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Getting Started Course Introduction

Course Introduction

MI260: Model-based Meta-analysis to Support Decision-Making in
Clinical Drug Development provides an introduction to model-based
meta-analysis of summary data or a combination of summary and
individual data from clinical trials to support decision-making in clinical
drug development. The course duration and content is equivalent to a
single semester 3 credit course at a typical institution of higher
learning. Each week’s topic will consist of a lecture (two hours)
followed by a hands-on lab (one hour). The general plan will be as
follows:

Lectures will be on Wednesdays at 2 PM EDT.
Hands-on labs will be on Mondays at 2 PM EDT (in some cases,
the lecture may finish during the first part of the lab on Monday).
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Getting Started Student Expectations and Requirements for Certificate

Student Expectations and Requirements for Certificate
All students are expected to attempt the hands-on exercises prior
to the lab session. Instructors will not grade homework
assignments, but will review solutions with the entire class on a
weekly basis.
A midterm take-home exam will be assigned at the midpoint of the
course.
A final take-home exam will be assigned at the end of the course
(due one week after it is posted).
Students will be required to complete and submit a modeling
project before the end of the course. This project will be based on
a real-world (or similar) problem, and will include components of
data assembly, model development and evaluation, and a brief
report. More details to follow...
Course grade will be based on the midterm (25%), final (25%) and
modeling project (50%)
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Getting Started Course Content Management Site

Course Content Management Site

All students should already have an account to access the main course
website. Here’s the link: (http://training.metruminstitute.org). Postings to this
site will automatically generate an email message to your own e-mail
accounts. This site is intended to be the primary repository for all course
resources including:

News Forum: Here you’ll find updates about class schedule,
assignments, etc.

Discussion Forum: Direct your questions about course content to
instructors or other students here. You can contribute to ongoing
discussions or start a new thread.

Link to the GoToWebinar webcast registration form.

Course Materials: You’ll find course notes, examples, and links to
recorded lectures under each weekly class heading.
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Getting Started Computer resources

Computer resources
Use of your own computer

The initial course materials, including the software we will use
throughout the course, are contained in the (rather large) zip file
named MI260USB.zip available on the course website.
For the course we recommend you run the software and course
examples directly from a USB flash drive via the shortcuts
provided. Install the contents of MI260USB.zip according to:

1 Download MI260USB.zip to your computer.
2 Unzip MI260USB.zip. This will create a folder named MI260USB.
3 Obtain and insert a USB flash drive with ≥ 1 GB capacity.
4 Copy the contents of MI260USB (not the MI260USB folder itself) to

the flash drive.
5 Check the software installation by double-clicking on the shortcuts

named “R 2.15.2.cmd” and “WinBUGS14.cmd”. In each case the
corresponding program (R or WinBUGS) should be successfully
launched. If not, please report it via the Technical Support forum on
the course website.
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Course Outline

Model-based Meta-analysis to Support
Decision-making in Clinical Drug Development

Objective
Provide an introduction to model-based meta-analysis of summary
data or a combination of summary and individual data from clinical
trials to support decision-making in clinical drug development.

Primary intended audience: pharmacometricians with biological
or statistical modeling skills
Background assumed

PK/PD or statistical modeling
Some familiarity and hands-on experience with nonlinear
regression, mixed effects modeling, Bayesian modeling using
WinBUGS and use of R (or S-PLUS).
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Course Outline

Course Outline

Introduction
Rationale and role of model-based meta-analysis in clinical drug
development

Why do it?
What decisions benefit from meta-analysis and model-based
meta-analysis in particular?

Motivating examples
The systematic review and planning your meta-analysis

Analysis plan
Database construction

Data sources
Data types, e.g., mean, mean change from baseline, percent change
from baseline, standard deviation, standard error, ...
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Course Outline

Course Outline (cont.)
Traditional meta-analysis

What is it?
Fixed effects meta-analysis

Random effects meta-analysis and meta-regression
Measures of heterogeneity
What the traditional random effects model is and how it differs from
fixed effects
Meta-regression

Selection bias and missing data
Combining different types of data
Network Meta-analysis

Relationship to random effects meta-analysis
Assumptions
Fitting the models
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Course Outline

Course Outline (cont.)

Model-based meta-analysis (MBMA)
What is it?
Role of MBMA: Objectives not adequately addressed by traditional
meta-analysis
Why Bayesian? / Why BUGS?

Modeling sample mean data

Modeling sample standard deviations: why and how
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Course Outline

Course Outline (cont.)

Population simulations
Simulating probable ranges of population estimands, e.g.,
population mean, probability of an event, etc.
Using simulation results to support decision-making in a
competitive market environment

Issues arising from analysis of summary data
Applying models developed to describe responses in individuals to
summary data
Analysis of longitudinal data

Pitfalls of treating treatment arms as “super-patients”
Within-arm correlation
Approaches for addressing these issues
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Course Outline

Course Outline (cont.)

Modeling other types of summary statistics:
Number or fraction of patients with a particular outcome or that
experience an event
Number or fraction of patients within each level of an ordinal scale
Number of events per patient
Summary statistics for time-to-event measurements

Issues arising from use of LOCF and OC data
Combining summary and individual data
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Course Outline

Course Outline (cont.)

Incorporating a broader range of data and knowledge
Leveraging the Bayesian framework to incorporate additional
quantitative knowledge via informative prior distributions
Integrating preclinical, biomarker and clinical outcome data to
improve prediction and decision-making in early clinical
development

Miscellaneous topics
Closing discussion
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Rationale & role of MBMA Why do it?

