette, P J Williams. Pharmacometrics: The
Science of Quantitative Pharmacology, Wiley, 2007, pp
699-721,
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Modeling count data The Poisson model

The Poisson model

Standard (constant hazard) model
@ The Poisson process
o If the following conditions are true:

Constant hazard: the probability of an event within any very short
time interval is (approximately) proportional to the
length of that interval.

Independence: the numbers of events in any 2 disjoint intervals are
independent.

Discrete events: only one event can occur at any instant of time.

e then the number of events in any time interval (;_+, f;) is a random
variable distributed according to:

PrN ()~ N(i1) = m) = 1 (1 (1 — 1)) e 0740

where N(t) is the cumulative number of events from time = 0 to time
= L.
@ In other words:

N (&) — N (t_1) ~ Poisson (h(t — ti_1))
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Properties of the Poisson distribution

x ~ Poisson(\), x=1,2,...,00
1

p(x) = EAX e
E(x) = A
Var(x) = A

If the random variables x;, i = 1,2, ..., n are independent and
xj ~ Poisson ()

then

n n
>~ X; ~ Poisson (Z A,-)
i—1 i—1
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Modeling count data The Poisson model

Count data example: Effect of pregabalin on seizure
frequency

@ Simulated data based on model reported by Miller et al (Model 3).
@ Pregabalin 0, 50, 150, 300 and 600 mg/d
@ 100 patients per dose arm
@ 4 week baseline phase

@ 12 week double blind phase

@ Data consists of number of seizures in each 4 week period
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Modeling count data The Poisson model

Empirical distributions of seizure counts by dose and time
compared to Poisson distributions with the same means

number of patients
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The Poisson model

Modeling count data

Mean seizure count vs. dose by week

mean number of seizures per 4 weeks
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Modeling count data The Poisson model

Mixed effects model for the longitudinal seizure count data
Bayesian implementation of Miller et al Model 3 for number of seizures
experienced by the j patient during the i period:

Nseizure,j ~ Poisson ()

\, _ | basee”, baseline period
S base (1 — Eglacebo — Edrug j) €7, otherwise
E A AEhmx[%
drug,j —ED50 n Dj

n o~ N(0,w?)
Weakly informative priors including transformation to constrain
Emax + Eplacebo < 1 and Epjacepo < 1:
log (p1) ~ N(0,10%) log(p2) ~ N (0,10°)
Eplacebo = 1—pP1 Emax =p1 — P2
log (EDsp) ~ N (0,10°%) log(base) ~ N (0,10°)
w ~ U(0,10%)

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011 125/214

WinBUGS implementation

model{
for(i in 1:nPatients){

etal[i] ~ dnorm(0,tau)
etaPred[i] ~ dnorm(0,tau)

}
for(i in 1:n0bs){

nSeizure[i] ~ dpois(lambdali])
nSeizureCond[i] ~ dpois(lambdalil)
lambda[i] <- base * exp(etal[patient[i]]) *
(1 - (1 - equals(time[i],0)) * (Edrugl[i] + Eplacebo))
Edrug[i] <- Emax*dose[i]/(ED50+dosel[i])

nSeizurePred[i] ~ dpois(lambdaPred[i])
lambdaPred[i] <- base * exp(etaPred[patient[i]]) =*
(1 - (1 - equals(time[i],0)) * (Edrugl[i] + Eplacebo))

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011 126 /214



Modeling count data The Poisson model

WinBUGS implementation

## require that Emax + Eplacebo < 1 and Eplacebo < 1

logP1 ~ dnorm(0,1.0E-6)
logP2 ~ dnorm(0,1.0E-6)
log(pl) <- logP1
log(p2) <- logP2

Eplacebo <- 1 - pil
Emax <- pl - p2

logED50 ~ dnorm(0,1.0E-6)
log(ED50) <- logED50
logBase ~ dnorm(0,1.0E-6)
log(base) <- logBase
omega ~ dunif(0,1.0E4)
tau <- 1/(omega*omega)
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Modeling count data The Poisson model

Results

@ 50000 x 3 chains
@ burn-in = 10000 / chain, thin by 25
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Model parameter estimates

parameter mean sd 25%ile 25%ile median 75%ile 97.5%ile effective N
deviance 9910  31.7 9850 9890 9910 9930 9970 5020
base 10.2 0.51 9.26 9.89 10.2 10.6 11.3 251
Eplacebo ~ —0.0397 0.0281 —0.0965 —0.0589 —0.0394 —0.0202 0.0132 1640
Emax 0.312 0.0352 0.244 0.289 0.312 0.336  0.381 2470
EDs 60.2 29.2 21.6 39.2 54.8 74 134 734
w 1.11  0.0379 1.04 1.08 1.11 1.13 1.18 4800
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Modeling count data The Poisson model

0 mg/d 150 mg/d
02468 12 02468 12 02468 12 02468 12
L Ll L
82 89 96 105 93 95 o 99 108 119
o7 a3 el S 1 |od 7 ]
< o] ——|< : gl ——I8 o I ~——~|31] 8N\ .|=]
] =g N P T o S o ol $9
68 70 71 « 72 73 74 N 80
@ e ] o < | = 0 -
7 e R > e o] ol |8
N i-E i P R e > S~ g I~ I—2T
N b I - e pa o od... < N .
50 58 61 63
e gt 0 g e
@] 27 |27 >3 @ 23
el—~|3%; E a7 e —|&]
e [0 RO == SN p=iu M RO b=
30 a1 5 47 - 23 28
B K o qeeT © T Traeeeaan I © o H
S N i R tat
Bl .- |81 .7 led . (B3 e g3 NN EE NG S epresentative
o] o] | BEE| ~ = ~ R
{1 Bt o o 0 i iz . . s . .
B ) - Jig e o i d d | ft
R G | L IR o SrEGEEE individual fits, i.e.,
w4 f—| & J— © o~ — 8~ | <
g &4 - 184 ]2 ¢ B A D
ICOTION £ 6 INUCTUU = e ACTOOOS T bl A R . . .
FTTTTT CTTTErTT FTTTTTT O CRRTETTT T FETETTT  TTTETT O CTrTrrT
02468 12 02468 12 02468 12 02468 12 02468 12 posterlor predlctlons Of
time (w) time (w)
individual predictions individual predictions neW Observatlons In
300 mg/d 600 mg/d
.
02468 12 02468 12 02468 12 02468 12
e, e e the same pa’uents
17 126 131 133 139 o7 %8 106 107 109
- SR SR ol w [ R 4 .
(=3 & & — - o
N . b ~—__|o]
A e E Dt Do 1 D B B (median & 90%
- o [103 | 13 | [ 116
o [0, e, e L diction interval
S S o R N prediction intervais
P S Dl S P e b S
83 92 101
w0 = - <t w0 |-
3 o] i oo R
] <l EN
EE) S ey PV Bsoerc bl esvuponet - B NN
53 54 55 57
1= = 0 I o]
oS Qe 31 ol d i S
] ©]
Nt M SRR | NN |
H e p=ge e EUINID ol SR
= 8 o 24 26 37
- 0 - - s R s i
i 8 847 = w0 I ] ~
] O EEEE =T TR I~ E ©7 B I ]
£l SN S N TN ] ] 27
31 P 23 g1 PE EEN 1.0y $3 So——
EECUUN -1 I Qi . e . R P Py NN - .. = .. ST sd..
T T S T e 2 e PRI T e © T © R
02468 12 02468 12 02468 12 02468 12 02468 12 02468 12
time (w) time (w)
individual predictions individual predictions