Why do it?
The primary rationale for model-based meta-analysis (MBMA) is
to improve decision-making by better leveraging prior information
from multiple sources.
Decision-makers generally attempt to consider such prior
information, but it is usually done in a relatively qualitative manner,
and each individual decision-maker is usually aware of only a
subset of the prior information.
MBMA seeks to make the process more quantitative and
comprehensive.
The process and results of MBMA should be made visible (aka
transparent) to the decision-makers.
The end result is that the decision-makers are better informed,
and they can contribute their knowledge to the modeling process
leading to better, more trusted models and model-based
inferences.
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Rationale & role of MBMA Why do it?

Why do it?
Leverage prior knowledge from multiple sources

Data on the NCE of interest
Preclinical, Phase I safety & biomarkers, clinical safety & efficacy

Knowledge about the target disease & affected physiologic systems
Knowledge/data on related compounds

From proprietary or public sources
Data for analogs that share the same MOA and possibly chemical
properties
Data for competitors should be included to provide benchmarks for
comparison.

Comparison of competing drugs/treatments
Information about analogs may permit information borrowing
Shared model parameters are more precisely estimated
Comparative inferences are also more precise

Prediction of unobserved clinical outcomes
Build models for preclinical-to-clinical or biomarker-to-clinical
relationships
Use those models to predict clinical outcomes for NCEs for which
no clinical data is yet available
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Rationale & role of MBMA What decisions benefit from model-based meta-analysis?

What decisions benefit from model-based
meta-analysis?

MBMA can enhance dose-selection and PoC decisions in at least
2 ways.

1 MBMA can improve quantitative comparisons with competing
treatments. This may permit better selection of a dosing regimen
that performs comparable to or better than the competing treatment.

2 Alternatively, the MBMA results may demonstrate that no dosing
regimen of the new drug performs favorably relative to competitors.
If so, MBMA may support a better and earlier decision to terminate
development.
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Rationale & role of MBMA What decisions benefit from model-based meta-analysis?

What decisions benefit from model-based
meta-analysis?

In some cases models developed via MBMA may be suitable for
simulating clinical trials and thereby improving decisions regarding
the designs for such trials.

MBMA is particularly valuable in cases where no clinical efficacy
data is yet available for the new treatment, but quantitative
predictions for efficacy-related measurements are possible by
leveraging data for related compounds.
Even if those predictions are highly uncertain, the clinical trial
simulations provides the means for optimizing the trial design in the
presence of such uncertainty.

MBMA may also be useful for decisions related to market
differentiation and choice or prioritization of indications.

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 17 / 372

Motivating examples

Table from Corrigan et al.
AAPS NEWSMAGAZINE
September 2007 pp 26-27
illustrates the increasing
use of MBMA in clinical
drug development
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Motivating examples Model-based development of gemcabene

Meta-analysis of mean LDL-C % change from baseline
25 clinical trials

13 trials of statin monotherapy
4 trials of ezetimibe monotherapy
4 trials of statin/ezetimibe combinations
3 trials of gemcabene monotherapy
1 trial of statin/gemcabene combinations

The original work also included modeling of CRP, headache, ALT
elevation, myalgia, HDL-C and CHD relative risk
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Motivating examples Model-based development of gemcabene

Statin dose-response: monotherapy and combination
with ezetimibe 10 mg/d
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Motivating examples Model-based development of gemcabene

Incremental effect of gemcabene decreases with
increasing statin doses
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Motivating examples Model-based development of gemcabene

Statin/gemcabene is inferior to statin/ezetimibe at
higher statin doses
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Motivating examples Model-based development of gemcabene

Statin/gemcabene is inferior to statin/ezetimibe at
higher statin doses
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Motivating examples Model-based development of gemcabene

Conclusion: Terminate the development program
because gemcabene cannot compete favorably with
ezetimibe as combination therapy with statins

“In conclusion, the availability of the integrated model combined with
the model visualization tool (DMX) led to a quick decision to stop the
development of gemcabene. The model contributed significantly to this
decision, because it provided a quantitative comparison between
gemcabene and ezetimibe when administered alone or in combination
with a statin. These treatment options were not directly compared in
the phase II trial. The integrated model also increased the certainty of
the decision to stop development.”
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Motivating examples Longitudinal MBMA of RA treatments

Clinical Pharmacology & Therapeutics 92:352–359 (2012)

MBMA was used during the canakinumab development program
to assess its efficacy relative to several marketed drugs.

A model was developed to describe ACR20 response over time.
for abatacept, adalimumab, anakinra, certolizumab, etanercept,
golimumab, infliximab, rituximab, tocilizumab, methotrexate,
placebo and canakinumab.
The results were used to assess whether canakinumab was
sufficiently efficacious to warrant further development.
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Motivating examples Longitudinal MBMA of RA treatments

Longitudinal MBMA of RA treatments

Model developed by
analysis of published data
(except canakinumab)

Fraction of patients
achieving ACR20
37 double-blind
controlled clinical trials
Longitudinal data up to
54 weeks

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 26 / 372



Motivating examples Longitudinal MBMA of RA treatments

Longitudinal ACR20 data and
model predictions
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Motivating examples Longitudinal MBMA of RA treatments

The model was used to support a key strategic
decision

“. . . a decision was made not to pursue the RA indication. The integrated
assessment of canakinumab data with the quantitative knowledge about
current standard-of-care treatments supported this decision, given that the
likelihood was low that canakinumab at current doses and regimen could
provide incremental benefit to patients as compared with existing therapeutic
options.”
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Motivating examples MBMA to compare migraine pain relief response of two triptans