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011




Posterior predictions of sample means and variances

population predictions population predictions
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Model predicted distribution of seizure counts

population predictions
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Modeling count data Non-homogenous Poisson process

Time-varying hazard model, a.k.a., non-homogeneous
Poisson process

@ The Poisson model may be extended to cases where the hazard
varies systematically with time. This is known as a
non-homogeneous Poisson process.

@ If the hazard (expected event rate) is a function of time h(t) then
the number of events in any time interval (t;_+, {;) is a random
variable distributed according to:

fi n Iy
Pr(N(t) — N(ti_1) = n) = l ( h(t) dt) e Ji_, h(t)at
or equivalently

N (t) — N (t_1) ~ Poisson ( h(t) dt)

fi—1
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Modeling count data Over-dispersion and zero inflation

Variations on the Poisson model to deal with
over-dispersion or “zero inflation”

@ For a Poisson random variable the mean and variance are equal.

@ Suppose your data consist of event counts over the same length of time
for a group of patients.

@ If the expected event count is the same for all of the patients then the
data are distributed according to a common Poisson distribution.

@ The sample mean and variance will be approximately equal.

@ But what if each individual’'s event count is a sample from a Poisson
distribution, but the expected event count varies among individuals?

e Then the sample variance will usually be greater than the sample
mean and the data are not consistent with a common Poisson
distribution.

e This is called over-dispersion

e The Poisson model can be extended to account for such
over-dispersion by using continuous mixture models in which the
hazard is randomly distributed.

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011 134 /214



Modeling count data Over-dispersion and zero inflation

Variations on the Poisson model to deal with
over-dispersion or “zero inflation”

What if the patients are drawn from 2 different populations, one of
which has an expected event count of 0.

@ That too will usually result in a sample variance that exceeds the
sample mean, but for a very different reason.

@ There will be an excess of 0’s in the data compared to Poisson
distributed data.

@ The Poisson model can be extended to this case by using a
discrete mixture of a Poisson model plus a simple categorical
model for the probability of no events—a so-called ZIP or Zero
Inflated Poisson model.

Let’s use Hands-on Problem 4 to illustrate these models...
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Hands-on problem 4: Count data

@ Patients in the Phase 2 dose-finding study recorded selected
efficacy and safety-related outcomes in a daily diary.

@ This included an indication of whether they experienced excessive
coughing.

@ We will model the total number of coughing events in each patient
as a function of dose.

@ Focus on exploring different count models. This is a good setting
for hands-on learning about model evaluation and selection.
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Hands-on problem 4: Count data

@ Phase 2 dose-finding trial in CF patients (same as hands-on
problem 1)

o Parallel design

e 100 patients per dose arm
o Multiple doses of ME-2

@ Placebo, 20, 40 and 60 mg qd administered by inhalation for 24
weeks

o AE measurement: Total number of coughing events.
@ Hands-on exercise:

e Construct a model for the count of coughing events as a function of
dose.

@ Data file: handsOn4/ME2CoughCountData.csv
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Modeling count data Hands-on problem 4

EDA: Distribution of cough event counts by dose
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Modeling count data Hands-on problem 4

Proposed models

Simple Poisson model:

Neough,i ~ Poisson (A;t;)
Aj = a-+ bbh;

where t; is the duration over which the coughing events were observed.

Weakly informative priors:

log (a) ~ N (o, 106) log (b) ~ N (o, 106)
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Modeling count data Hands-on problem 4

Proposed models
Negative binomial model (Poisson-gamma mixture) assuming the
standard deviation of cough frequency is proportional to the mean:

Neough,i ~ Poisson (A;t;)

Ai = gamma(a, ;)
(6%

ﬁl - /):i

3\\,' = a+ bbh;

Weakly informative priors:
log (a) ~ N (o, 106) log (b) ~ N (o, 106) log (@) ~ N (o, 106)

The model is parameterized such that E (Neough i) = it and

~ 2
Var (”cougm) = (Ag") , I.e., the standard deviation is proportional to the
mean.
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Proposed models

Poisson-lognormal mixture model assuming the standard deviation of
cough frequency is proportional to the mean:

Neough,i ~ Poisson (A;t;)
log (\) = N(Iog (X;>,02>

/):,' = a+ bbh;
Weakly informative priors:

log (a) ~ N (o, 106) log (b) ~ N (o, 106) o~ U (o, 104)
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Proposed models

Zero-inflated Poisson (ZIP) model:
Neough,i ~ ZIP (Aitj, )
where

pzip (X|Aiti, ™) = (1 — ) Proisson (X|0) 4 TPPoisson (X|Aiti)

_ { 1 — 7 + TPpoisson (0| Aiti), x =0
TPpoisson (X|Aiti) , x>0
Ai = a-+ bbh;

Weakly informative priors:

log (&) ~ N<0,1o6) log (b) ~ N(o,106) 7~ U(0,1)
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Proposed models

Alternative representation of the zero-inflated Poisson (ZIP) model:

Neough,i ~ Poisson (Azp it;)

where
>\ZIP,i — lPoisson,i)\i + (1 — /Poisson,i) 0
Ipoisson.i ~ Bernoulli ()
Ai = a+ bb;

Weakly informative priors:

log (&) ~ N(o,106) log (b) ~ N(o,106) 7~ U(0,1)
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Hands-on problem 4: Model comparison

Model E (deviance) pD DIC
Poisson 1922 1.95 1924
Negative binomial (Poisson-gamma) 1201 198 1399
Poisson-lognormal 1219 215 1434
ZIP 1490 411 1900
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Modeling time-to-event data One event per individual

Modeling time-to-event data for a single event per
individual
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Modeling time-to-event data One event per individual

Examples of time-to-event data in clinical
pharmacology
Single events

@ Morbidity and mortality, e.g., death, heart attack, stroke, ...

@ Dropout from study

@ Thrombosis

@ Bleeding

@ First occurrence of what may be multiple events, e.g., AE’s
Multiple events

@ AE’s

@ Seizures

@ Vomiting

@ Migraine

@ Dosing events (when modeling adherence)
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What makes time-to-event data “odd”?

@ Time-to-event measurements are continuous data, so why don’t
we analyze them just like any other continuous PD
measurements?

@ Two features distinguish time-to-event data from most common
PD measurements:

e Most time-to event data sets include censored data, particularly
right censored data.

@ Right censoring refers to the case where no event occurs in an
individual during the period of observation.

@ You don’t know the time to the event, but you do know that the time to
the event must exceed the duration of the observation period.

e Time-to-event data are not observed at some pre-specified
observation time and they reflect the risk of an event over the entire
observation period up to the time the event occurs—not just the risk
at the time of the event.
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Modeling time-to-event data One event per individual

Principles and methods of survival analysis for

modeling censored data
Concept and formal definition of hazard

@ Let T be a random variable representing the time to some event.

@ t represents elapsed time since some specified starting event,
usually the start of a study.

@ The basic idea is to model the probability distribution of T as a
function of various covariates, e.g., time, dose, pharmacologic
response, patient characteristics, etc.

@ Such models are often most naturally conceptualized in terms of
the “hazard” rate.

@ Hazard may be interpreted as the instantaneous probability
density (probability per unit time) of an event occurring given that
it has not yet occurred.

The hazard function:
. Pr(t<T<t+ AT >1)
h(t) = AIItrEO At
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Modeling time-to-event data One event per individual

Relationship of hazard to probability distribution of
event times

Survival function
S(t)=Pr(T > t) = e Joh(v)au
Cumulative distribution function (c.d.f)
F()=Pr(T<t)=1-S(t)=1— e Johwau

Probability density
f(t)=F'(t)=h(t)S(t)
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Likelihood function for time-to-event data

Likelihood for times of observed events, i.e., it happened at time t:
p(t0) = £(t0) = h(t|0) S(t|0)

Likelihoods for censored time-to-event data
@ Right censored data, i.e., it hasn’t happened up to time t:

p(t|0) = Pr(T > t|0) = 1 — F (1) = S(¢]0)

@ Interval censored data, i.e., it happened sometime between time
ty and time b:

,D(t|9) = PI‘(H <T< t2|¢9) = F(tg‘@) — F(t1|9) = S(T1|¢9) — S(t2|¢9)
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Dealing with censored data in WinBUGS

@ Right, left and interval censored data are easily handled in
WinBUGS by modifying the likelihood distribution with
|(lower,upper). Lower or upper may be blank meaning no limit. For
example:

e Suppose Y[i] is normally distributed with some mean muli] and
precision tau and
e A point value of yJ[i] is not observed but
@ You know it lies between 5 and 10
e Then we say it is interval censored
e The likelihood may described in WinBUGS by
@ y[i] ~ dnorm(muli],tau)l(5,10)
@ The corresponding y[i] should be NA in the data set.
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Modeling time-to-event data One event per individual

Models with constant hazard

If the hazard function is constant with respect to time, i.e., h(t) = h, the
following simplified relations resuli:

@ Survival function
S(t)=Pr(T>t)=e M
@ Cumulative distribution function (c.d.f)
F()y=Pr(T<t)=1-S(t)=1—-e "
@ Probability density
f(t) = F'(t) = hS(t) = he ™

In other words the event time T is distributed according to an
exponential distribution.

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011 152 /214



Example: Modeling dropouts: Constant hazard model

@ Consider the problem of
modeling dropout behavior for
a hypothetical antipsychotic
drug candidate.

@ Phase 2 dose-finding trial

@ 4 treatment arms: placebo and
5,10 and 20 mg/d

@ 100 patients per arm

o Efficacy assessed based on ‘ ‘ ‘ ‘ ‘ ‘
weekly PANSS scores

fraction of patients remaining in trial

time (w)
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Proposed initial model

Let’s start with a simple constant hazard base model that depends
only on the daily dose:

taropi ~ Exponential (hgrop,)
hdrop,i = hOeBD

Uninformative priors:

log (ho) ~ N (o, 106) B~ N (o, 106>
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| Nodelngimooownidaia | Oneevemtperimdvidval
WinBUGS implementation

model{
for(i in 1:nPatients)<{

tDrop[i] ~ dexp(h[i])I(tCensor[i],)
h[i] <- hO * exp(beta * dosel[i])

tDropPred[i] ~ dexp(h[il])
}
logHO ~ dnorm(0, 1.0E-6)

beta ~ dnorm(0, 1.0E-6)
log(h0) <- logHO
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Modeling time-to-event data One event per individual

Results

@ 10000 x 3 chains .
@ burn-in = 4000 / chain, thin by 5

10 15 20 25

o P e o
S o g beta deviance
I 6 2(‘30 460 660 860 10‘00 12‘00 ‘ —0‘.05 —o‘,04 —o‘.oz 0.60 12‘35 12‘40 12‘45
sample value
parameter mean sd 2.5%ile 25%ile median 75%ile 97.5%ile effective N
deviance 1230 1.88 1230 1230 1230 1240 1240 1830
ho 0.166 0.0165 0.136 0.154 0.164 0.176 0.2 776
B —0.0351 0.00987 —0.0545 —0.0418 —0.0349 —0.0284 —0.0156 987
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Posterior median and 90% prediction interval for the
fraction of patients remaining in the trial compared to
the empirical survival curve

01 2 3 4 5 6
Lo Lo

fraction of patients remaining in trial

time (weeks)
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Modeling time-to-event data Hands-on problem 5

Hands-on problem 5: Time-to-event data

@ ME-3, a more potent analog of ME-2, is also a mucolytic that is
being developed as a treatment for cystic fibrosis.

@ Phase | trials are in progress, so the current focus is on the design
of Phase 2 PoC and dose-finding trials.

@ The development team’s preferred primary endpoint for efficacy
assessment is time to the first pulmonary exacerbation event, but
trials using conventional hypothesis tests require large sample
sizes and/or durations in order to achieve adequate statistical
power.

@ A model relating FEV1 to exacerbation hazard was developed by
meta-analysis of results from past ME-2 trials plus summary data
for other mucolytics reported in public sources.

o ltis believed that the model is qualitatively and quantitatively
applicable to the new drug candidate because the drugs work by
the same mechanism and the patient population is essentially the
same

e E.g., standard of care has not changed since the previous trials.

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011 158 /214



Modeling time-to-event data Hands-on problem 5

Hands-on problem 5: Time-to-event data

@ The team wants to make PoC and dose selection decisions based
on pulmonary exacerbations but it also hopes to accelerate the
development program.

@ It may be possible to reduce sample sizes or trial duration for a
Phase 2 PoC and dose-finding trial by analyzing both
exacerbation and FEV1 data using a joint model that incorporates
the aforementioned model relating FEV1 to exacerbation
hazard—including the informative prior distribution of its
parameters.