Cephalalgia 2005; 25:715725

MBMA was used during the eletriptan development program to
compare the dose- and time-response of eletriptan to
sumatriptan. The primary comparisons addressed in the paper
were:

The degree of migraine pain relief resulting from eletriptan 20 and
40 mg compared to sumatriptan 50 and 100 mg.
The effect of encapsulation (for blinding purposes) on pain relief
efficacy of sumatriptan.
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Motivating examples MBMA to compare migraine pain relief response of two triptans

MBMA to compare migraine pain relief response of
two triptans

19 clinical trials
2 summary statistics for migraine pain relief

Fraction of patients with pain relief. Pain relief = improvement in
headache pain score from a baseline of moderate or severe to mild
or no pain
Fraction of patients pain free. Pain free = improvement in headache
pain score from a baseline of moderate or severe to no pain

Longitudinal data up to 4 hours
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Motivating examples MBMA to compare migraine pain relief response of two triptans

Eletriptan & sumatriptan
dose-response at 0.5, 1, 2 & 4 h
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Motivating examples MBMA to compare migraine pain relief response of two triptans

Effect of encapsulation on sumatriptan dose-response
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Motivating examples MBMA to compare migraine pain relief response of two triptans

Comparison of eletriptan and sumatriptan efficacy
pain relief pain free
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Motivating examples MBMA to compare migraine pain relief response of two triptans

Conclusion: MBMA confirmed superior efficacy of
eletriptan and lack of encapsulation effect

The authors concluded:
“In conclusion, the meta-analysis confirms the superior efficacy for
pain relief and pain free of eletriptan 40 mg vs. sumatriptan 50 mg and
100 mg up to 4 h after treatment.” ... “Encapsulation did not impact the
efficacy of sumatriptan during this time frame.”
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Motivating examples Trial simulation to design a Phase II dose finding strategy

Trial simulation to design a Phase II dose finding strategy
Phase II objective: Efficiently find a dose of drug X that:

Is at least non-inferior to the standard of care (drug R 10 mg/d) with
respect to both efficacy and safety.
With sufficient certainty that we can risk a Phase III program with
only one dose level.

Efficacy
Decrease in fraction of patients with a disease-related event

Probable dose-limiting AE
Same biological mechanism as efficacy

Available information:
Drug X:

Clinical pharmacokinetics from Phase I.
Pre-clinical biomarker thought to be predictive of clinical outcomes
related to mechanism of action (both efficacy and dose-limiting AE)

Public-source data on related drugs:
Efficacy-related events
Dose-limiting AEs
Pharmacokinetics
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Motivating examples Trial simulation to design a Phase II dose finding strategy

Modeling strategy: Simultaneously model pre-clinical biomarker
and frequency of clinical efficacy and AE events
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Motivating examples Trial simulation to design a Phase II dose finding strategy

Simulations led to more efficient designs that can find
a non-inferior dose with high probability

Results using conventional statistical analysis without prior
information

Best performance is seen with 7 log-spaced doses
Only trials with > 1050 patients/arm offer sufficient certainty to
consider risking a Phase III program with only one dose level.

Bayesian modeling using prior information:
Increases the probability of selecting a non-inferior dose,
particularly in trials with smaller sample sizes
Also improves the probability of making correct pruning decisions
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Motivating examples Trial simulation to design a Phase II dose finding strategy

Simulations led to more efficient designs that can find
a non-inferior dose with high probability

Leveraging prior information permits more efficient design and
analysis of a Phase II trial to select a dose for Phase III:

Optimizes range, number and spacing of doses
Adaptive pruning assigns patients to most relevant doses
Enhances characterization of dose-response & therefore dose
selection

Shorter, more informative Phase II program (reduction by ∼400-600
patients or ∼4-6 months)
Shorter time to market (at least 4 months and potentially much
greater by avoiding incorrect dose selection and a failed Phase III
program)
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Introduction to meta-analysis

Traditional meta-analysis
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Introduction to meta-analysis Meta-analysis at its simplest

How might we get an estimate of the mean of these
data?

● ● ● ● ●

−0.651 −0.32
−0.213

−0.021 0.946

Values -0.651 -0.320 -0.213 -0.021 0.946
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Introduction to meta-analysis Meta-analysis at its simplest

How might we get an estimate of the mean of these
data?

● ● ● ● ●

−0.651 −0.32
−0.213

−0.021 0.946

x

Values -0.651 -0.320 -0.213 -0.021 0.946

A simple average of the values: x =
∑5

i=1 xi
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Introduction to meta-analysis Meta-analysis at its simplest

How might we get an estimate of the mean of these
data?

● ● ● ● ●

−0.651 −0.32
−0.213

−0.021 0.946

x

Values -0.651 -0.320 -0.213 -0.021 0.946

Variances 0.932 0.060 0.125 0.375 0.683

A simple average of the values: x =
∑5

i=1 xi
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Introduction to meta-analysis Meta-analysis at its simplest

How might we get an estimate of the mean of these
data?

● ● ● ● ●

−0.651 −0.32
−0.213

−0.021 0.946

xxw

Values -0.651 -0.320 -0.213 -0.021 0.946

Variances 0.932 0.060 0.125 0.375 0.683

Weights 1.07 16.7 8.00 2.67 1.46

A simple average of the values: x =
∑5

i=1 xi

A weighted average of the values: xw =
∑5

i=1 wi xi∑5
i=1 wi

where wi = 1
Var(xi )
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Introduction to meta-analysis Meta-analysis at its simplest

At its simplest, a meta-analysis estimate is a weighted
average

A fixed effects meta-analysis estimate is essentially the weighted
average on the previous slide.