@ This would permit inferences regarding exacerbations conditioned
on prior knowledge and the observed FEV1 and pulmonary
exacerbation data.

@ Based on this idea the team conducted a study with fewer patients
and half the treatment duration (12 weeks) than a typical study for
a GF mucolytic.

@ We analyze the results in this hands-on example.
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Modeling time-to-event data Hands-on problem 5

Hands-on problem 5: Time-to-event data
Phase 2 dose-finding trial in CF patients

@ Parallel design

@ 50 patients per dose arm

@ Multiple doses of ME-3

e Placebo, 10, 20 and 30 mg qd administered by inhalation for 12
weeks

@ Primary efficacy measurement: Time to first pulmonary
exacerbation event within 12 weeks

@ Secondary/supportive measurement: FEV1 at 12 weeks

Hands-on exercise:

@ Construct a joint model for time to first pulmonary exacerbation
and FEV1 as a function of dose conditioned on a previously
developed model for the relationship between FEV1 and
pulmonary exacerbation hazard including an informative prior
distribution for the parameters of that model.

Data file: handsOn5/ME3ExacerbationFEV1Data.csv
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Modeling time-to-event data Hands-on problem 5
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Proposed model

@ Constant hazard model for occurrence of pulmonary exacerbation in the
i patient where the hazard is a function of model-predicted FEV1.

@ Emax model for FEV1 with log normally distributed residual variation.
fexac,i ~ Exponential (h;)
log (FEV1;) ~ N(Iog (ﬁEW ,-) ,J%Ew)

e (@,—70)

h,' = hoe
74 EmaxD;
FEV1, = FEVAg+ ————+
: ot EDso + D;

where FEV1; is the observed baseline FEV1.
@ Informative prior distribution for hy and 5:
log (ho) ~ N (log (0.029),0.25%) 3 ~ N (0.031,0.015%)
@ Weakly informative priors for the remaining parameters:
log (Emax) ~ N (0,10°%) log (EDsp) ~ N (0,10%)  oreys ~ U (0,10%)
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PI1-108

“TRUNCATED SIGMOID E,_,  MODELS”: A REPARAMETERIZA-
TION OF THE SIGMOID E_, MODEL FOR USE WITH
TRUNCATED PK/PD DATA. W] Bachman PhD and WR Gillespie
PhD, GloboMax LLC, Hanover, MD.

The parameters of the sigmoid E_,  model are poorly estimated
when the range of PK/PD data available is limited to <0.95E, .
[Dutta et al. J Pharm Sci 85:232 (1996)]. The following reparame-
terized form of the sigmoid E_,_model has improved parameter esti-
mation properties:

(87 +(E" - E,)C7 @ Model parameterization
C7 4 e implemented in hand-

where E is the effect measure and C is a measure of drug exposure SOn5Tru nCEmaX'tXt
(e.g., concentration or dose). The parameter E* is the estimated effect Y C P &T 63 : 1 99 ( 1 998)
resulting from C¥, yis the usual “sigmoidicity” parameter, and E, is

the baseline effect. 3 is a measure of the degree to which the function

deviates from linearity in C”. One approach to applying this parame-

terization is to fix C* {(or E*) at a value and estimate the remaining

parameters Eg, E* {(or C¥), f§, and ¥ by nonlinear regression. The

properties of this approach are evaluated by application to simulated

PK/PD data that is truncated at various fractions of E__ . When C*

(or E¥) is chosen within the range of the observed data, then the para-

meters E* (or C*) and 3 are more precisely and accurately estimated

than EC, and E, _of the standard parameterization.

E=E, +
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Modeling time-to-event data Models with time-varying hazard

Models with time-varying hazard

Time-to-event models based on time-varying hazard functions may be
appropriate in some cases, e.g.,

@ The risk of an event at a particular time is a function of the
magnitude of drug exposure at that time and drug exposure is
varying over time.

@ Some form of tolerance occurs that results in a reduced incidence
of events over time.

@ The risk of an event is causally related to some observable
response that varies with time, e.g., risk of dropout may be
increased by perceived lack of efficacy.
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Modeling time-to-event data Models with time-varying hazard

Models with time-varying hazard

Implementation requires integration of the hazard function within the
likelihood function:

@ Likelihood for times of observed events
p(16) = £ (t16) = h(]6) S(t|6) = h(t|6) e~ Jo M)

@ Likelihoods for censored time-to-event data
o Right censored data

p(tf) = Pr(T > t) =1 F(t|9) = S(t|¢) = e~ Jo NulO)ot
o Interval censored data

p(tld) = Pr(ty <T<tbl0)=F (L0 - F (o)
= S(t1 |9) — S(t2’9) - fot1 h(u|@)du _ e fotz h(ul6)du
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Modeling time-to-event data Models with time-varying hazard

Implementing models with time-varying hazard

NONMEM implementation:

@ Use PREDPP models for numerical integration, e.g., ADVANG,
ADVANS or ADVAN13.

WinBUGS implementation:

@ Use one of the ODE solvers in BUGSModelLibrary
(http://bugsmodellibrary.googlecode.com) to integrate the hazard
function.

@ And use the zeros or ones trick to specify the non-standard
sampling distribution resulting from the time-varying hazard.

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011 166 /214




Modeling time-to-event data Models with time-varying hazard

Implementing models with time-varying hazard

If the hazard function can be described (approximated) as piecewise
constant then:

@ The duration of each constant hazard interval prior to an event
and during which no event occurs is treated as a right censored
time-to-event from an exponential distribution.

@ For the constant hazard interval during which an event occurs, the
time from the start of the interval to the time of the event is
modeled as an exponential random variable.

Time-varying hazard models pose major identifiability problems when
modeling time to a single event.

@ It is often not possible to distinguish between a constant hazard
model and a time-varying hazard model with the same
time-averaged hazard.
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Modeling time-to-event data Models with time-varying hazard

Example: Piecewise constant hazard model for
dropouts

@ Let’s revisit the dropout example.

@ ltis likely that dropout behavior is influenced by both efficacy (as
measured by PANSS) and adverse effects (e.g., CNS and
extrapyramidal symptoms (EPS)).

@ To keep things simple let’s just model the effect of lack of efficacy
on dropout. In particular construct a model where the hazard
depends on the PANSS score observed at the most recent weekly
visit.