A random effects meta-analysis estimate lies between the simple
and weighted average.

It is closer to the simple average when there is large between-study
variability.
It is closer to the weighted average when there is very little
between-study variability.
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Introduction to meta-analysis Meta-analysis at its simplest

The End
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Introduction to meta-analysis What is it?

More formally, meta-analysis is...

A quantitative review and synthesis of results from related but
independent studies (Normand, 1999)

Aggregate data (AD) meta-analysis
Based on summary statistics from each trial
Mean response, proportion of responders
Mean difference between groups, odds ratio, hazard ratio

Individual patient data (IPD) meta-analysis
Observed response, time-to-event

If data are collected longitudinally, either approach can be applied
at a single time point or as a longitudinal model

IPD is better suited for longitudinal models than AD
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Introduction to meta-analysis What is it?

In contrast to a systematic review

A (qualitative) summary of literature related to a specific set of
research objectives
More recently, systematic reviews include a quantitative summary
of the literature - i.e., a meta-analysis
Cochrane Collaboration Handbook lists guidelines for performing
a systematic review and meta-analysis
The PRISMA statement provides standards for reporting
systematic review and meta-analyses
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Introduction to meta-analysis References

If you’re looking for some starting places, you might
consider...

Borenstein, Hedges, Higgins and Rothstein. Introduction to
Meta-Analysis. John Wiley & Sons. 2009.

Anne Whitehead, Meta-Analysis of Controlled Clinical Trials, John
Wiley & Sons: West Sussex. 2002.

Sharon-Lise T. Normand. Meta-analysis: Formulating, evaluating,
combining and reporting. Statistics in Medicine 18, 321-359.
1999.
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The systematic review and planning your meta-analysis Analysis plan

The importance of writing a meta-analysis
plan
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The systematic review and planning your meta-analysis Analysis plan

Conducting a meta-analysis is conceptually no
different than conducting primary research

This suggests writing a protocol / analysis plan to
Describe the objectives of the research
Define inclusion / exclusion criteria for the studies in your literature
review
Describe how you intend to analyze the data

And building a multi-disciplinary team
Clinical subject matter expert
Statistician
Clinical pharmacologist / pharmacometrician
Information scientist
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The systematic review and planning your meta-analysis Analysis plan

Five steps in performing a meta-analysis

Framing	
  the	
  ques/on	
  for	
  
review	
  

Iden/fying	
  the	
  relevant	
  
work	
  

Assessing	
  the	
  quality	
  of	
  
studies	
  

Summarizing	
  the	
  evidence	
  
(meta-­‐analysis)	
  

Interpre/ng	
  the	
  findings	
  

Adapted from Khan KS, Kunz R, Kleijnen J, and Antes G. Five steps to conducting a systematic review. J R Soc Med. 2003 96(3):
118-121.
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The systematic review and planning your meta-analysis Analysis plan

Key components of the analysis plan

A well formulated research question

Inclusion/exclusion criteria will rely on
Patient population
Study designs (e.g., randomized, controlled)
Treatments or interventions of interest (and comparators of interest)
Definition of the outcome of interest (e.g., overall survival; objective
response rate; WOMAC pain score)

Description of how data will be extracted (e.g., from text, tables,
figures etc.)

Description of the analysis methods
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The systematic review and planning your meta-analysis Analysis plan

Comparative Effectiveness of Treatment for HCV
Infection in Adults (Chou et al.)

Objectives
In patients with HCV infection . . .

1 What is the comparative effectiveness of antiviral treatment in
improving health outcomes?

2 What is the comparative effectiveness on the rate of sustained
virology response (SVR)?

3 What are the comparative harms associated with antiviral
treatment?

4 Have improvements in SVR been shown to reduce the rates of
adverse health outcomes (e..g, mortality)?

Chou R, Hartung D, Rahman B, Wasson N, Cottrell EB, and Fu R. (2013). Comparative Effectiveness of Antiviral Treatment for
Hepatitis C Virus Infection in Adults: A Systematic Review. Ann Intern Med. 158(2): 114-123.
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The systematic review and planning your meta-analysis Analysis plan

Comparative Effectiveness of Treatment for HCV
Infection in Adults (Chou et al.)
Populations
Adults with HCV infection who have not had previous antiviral drug
treatment

Interventions
Pegylated interferon alfa-2a with ribavirin, Pegylated interferon alfa-2b
with ribavirin, Protease inhibitors (e.g., telaprevir, boceprevir)

Outcomes
SVR rates, mortality from HCV, withdrawals due to AEs, SAEs

Studies Observational studies, systematic reviews, and clinical trials.
(Case studies and small case series excluded.)

Chou R, Hartung D, Rahman B, Wasson N, Cottrell EB, and Fu R. (2013). Comparative Effectiveness of Antiviral Treatment for
Hepatitis C Virus Infection in Adults: A Systematic Review. Ann Intern Med. 158(2): 114-123.
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The systematic review and planning your meta-analysis Analysis plan

Chemotherapy and radiotherapy for inoperable
advanced pancreatic cancer (Yip et al.)

Interventions

?

Outcome

?

Patient population
6

Objectives
To assess the effects of chemotherapy and/or radiotherapy [on overall
survival] in people with inoperable advanced (including locally
advanced and metastatic) or relapsed disease.