@ Model the hazard as constant over the period since the most
recent PANSS score measurement.
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Modeling time-to-event data Models with time-varying hazard

WinBUGS implementation
The BUGS model is nearly identical to the previous one except that the
covariate is now PANSS change from baseline instead of dose.

model{
for(i in 1:n0bs){

tDropli] ~ dexp(h[i])I(tCensorl[i],)
h[i] <- hO * exp(beta * (PANSS[i]-PANSSO[i]))

tDropPred[i] ~ dexp(h[il)
}
logHO ~ dnorm(0, 1.0E-6)

beta ~ dnorm(0, 1.0E-6)
log(h0) <- logHO
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Modeling time-to-event data Models with time-varying hazard

WinBUGS implementation
The bigger difference is in the data set that now contains a tDrop
record indicating the dropout (or censored if 6) time.

patient dose PANSSO time PANSS tDrop
1 0 90 0 91 1.77
1 0 90 1 87 1.77
1 0 90 2 NA 1.77
1 0 90 3 NA 1.77
1 0 90 4 NA 1.77
1 0 90 5 NA 1.77
1 0 90 6 NA 1.77
2 5 79 0 78 6

2 5 79 1 71 6

2 5 79 2 74 6

2 5 79 3 66 6

2 5 79 4 58 6

2 5 79 5 65 6

2 5 79 6 69 6
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Modeling time-to-event data Models with time-varying hazard

The data is read in and reformatted by the following R code

## get data file
dataTTE <- read.csv("PANSSData.csv",as.is=T)

dataTTE$tEnd <- as.vector(
sapply(unique (dataTTE$patient),
function(patient, data)
c(data$time[data$patient==patient] [-1], NA),
data = dataTTE))

dataTTE <- dataTTE[!is.na(dataTTE$PANSS) & !is.na(dataTTE$tEnd), ]

dataTTE$censored <- dataTTE$tDrop >= dataTTE$tEnd

dataTTE$tEnd <- ifelse(dataTTE$tDrop < dataTTE$tEnd, dataTTE$tDrop,
dataTTE$tEnd)

## create WinBUGS data set

bugsdata <- list(
nObs = nrow(dataTTE),
PANSS = dataTTE$PANSS,
PANSSO = dataTTE$PANSSO,
tDrop = ifelse(dataTTE$censored, NA, dataTTE$tEnd - dataTTE$time),
tCensor = ifelse(!dataTTE$censored, 0, dataTTE$tEnd - dataTTE$time)
)
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Modeling time-to-event data Models with time-varying hazard

Results: Posterior median and 90% prediction interval for the
fraction of patients remaining in the trial compared to the
empirical survival curve

0 1 2 3 4 5 6
Lo L

The fit is only slightly better
| o4 than the constant hazard
dose-response model
based on expected

- deviance (1210 vs. 1230).

fraction of patients remaining in trial

time (weeks)
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Modeling repeated time-to-event data
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Modeling time-to-event data Repeated time-to-event data

Approaches to modeling multiple events of the same
kind

@ Model the time to the first event

@ Model the number of events
@ Model the inter-event time intervals

e This is a relatively straight forward extension of the approach used
for single events.

o Instead of modeling only the time of an event relative to the start of
the study, you model the time from the previous event (or the start
of the study in the case of the first event).

e This approach is potentially more informative than modeling count
data when the hazard varies with time.

o If sufficient individuals experience multiple events then modeling of
inter-individual variation is possible.

@ Let’s use hands-on problem 6 to illustrate the approach
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Modeling time-to-event data Repeated time-to-event data

Hands-on Problem 6: Repeated time-to-event data

@ Suppose the trial we modeled in Hands-on Problem 1 continued
for 1 year instead of 24 weeks (an artifice to assure we have

enough multiple events to make it interesting).
@ Phase 2 dose-finding trial in CF patients

o Parallel design

e 100 patients per dose arm

e Multiple doses of ME-2

@ Placebo, 20, 40 and 60 mg qd administered by inhalation for 52
weeks

o Efficacy measurement: Times of pulmonary exacerbation events.

e Covariates of possible relevance: age, baseline FEV1, concomitant
medications (rhDNase or chronic antibiotic such as azithromycin or
inhaled tobramycin)

@ Hands-on exercise:

e Construct a model for the possibly multiple times to pulmonary
exacerbation events as a function of dose and possibly
patient-specific covariates.

@ Data file: handsOn6/ME2ExacerbationTimeData.csv
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EDA: Time between pulmonary
exacerbation events as a function of dose
and antibiotic use

fraction of patients with no pulmonary exaberation

T T T T T
0 10 20 30 40 50

time (w)

antibiotic

fraction of patients with no pulmonary exaberation
0.0

0 10 20 30 40 50

fraction of patients with no pulmonary exaberation

time (w) 0 10 20 30 40 50

time (w)
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Proposed model

@ Constant hazard model for i occurrence of a pulmonary exacerbation
in the j patient where the hazard is a function of dose, baseline FEV1
and chronic antibiotic use:

texac,j ~ Exponential (h))
hi = hojEgrg,
log (ho)) ~ N (log (ho,-) ,w2>
log (?70/') = fBo+ Brevi (FEV1; — 70) + Banibiotic lantiviotic.j
o EmaxDj
Faai = 1 Epg 1 D

where FEV1; is the observed baseline FEV1.
@ Weakly informative priors:
Bo ~ N(0,10%) Breyt ~ N(0,10°%)  Bantiviotic ~ N (0, 10°)
Emax ~ U(0,1) EDsg~ U(0,1000) w ~ U (0,10%)
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Possible additional topics

We will probably have time to cover 2 additional topics. Here are some
possibilities:

@ Modeling non-ordinal categorical data.

@ Modeling ordinal data when proportional odds is not appropriate.

@ Hidden Markov models—an approach for dealing with some types
of autocorrelation.

@ Simultaneous modeling of time-to-event and event magnitude.

@ Models for time-to-event or count data with a hazard that varies
continuously with time.

@ Other?

Please indicate your priorities on the Student Q&A Forum of the
course website.
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Hidden Markov models

Hidden Markov models

@ Hidden Markov models are models in which the observable data
depends on some underlying Markov process.
@ The modeled system has multiple possible states, but can be in
only one such state at a time.
@ In a discrete time Markov process the time scale is a sequence of
discrete times, usually equally spaced.
e The system can transition randomly from one state to another at
each time.
e The probability of each transition depends only on the current state,
not on any prior state. Thus the sequence of states is a Markov

chain.
e The transition probabilities form a transition matrix:
[ P11 P12 ... Pin |
Poy po2 ... po
p=| . T
| Pt Pn2 .. Pnn |
where p;; is the probability of transitioning from state / to state .
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Potential applications

@ Describing some types of autocorrelation in discrete data models

e Binary or binomial data in which the probability of an event changes
at random from one constant value to another.

e Count data where the event hazard changes at random from one
constant value to another.
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Example: Hidden Markov model for seizure count data

The example we will explore is based on the following work:

@ M Delattre, R Savic, R Miller, M O Karlsson, M Lavielle.
Estimation of mixed hidden Markov models with SAEM.
Application to daily seizures data. ACCP Annual Meeting 2009
(http://accpl.org/pdf/2009/Lavielle.pdf)