Types of studies
Randomised controlled trials with a single-blind or double blind design,
in which one of the intervention types (chemotherapy or radiotherapy)
was contrasted with either placebo or another type of intervention.
Both published and unpublished studies were identified and assessed
for inclusion.

Yip D, Karapetis C, Strickland A, Steer CB, Goldstein D. Chemotherapy and radiotherapy for inoperable advanced pancreatic
cancer. Cochrane Database of Systematic Reviews 2006, Issue 3.
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The systematic review and planning your meta-analysis Database construction

Performing the literature search

Rely on the people who are trained to do these searches

Define which bibliographic and abstract databases to search
Include SBAs, ClinicalStudyResults.org, etc. in addition to the usual
sources

Don’t forget to review the references in the first set of papers you
get

The ideal is to include in your analysis all trials (published and
unpublished) that fit your inclusion/exclusion criteria
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Critical appraisal of the studies is important

You get to understand the studies that are going into your
meta-analysis

For formal, ’official’ meta-analyses, studies are often scored using
the Jadad score

Total of 5 points
Assesses randomization, blinding, description of
withdrawal/dropout, and the method to generate randomization

Important to assess potential for bias (due to study exclusion and
biases within the studies)

Jadad AR, et al. Assessing the Quality of Reports of Randomized Clinical Trials: Is Blinding
Necessary? Controlled Clin Trials 1996; 17: 1-12.
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Extracting the data

Ideally establish standardized database formats to use for data
retrieval and associated processes that can make things easier for
your team

Before you extract any data, think about what you will be modeling
This comes back to your analysis plan / protocol
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Extract the relevant outcome data
Consider that you may model the response, but present the results in
terms of treatment effects.

Binary data
Response: e.g., response rates
Measures of effect: risk difference or ratio; odds ratio

Continuous data
Response: e.g., Observed means
Measure of effect: e.g., mean difference between groups, effect size

Time to event data
Response: e.g., median time to event, estimated survival rates at
specific time points
Measure of effect: e.g., hazard ratio
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Summarizing the evidence and interpreting the results

This is the focus of the remainder of the course . . .
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Traditional meta-analysis

Simple meta-analysis models
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There are at least 3 sources of variation to consider

Sampling error
Large studies typically provide more precise estimates than small
studies

Study-level characteristics
Will consider these as ways to explain differences in treatment
effects across studies through covariates (meta-regression)

Inter-study variation
The remaining, unexplained, variability in treatment effects across
studies

(Normand, Statistics in Medicine 18, 321-359. 1999)
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There are two general types of statistical model for
meta-analysis

Fixed effects models
Each study is measuring the same underlying parameter
There is no inter-study variation in treatment effect (after possibly
accounting for covariate effects)
After accounting for covariates, the only source of variation is
sampling error

Random effects models
Each study is associated with a different, but related, underlying
parameter
After accounting for covariates, there is still some unexplained
inter-study variability in addition to sampling error

(Normand, Statistics in Medicine 18, 321-359. 1999)
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Distribution of 5 hypothetical study statistics under
fixed- and random-effects models

Each study provides an estimate of the
common mean effect (θ). They differ only
in how well each study sample estimates θ.

Each study-level effect is drawn from a
“superpopulation” with mean θ. Estimates
from individual studies are centered
around these.

Fixed-effects
model

Random-effects
model

Normand, 1999
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Fixed effects meta-analysis: the traditional
approach
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Notation

Let Yij be the observed summary data in the j th arm of the i th study.
E.g., Yi1 = response rate in the experimental group and

Yi2 = response rate in the control group
E.g., Yi1 = mean ∆ baseline response in the experimental group

Yi2 = mean ∆ baseline response in the control group

Let θ̂i be the observed treatment effect in the i th study.
E.g., θ̂i = log odds ratio comparing experimental and control

groups
E.g., θ̂i = mean difference in ∆ baseline response comparing

experimental and control groups

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 66 / 372



Traditional meta-analysis Fixed-effects meta-analysis

The simple fixed effects model

Suppose there are r independent studies, each comparing the
treatment group with the control group.

θ denotes the measure of treatment difference
θ̂i its estimate from the i th study

Then the general fixed effects model is

θ̂i = θ + εi

with E (εi) = 0 and Var (εi) = ξ2
i .
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Assume we know Var (εi)

Usually we treat ξ2
i as known and equal to the estimated variance of θ̂i .

Thus,
θi ∼ N

(
θ, s2

i

)
where s2

i is the estimated variance of θ̂i and is assumed known.

I’ve snuck in an additional (and technically unnecessary) assumption here... what is it?
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MLE for fixed effects model

When ξ2
i is assumed known∗, the maximum likelihood estimate for θ is

θ̂FE =

∑r
i=1 Wi θ̂i∑r
i=1 Wi

with Wi =
1
s2

i

and Var
(
θ̂FE

)
=
(∑r

i=1 Wi
)−1

We can use this to construct confidence intervals for θ based on the
normal distribution, since the s2

i are assumed known.

The assumption has little impact on the results (Hardy and Thompson,
1996).