@ M Delattre, R Savic, R Miller, M O Karlsson, M Lavielle.
Estimation of mixed hidden Markov models with SAEM.
Application to daily seizures data. PAGE 2010 (http:
//www.page-meeting.org/pdf_assets/6696-PAGE2010.pdf)
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Worked example using WinBUGS

Simulated seizure counts from a hypothetical clinical trial
@ 5 treatment arms
e 0,600, 900, 1200 and 1800 mg/d

@ 12 week screening phase followed by 12 week treatment phase
@ 25 patients per arm
@ Data: Daily seizure counts
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Hidden Markov models Example: Hidden Markov model for seizure count data

Proposed model

Poisson model for the number of seizures on the i observation day in
the j patient with average seizure counts that vary between 2 values
according to a Markov process:

nseizurer ~ POlSSOn (A/j)

(AjFeen, statej =1& <0

\ ) A5, statej =2&t<0
ij —=

A7, state;=1&1t>0
| A5, state;=2&1t>0
state; ~ categorical (pj)
[ (pgreen pigeen) , stateqiq); = 1& <0
o = ) (pErmesEer) state gy =28t <0
! piTa, PYse ) state(j_1); =1&t>0
| (P55 PaaT ) state(j_1;=2&t>0
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Proposed model (cont.)

(Ioglt (p?c;r’jeen) ,|Og|t (pg?rjen) ’Iog ( ?;;reen) 7|Og ( Z;;reen . ?;;reen)) ~

N ((Iogit (P11) ,logit (P21 ) , log (X) .log (EA)) ,Q)

PR = 1P e =1
logit (p{§3") = logit (p3%°") + 61 + y1 = D;
logit (p553') = logit (p35"%°") + 62 + 72 = D;

piz; = 1-pfF] Py =1-p5y

0g (5%
Iog ()\g]eat . X%rj(.eat)

log ( ?free”) + 63 + v3 * Dj
log ()\;j;reen . ?;:reen) + 04+ Y4 * Dj

184 /214
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What about the initial state?

In the model described above the probability of each state depends on
the immediately preceding state. How do we model the probability of
each state at the first observation time? Here are 2 options:

@ Add new parameters corresponding to the initial probabilities.

@ Assume that the Markov process in this model has continued long
enough prior to the study in conditions comparable to the
screening phase that its stationary distribution may be used to
estimate the probabilities of each state:

screen screen
p Pai,j Pr2,
U screen screen’ pyscreen screen
Piaj= P2 Piaj t Pai,
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Models with time-varying hazard (reprise)

Implementation requires integration of the hazard function within the
likelihood function:

@ Likelihood for times of observed events
p(16) = £ (t16) = h(]6) S(t|6) = h(t|6) e~ Jo M)

@ Likelihoods for censored time-to-event data
o Right censored data

p(tf) = Pr(T > t) =1 F(t|9) = S(t|¢) = e~ Jo MulO)t
o Interval censored data

p(tld) = Pr(ty<T<tbl0)=F (L0 - F (o)
= S(t1 |9) — S(t2’9) - fot1 h(u|@)du _ e fotz h(ul6)du
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Models with time-varying hazard

Implementing models with time-varying hazard
(reprise)

NONMEM implementation:

@ Use PREDPP models for numerical integration, e.g., ADVANG,
ADVANS8 or ADVAN13.

WinBUGS implementation:

@ Use one of the ODE solvers in BUGSModelLibrary
(http://bugsmodellibrary.googlecode.com) to integrate the hazard
function.

@ And use the zeros or ones trick to specify the non-standard
sampling distribution resulting from the time-varying hazard.
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Models with time-varying hazard BUGSModelLibrary

BUGSModelLibrary
http://bugsmodellibrary.googlecode.com

BUGSModelLibrary is a prototype PKPD model library for use with
WinBUGS 1.4.3. The current version includes:
@ Specific linear compartmental models:
@ One compartment model with first order absorption
e Two compartment model with elimination from and first order
absorption into central compartment
@ General linear compartmental model described by a matrix
exponential

@ General compartmental model described by a system of first order
ODEs
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http://bugsmodellibrary.googlecode.com

BUGSModelLibrary

The models and data format are based on
NONMEM/NMTRAN/PREDPP conventions including:

@ Recursive calculation of model predictions
e This permits piecewise constant covariate values
@ Bolus or constant rate inputs into any compartment
@ Handles single dose, multiple dose and steady-state dosing
histories

@ Implemented NMTRAN data items include:
e TIME, EVID, CMT, AMT, RATE, ADDL, Il, SS
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BUGSModelLibrary

Calling conventions

@ All BUGSModelLibrary functions have the form:
<modelName> (time, amt, rate, ii, evid, cmt, addl, ss, theta)

where time, amt, rate, ii, evid, cmt, addl and ss are equal length time-ordered
vectors and are defined identically to the NONMEM variables of the same name.

@ theta may be either

@ A vector of parameters of length equal to the number of model parameters,
or

@ A matrix with a number of rows equal to the length of the time vector. The
i row contains a vector of model parameters for the time interval
(time[i-1], time [i]]. This permits time-dependent parameters.

@ <modelName> is the name of a built-in model, such as OneCptModel or
TwoCptModel, or a user-defined name.

@ Within a WinBUGS model <modelName> is usually called once per individual
within a for block that loops over individuals.
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BUGSModelLibrary: Built-in models

@ OneCptModel(time, amt, rate, ii, evid, cmt, addl, ss, theta)
@ TwoCptModel(time, amt, rate, ii, evid, cmt, addl, ss, theta)
@ OneCptKaModel(time, amt, rate, ii, evid, cmt, addl, ss, theta)
@ TwoCptKaModel(time, amt, rate, ii, evid, cmt, addl, ss, theta)

WinBUGS model
function argument parameters

model name names in theta
one compartment OneCptModel  time, amt, rate, ii, CL, Vb, kg — % Fi, Fo,
model V\_/ith first ordgLr evid, cmt, addl, ss tagts tage
absorption (ka > 72)
two compartment TwoCptModel  time, amt, rate, ii, CL, Q, Vb, V3, ka — A1,
model with first order evid, cmt, addl, ss Fi, F>, F3, tlag1s t/agg,
absorption (ka > A1) tiag3
one compartment OneCptKaModel time, amt, rate, ii, CL, Vb, Ka, Fy, Fo, tiag1
model with first order evid, cmt, addl, ss tiag2
absorption
two compartment TwoCptKaModel time, amt, rate, ii, CL, Q, Vb, Vs, ka, Fi,
model with first order evid, cmt, addl, ss Fo, F3, tiagt s tiage, tiaga
absorption
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BUGSModelLibrary

User-programmed models

@ Linear compartmental models
e User specifies the non-zero elements of the rate constant matrix.
e Linear ODE’s are solved using matrix exponential methods.
@ General compartmental models
o User specifies the ODE'’s.
e The ODFE’s are solved using either a Runge-Kutta or an adaptive
multistep (LSODA) method
@ Both cases require user specification of a rate constant matrix or
ODE'’s in a template Component Pascal procedure that must be
compiled using the BlackBox Component Builder 1.5.
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Linear compartment model

@ = model described by a system of first order linear differential
equations with (piecewise) constant coefficients:

X' (t) = Kx (t)

where K is a matrix.