∗ (and we assume the errors follow a normal distribution)
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Just for fun: let’s show that this is the MLE!
Under this model, the log-likelihood for θ is

` (θ) =
r∑

i=1

−1
2

log
(

s2
i

)
− 1

2

(
θ̂i − θ

)2

s2
i

Differentiating the log-likelihood with respect to θ gives

∂` (θ)

∂θ
=

r∑
i=1

(
θ̂i − θ

)
s2

i

Setting the derivative equal to 0 and solving for θ gives

r∑
i=1

θ̂i

s2
i

= θ̂FE

r∑
i=1

1
s2

i
=⇒ θ̂FE =

∑r
i=1

θ̂i
s2

i∑r
i=1

1
s2

i

or θ̂FE =

∑r
i=1 Wi θ̂i∑r
i=1 Wi

with Wi =
1
s2

i
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Conjugate Bayesian analysis
If we use a normal prior distribution for θ, then we can show that the
posterior distribution for θ is also a normal distribution.

θi | θ ∼ N
(
θ, s2

i

)
θ ∼ N

(
µ, σ2

)
↓

θ | data ∼ N
(
µpost , σ

2
post

)
where

µpost =

∑r
i=1 Wi θ̂i + µ/σ2∑r

i=1 Wi + σ−2

σ2
post =

(
r∑

i=1

Wi + σ−2

)−1
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Conjugate Bayesian analysis

If the prior distribution is non-informative (e.g., σ2 is large relative to µ
and

∑
Wi ), then µ/σ2 ≈ 0 and σ−2 ≈ 0. Thus,

µpost ≈ θ̂FE

and
σ2

post ≈ Var
(
θ̂FE

)
We can estimate a non-conjugate Bayesian fixed-effects meta-analysis
model using a tool like WinBUGS.
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What if I want to use the mean response, not the
treatment effect?
The same approach holds – nothing changes.

If we assume that Yi ∼ N
(
θ, s2

I

)
, then

θ̂FE =

∑r
i=1 WiYi∑r

i=1 Wi
with Wi =

1
s2

i

and Var
(
θ̂FE

)
=
(∑r

i=1 Wi
)−1

If Yi is a sample mean and we assume that s2
i = σ2/ni , (i.e., the

variance is the same across all studies, but the sample size could
vary), then Wi = ni/σ

2 and

θ̂FE =

∑r
i=1 WiYi∑r

i=1 Wi
=

∑r
i=1 niYi∑r

i=1 ni

which only depends on the sample size.
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If the standard error isn’t reported directly, there are
ways to derive it: continuous data

If the treatment effect measure is a difference or a continuous
endpoint, you can use the reported

Confidence interval for the difference
Standard deviations for the treatment groups
T-statistic comparing the two groups or p-value from the test
Imputation based on the studies from which you have, or can
derive, the standard error
See Follmann et al. (1992) for more details

Follmann, Elliott, Suh and Cutler. Variance imputation for overviews of clinical trials
with continuous response. J Clin Epi. 45: 769-773. (1992)
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Example: continuous data
Suppose we have the following information from an RCT in n = 212 patients:
”At 6 months, relative to placebo, ramipril was associated with a 75-second
(95% CI, 60-89 seconds) increase in mean pain-free walking time (P < .001)”

From the CI, we can estimate the standard error for the difference as

SEdiff =
UL− LL

2× t0.975,df =210
=

89− 60
2× 1.971

= 7.36

From the p-value (assuming p = 0.001), we could estimate

SEdiff =
diff

t1−p/2,df =210
=

75
3.34

= 22.5

where tα,df is the quantile function from a t-distribution with df degrees of
freedom.

Ahimastos et al. Effect of Ramipril on Walking Times and Quality of Life Among Patients With Peripheral Artery Disease and

Intermittent Claudication. JAMA 2013: 309(5): 453-60.
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If the standard error isn’t reported directly, there are
ways to derive it: binomial data

If the treatment effect measure is a log-odds ratio
The asymptotic variance of the log-odds ratio is a function of the
number of subjects with and without events in each group

Can calculate this from reported number of subjects and the
percent of subjects with events
Var(logOR) = 1

na
+ 1

Na−na
+ 1

nb
+ 1

Nb−nb

Can also derive it if a CI or p-value for the odds ratio is reported,
using similar methods as for continuous data

Similar approaches can be used for other endpoints (e.g., risk
differences, simple proportions, etc.)
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If the standard error isn’t reported directly, there are
ways to derive it: survival data

If the treatment effect measure is a hazard ratio, you can use
A reported CI
A p-value for the log-rank test
Extracted data from the survival curve
See Parmar et al. (1998) for more details

Parmar MKB, Torri V and Stewart L. Extracting summary statistics to perform
meta-analysis of the published literature for survival endpoints. Statistics in Medicine
1998; 17: 2815-2834
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What about just using the sample sizes rather than
variances?

Suppose we have a continuous response and don’t have any
estimate of variability, can we consider using the sample size
instead?

E.g., pooling mean or median survival times across studies
E.g., pooling mean reduction in tumor size

What assumptions are we making when we do this?

Is this a reasonable thing to do even if we do have the standard
errors?
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If we only use sample sizes, the model becomes

If we use sample sizes, the general fixed effects model becomes

Yi = θ + εi

with E (εi) = 0 and Var (εi) = σ2/ni .

A major assumption is that the population variance is the same across
all studies.

Whether or not this is reasonable depends on the situation.

It’s generally better to use the reported standard errors or standard
deviations if they are reported or can be derived.
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Fixed effects meta-analysis of difference from placebo
in percent change from baseline LDL for 10 mg
Atorvastatin

Mean Weight Relative
Study Difference SE (1/SE2) Weight

981-4 −48.60 3.890 0.07 0.039
P00692 −41.00 2.828 0.12 0.074
4522IL/0008 −40.60 3.023 0.11 0.065
981-8 −37.00 1.118 0.80 0.475
981-96 −37.00 4.884 0.04 0.025
4522IL/0024 −35.00 1.769 0.32 0.190
981-25 −34.00 2.546 0.15 0.092
3 −33.80 3.833 0.07 0.040
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Fixed effects estimate for difference from placebo in
percent change from baseline LDL
For the difference from placebo in percent change from baseline LDL

θ̂FE =

∑8
i=1 Wi θ̂i∑8
i=1 Wi

= −37.20

Std.Err(θ̂FE ) =

√√√√√( 8∑
i=1

Wi

)−1

= 0.771

An approximate 95% confidence interval is

−37.20± 1.96× 0.771

or
(−38.71,−35.69)
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Forest plot showing mean difference from placebo and
summary estimate

Difference in %CFB LDL for 10 mg Atorvastatin

FE Model

−60 −50 −40 −30 −20

Mean Difference

3

981−25

4522IL/0024

981−8

981−96

4522IL/0008

P00692

981−4

−33.80 [ −41.31 , −26.29 ]

−34.00 [ −38.99 , −29.01 ]

−35.00 [ −38.47 , −31.53 ]

−37.00 [ −39.19 , −34.81 ]

−37.00 [ −46.57 , −27.43 ]

−40.60 [ −46.53 , −34.67 ]

−41.00 [ −46.54 , −35.46 ]

−48.60 [ −56.22 , −40.98 ]

−37.20 [ −38.71 , −35.69 ]

Study Mean Diff. + 95%CI
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This is a meta-analysis published in 2006 under the auspices of the
Cochrane Collaboration.

The main objective was to assess the effects of chemotherapy and/or
radiotherapy in the management of pancreatic adenocarcinoma in
patients with inoperable advanced pancreatic cancer.

We’ll fit meta-analysis and meta-regression models to the 6 month
mortality incidence from 14 trials comparing gemcitabine to
gemcitabine + chemotherapy combination

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 83 / 372

Traditional meta-analysis Fixed-effects meta-analysis

Forest plot of Month 6 Mortality Incidence
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FE meta-analysis for Cochrane Month 6 mortality
incidence data

Odds Std. error Weight Relative
Study Ratio log(OR) log(OR) (1/SE2) Weight

Wang 2002 0.12 -2.16 1.16 0.74 < 0.01
Gansauge 2002 0.13 -2.02 0.58 2.93 0.01

Colucci 2002 0.51 -0.66 0.40 6.19 0.03
Heinemann 2003 0.55 -0.59 0.29 11.67 0.06

Li 2004 0.63 -0.46 0.63 2.50 0.01
Scheithauer 2003 0.68 -0.38 0.46 4.73 0.02

Berlin 2002 0.69 -0.37 0.22 19.93 0.10
Louvet 2005 0.71 -0.34 0.24 17.82 0.09
Reni 2005 0.79 -0.24 0.45 4.89 0.02

Oettle 2005 1.03 0.03 0.17 34.12 0.17
0’Reilly 2004 1.08 0.08 0.21 21.72 0.11
Riess 2005 1.11 0.10 0.19 29.08 0.15

Herrmann 2005 1.19 0.17 0.23 19.17 0.10
Rocha Lima 2004 1.22 0.20 0.21 22.39 0.11

Odds ratios compare gemcitabine+chemo to gemcitabine alone.
Values < 1 indicate benefit of combination.
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Fixed effects odds ratio estimate for 6 Month mortality
incidence comparing G+C to G alone
For the log odds-ratio:

θ̂FE =

∑14
i=1 Wi θ̂i∑14
i=1 Wi

= −0.115

Std.Err(θ̂FE ) =

√√√√√( 14∑
i=1

Wi

)−1

= 0.071

For the odds ratio:

ÔRFE = exp(−0.115) = 0.89

95% CI: exp(−0.115± 1.96× 0.071) = (0.78,1.02)
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Forest plot of Month 6 Mortality Incidence
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The Mantel-Haenszel estimator is an alternative for
binary data

For binary data, we typically estimate the treatment effect using
the odds ratio.

The fixed-effects MA estimator of the odds ratio is a weighted
average of the log-odds ratios from the individual studies

Then exponentiating this estimate

The M-H estimator of the odds ratio can be viewed as a weighted
average of the odds ratios themselves.
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How to get the M-H estimate

The estimated odds ratio from study i is

ψ̂i =
AiDi

BiCi

Using the Mantel-Haenszel weights

wi =
BiCi

ni

the M-H estimator of the odds ratio is

ψ̂MH =

∑
AiDi/ni∑
BiCi/ni

dead alive
Group 1 Ai Bi
Group 2 Ci Di

ni = Ai + Bi + Ci + Di

Robbins et al (1986) provides formulas for several estimators of
V̂ar

(
log
(
ψ̂MH

))
.
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The MH estimator is preferable when there are no
events in one of the treatment arms

The standard FE estimator excludes that study
Because it gets a weight of 0.
An ad-hoc solution is to add 0.5 to each cell of the 2x2 tables

If no events in a study, both the M-H and the standard FE
estimator exclude that study from the analysis

The weight for that study is 0 in either case

In practice, with no 0’s, the difference between the FE and M-H
estimators is usually small

Not clear how a random-effects or meta-regression model might
be accommodated in the M-H framework (Whitehead, 2002).
Cai et al (2010, [CPR10]) propose an alternative approach using
Poisson regression
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Equivalence of stating model in terms of Y and θ

For many models, we can get the same estimates if we formulate the
model in terms of the observed data instead of the treatment effects.