@ For example K for a two compartment PK model with first order
absorption is:

—kj 0 0
K=| ka —(kio+ki2) ko
0 Ki2 —Ko1

@ When applicable this method is usually faster than the
Runge-Kutta or LSODA methods.
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Linear compartment model

Component Pascal code for a two compartment PK model with first
order absorption

PROCEDURE UserKMatrix(IN theta: ARRAY OF REAL; (= Assign nonzero rate constants )
nCmt: INTEGER): kMatrix[0,0] := -ka;
POINTER TO ARRAY OF ARRAY OF REAL; kMatrix[1,0] := ka;
VAR kMatrix[1,1] := -(k10+k12);
kMatrix: POINTER TO ARRAY OF ARRAY OF REAL; kMatrix[1,2] := k21;
i, j: INTEGER; kMatrix[2,1] := k12;
k10, k12, k21, ka: REAL; kMatrix[2,2] := -k21;
BEGIN
NEW (kMatrix,nCmt,nCmt); RETURN kMatrix;
(% Initialize to all zeros x)
FORi:=0 TO nCmt—1 DO; END UserKMatrix;
FOR j:=0 TO nCmt—1 DO;
kMatrix[i,j] = 0; PROCEDURE (m: MatExpModel) InitModelx;
END; END; BEGIN
k10 := theta[0]; m.nParameter := 10;
k12 := theta[1]; m.F1index = 4;
k21 := theta[2]; m.tlag1Index = 7;
ka := theta[3]; m.nCmt := 3;
END InitModel;

Only the red portions need to be programmed by the user. The
remainder is from a template provided with BUGSModelLibrary.
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Models with time-varying hazard Programming ODE-based models

Demo: Two compartment PK model with effect
compartment and first order absorption

See the BUGSModelLibrary User Manual, pp 11-13
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Models with time-varying hazard Programming ODE-based models

General compartment model

@ = model described by a system of first order ordinary differential
equations (ODE’s), i.e., differential equations of the form:

X' (8) = f(t,x (1))

where x and f are vector-valued functions.

@ For example a two compartment PK model with Michaelis-Menten
elimination:

x;i(t) = - (MZ‘L% + k12> x1 (1) + ko1 x2 (1)

Xé(t) = k12X1 (t)—k21X2(t)

@ Two ODE solving methods are available:
o A Runge-Kutta 4th/5th order method—usually faster for non-stiff
problems.
o LSODA, the Livermore Solver for Ordinary Differential equations
with Automatic method switching for stiff and nonstiff problems

©2011 Metrum Institute Categorical, Count, and Time-to-Event Data September—December, 2011 196 /214



General compartment model

Component Pascal code for a two compartment PK model with
Michaelis-Menten elimination

PROCEDURE UserDerivatives(IN theta, x: ARRAY OF REAL,;
numEq: INTEGER; t: REAL; OUT dxdt: ARRAY OF REAL) ;
VAR

Vmax, Km, k12, k21: REAL,;
BEGIN

Vmax := theta[0];

Km := theta[1];

k12 := theta[2];

k21 :=theta[3];

(x Differential equations for the model excluding piecewise x)
(x constant input rates provided in the data set )

dxdt[0] := -(Vmax / (Km + x[0]) + k12) * x[0] + k21 * x[1];
dxdt[1] := k12 * x[0] - k21 * x[1];

END UserDerivatives;
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Models with time-varying hazard Programming ODE-based models

Demo: Two compartment PK model + indirect effect
model with drug effect on kout (inhibitory Emax)

See the BUGSModelLibrary User Manual, pp 13-19
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Models with time-varying hazard Specifying a non-standard sampling distribution in BUGS

Specifying a non-standard sampling distribution in
BUGS: The zeros trick

@ Suppose the likelihood for the i observation has the general form
p (vi|0, x;) where p is a known probability density function that is not
among the distributions built into WinBUGS.

@ We can rewrite the likelihood as

—(=4) (_pN\O
p(yil0,x) = e = © Ol( 4i)

where ¢; = log (p (yil0, X)), i.e., the log-likelihood, and ppoisson is the
Poisson distribution.

= PPoisson (O| - ei)

@ So for each real observation we create a pseudo-random variable equal
to 0 from a Poisson distribution with mean equal to minus the
log-likelihood.

@ To assure that the mean of the Poisson distribution is non-negative, add
a positive constant to ¢;, i.e., use Ppoisson (0| — ¢; + C) where C is large
enough to assure —¢; + C > 0. This does not affect the posterior
distribution
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Models with time-varying hazard Specifying a non-standard sampling distribution in BUGS

Specifying a non-standard sampling distribution in
BUGS: The zeros trick

model{
for(i in 1:n0bs){
zeros[i] <- O
zeros[i] ~ dpois(phil[i])

phi[i] <- -log(L[il) + C
L[i] <- --- # user-specified likelihood function

C <- 10000
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Models with time-varying hazard Specifying a non-standard sampling distribution in BUGS

Specifying a non-standard sampling distribution in
BUGS: The ones trick

@ Alternatively we can rewrite the likelihood in terms a Bernoulli
distribution:

p(yil0,x) = Li = LI (1 = L;)° = pgermoui (1] L7)

where L; = (p(yil0, X;)), i.e., the likelihood, and pgernoui is the Bernoulli
distribution.

@ So for each real observation we create a pseudo-random variable equal
to 1 from a Bernoulli distribution with mean equal to the likelihood.

@ To assure that the probability parameter in the Bernoulli distribution is
less than 1, divide L; by a positive constant, i.e., use pgernouti (1|Li/C)
where C is large enough to assure L;/C € (0, 1). This does not affect
the posterior distribution
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Models with time-varying hazard Specifying a non-standard sampling distribution in BUGS

Specifying a non-standard sampling distribution in
BUGS: The ones trick

model{
for(i in 1:n0bs){
ones[i] <- 1
ones[i] ~ dbern(p[il)

plil <- L[i] / C
L[i] <- --- # user-specified likelihood function

C <- 10000
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Models with time-varying hazard Specifying a non-standard sampling distribution in BUGS

Example: PK/PD model of ondansetron anti-emetic
effect

A Population Pharmacokinetic-Pharmacodynamic
Analysis of Repeated Measures Time-to-Event
Pharmacodynamic Responses:

The Antiemetic Effect of Ondansetron*

Eugéne H. Cox,"' Christine Veyrat-Follet,” Stuart L. Beal,’ Eliane Fuseau,*
Saraswati Kenkare,” and Lewis B. Sheiner>®’

Journal of Pharmacokinetics and Biopharmaceutics 27: 625-644 (1999)
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Models with time-varying hazard Specifying a non-standard sampling distribution in BUGS

Example: PK/PD model of ondansetron anti-emetic
effect

@ NONMEM code and data available at ftp://nonmem. iconplc.com
in /Public/nonmem/non_continuous/general_hazard

e Data appear to be similar in form to that used for the publication but
not the same—probably simulated data to illustrate the model.

@ Subjects with count data were excluded—ran out of time to
implement that complication.

@ 63 healthy subjects
@ Single 5 minute infusions of ondansetron (0.1, 0.25, 1, 4 or 8 mQ)

@ Ipecac administered at 0.5, 4, 6, 8, 12 or 16 h after ondansetron
administration

@ Times of emesis events are recorded.
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Models with time-varying hazard Specifying a non-standard sampling distribution in BUGS

Cox et al model

Time of the i’” emesis event relative to the previous emesis event or
ipecac dose in the j individual:

Alomesis,j = lemesis,j — lorev,ij ~ Pemesis (OPD j; Ok j» Dj, torev,ijs pecac,j)
brevj = max (temesis,(i—1)j, tipecac,j)
Opp; = (04),02,03,04)
Orx; = (CL;,Q;, V1, V2)

Pemesis (Atemesis,iijD,ja 9PK,]7 Dj7 tprev,ija tipecac,j)
= h (Atemesis,ij + tprev,ij|9PD,j7 9PK,]7 Dj; tipecac,j)

Al . -t m
emesis, ij T Tprev, jj
_ft h(U|9PD,/‘79PK,j,Dj’tipecac,j)dU

N>) prev, if
log (h (t|0pp.j, Opk.j> Dj, tipecac,j))
= 61; + 02109 (t — tpecac,j) — 03 (t — tipecac,))
—94Cond,j (t, D;, 9PK,j)

01 ~ N(é\hwé)
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Course project

One of the requirements for course credit is completion of a small
population modeling project. This project represents 50% of the
course grade. The project is due within two weeks of the final course
lecture. Please direct any questions to course instructor.
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Project requirements

Students will define their own projects, according to the following required elements:

@ Choose a real-world or simulated data set suitable for modeling with a Bayesian
hierarchical model for categorical, count or time-to-event data (e.g., a population
PD model).

@ Develop and implement a suitable model using WinBUGS. Use R for data
management, launching WinBUGS and analysis of the MCMC simulation results.

@ Summarize methods, results and conclusions with supporting figures and tables
in a brief report. Report format should be PDF document, if possible. The results
should include suitable model evaluation plots, e.g., posterior predictive checks.

@ Discuss results including assumptions inherent in the analysis. This should
include rationale for the prior distribution.

@ Include supplemental files:

@ Data file(s)
@ R script(s) and WinBUGS model file(s)
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COMPLETE COURSEWARE LICENSE AGREEMENT |

RIGHTS RESERVED: THIS COMPLETE COURSEWARE LICENSE IS SEPARATE AND DISTINCT FROM THE OPEN
COURSEWARE LICENSE, WHICH IS PROVIDED FOR PUBLIC USE OF A SPECIFIED SUBSET OF METRUM INSTITUTE
TRAINING MATERIALS. SEE “Courseware Info” at http://metruminstitute.org.

THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. BY EXERCISING ANY RIGHTS TO THE
WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT
THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED
HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

“Adaptation” means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation,
adaptation, derivative work, or any other form in which the Work may be recast, transformed, or adapted including in any form
recognizably derived from the original, except that a work that constitutes a Collection will not be considered an Adaptation for the
purpose of this License.

“Collection” means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances,
phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below, which, by reason of the
selection and arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in
unmodified form along with one or more other contributions, each constituting separate and independent works in themselves,
which together are assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation
(as defined above) for the purposes of this License.

“Distribute” means to make available to anyone other than You, the original and copies of the Work or Adaptation, as
appropriate, through sale or other transfer of ownership.

“Licensor” means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.

“Original Author” means the individual, individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher.

“Work” means the scientific work offered under the terms of this License including without limitation any production in the literary,
scientific and artistic domain, whatever may be the mode or form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable work.
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“You” means an individual or entity exercising rights under this License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite
a previous violation.

“Publicly Perform” means to perform public recitations of the Work and to communicate to the public those public recitations, by
any means or process, including by wire or wireless means or public digital performances; to make available to the public Works
in such a way that members of the public may access these Works from a place and at a place individually chosen by them; to
perform the Work to the public by any means or process and the communication to the public of the performances of the Work,
including by public digital performance; to broadcast and rebroadcast the Work by any means

including signs, sounds or images.

“Reproduce” means to make copies of the Work by any means including without limitation by sound or visual recordings and the
right of fixation and reproducing fixations of the Work, including storage of a protected performance or phonogram in digital form
or other electronic medium.

“Commercial” means any copy, application or Adaptation of the Work for the direct or indirect purpose of revenue generation
“Non-Commercial” means any copy, application or Adaptation of the Work for purposes that are not directly or indirectly related
to revenue generation.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising
from limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other
applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You fair use of this copyrighted
Work for noncommercial educational purposes or for commercial and noncommercial research purposes. For example, You may
adapt example code sets (the Work) and apply them to a commercial research project.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:
Under the terms of this License, You may not Distribute, Reproduce, or Publicly Perform the Work. For example, You may not use
courseware (the Work or any adaptations) to create a new public training course, whether commercial or non-commercial.

You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution Parties.
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For the avoidance of doubt:

Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory
or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives the right to collect royalties through any statutory or
compulsory licensing scheme; and,

Voluntary License Schemes. The Licensor reserves the right to collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers voluntary licensing schemes, via that society, from any exercise by
You of the rights granted under this License that is for a purpose or use which is otherwise than noncommercial as permitted
under Section 4(c).

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE
LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of
this License. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms
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or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

8. Miscellaneous If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such
provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable. No term or provision
of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed
by the party to be charged with such waiver or consent. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not
specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This
License may not be modified without the mutual written agreement of the Licensor and You. The rights granted under, and the
subject matter referenced, in this License were drafted utilizing the terminology of the Berne Convention for the Protection of
Literary and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of
1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on July 24,
1971). These rights and subject matter take effect in the relevant jurisdiction in which the License terms are sought to be
enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law.
If the standard suite of rights granted under applicable copyright law includes additional rights not granted under this License,
such additional rights are deemed to be included in the License; this License is not intended to restrict the license of any rights
under applicable law.
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