For continuous data:

Yij = µi + θ · I (j = 1) + δij

for i = 1, . . . , r and j = 1 (experimental), 2 (control) where Yij is
observed mean value and Var

(
δij
)

is known.

For binary data:
logit

(
pij
)

= αi + θ · I (j = 1)

where pij is the observed response rate.
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Introduction to metafor

At this point, we’ll look at how to make a forest plot and fit a
fixed-effects meta-analysis using the metafor package in R
Viechtbauer, 2010 [Vie10]).
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Measures of heterogeneity of effect between
studies
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We should expect some heterogeneity in effect

Because meta-analyses typically pool studies that are diverse
clinically and methodologically

Could be due to differences in
Patient inclusion criteria
Background treatment
Dosing regimens
Study quality
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Measures of heterogeneity

Cochran’s Q statistic
I2

Percentage of total variance that is due to heterogeneity rather than
chance

H
τ2

Between study variance estimate from a random effects model
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Cochran’s Q statistic

Q is a weighted sum of squares of the deviations of individual
study estimates from the overall estimate

Q =
r∑

i=1

Wi

(
θ̂i − θ̂FE

)2
where Wi = 1/s2

i

If there is no heterogeneity, then Q follows a chi-squared
distribution with r-1 degrees of freedom (r = # of studies)

Frequently used to test for heterogeneity
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Tests based on Cochran’s Q statistic aren’t very useful

Problems with power can give misleading results
Low power when few studies
Excessive power when many studies

Values of Q cannot be compared across meta-analyses
Because its magnitude depends on the number of studies

Despite these problems, Q is reported more than any other
measure of heterogeneity.

Higgins and Thompson. Quantifying heterogeneity in a meta-analysis. Stat. Med
2002; 21:1539-58
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I2 tries to address these issues
A measure of degree of inconsistency across studies

Percentage of total variation that is due to heterogeneity rather than
chance

I2 = 100%× τ2

σ2 + τ2

If using the Dersimonian and Laird estimator of τ2, then
I2 = 100%× (Q − (r − 1)) /Q

No tests based on I2

A tentative rule of thumb might be
< 25% = low
25 –75% = moderate
> 75% = high

Higgins and Thompson. Quantifying heterogeneity in a meta-analysis. Stat. Med
2002; 21:1539-58
Higgins et al. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 98 / 372



Traditional meta-analysis Measures of heterogeneity

I2 is preferred to Q

It has an intuitive interpretation
Also doesnt depend on the type of outcome data or effect measure

Confidence interval easily calculated in closed-form

Can be directly compared across meta-analyses
Does not depend on the number of studies

Higgins and Thompson. Quantifying heterogeneity in a meta-analysis. Stat. Med
2002; 21:1539-58
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What about H and τ2?

H has nice statistical relationships, but not a clear intuitive
interpretation

H2 = Q/(r − 1), the relative excess in Q compared to its
expectation
H is the residual standard deviation from a radial plot (coming later)

τ2 provides a measure of extent of heterogeneity, but not a
measure of impact

Is specific to a particular treatment measure
Can’t be compared across meta-analyses

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 100 / 372



Traditional meta-analysis Measures of heterogeneity

Using the LDL data, let’s calculate Q

For the mean difference from placebo in %CFB LDL at 10 mg
Atorvastatin, Cochran’s Q statistic is

Q =
∑

Wi (Yi − µ̂FE )2 =
∑

Wi (Yi − (−37.20))2 = 15.61

Under H0: No Heterogeneity, Q ∼ χ2
7 since there are 8 studies. The

p-value for this test is 0.029.

This indicates that there is statistically significant heterogeneity in the
effect. Why do you think this might be?
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. . . and also H and I2

Following Higgins and Thompson,

H =

√
Q
df

=

√
15.61

7
= 1.493

se (log(H)) =
1
2

log(Q)− log(r − 1)√
2Q −

√
2r − 3

= 0.202

From this we could construct a 95% CI for H.

And for I2

I2 = 100× Q − (r − 1)

Q
=

H2 − 1
H2 = 55.1

There are a number of ways you can get a CI for I2 . . .
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Random effects meta-analysis
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The simple random effects model

As before, θ denotes the measure of treatment difference and θ̂i , its
estimate from the i th study.

Then the general random effects model is

θ̂i = θi + εi where θi ∼ N
(
θ, τ2

)
As before, we treat Var (εi) as known and equal to the estimated
Var

(
θ̂i

)
.
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MLE for random effects model

If τ2 were known, the maximum likelihood estimate for θ would be

θ̂RE =

∑r
i=1 W ∗

i θ̂i∑r
i=1 W ∗

i
with W ∗

i =
1

s2
i + τ2

and Var
(
θ̂RE

)
=
(∑r

i=1 W ∗
i

)−1

Typically, though, we estimate τ2 using either a Method of Moments
estimator or the Restricted Maximum Likelihood (REML) estimator and
plug in to the formula above.
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Method of Moments estimator for τ2

(DerSimonian and Laird)

Probably the most commonly used estimator (for simple random
effects meta-analysis) because it is easy to calculate.

Derived by equating the Q statistic with its expected value.

τ̂2
DL = max

0,
Q − (r − 1)∑

Wi −
∑

W 2
i∑

Wi

 , where Wi is the FE weight
(

1/s2
i

)
If Q is less than its expected value (r − 1) then we estimate the
between study variance to be 0.
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Confidence intervals for τ̂2
DL

Biggerstaff and Tweedie (1997) proposed two methods of obtaining a
confidence interval for τ2

DL:

A symmetric interval based on the large sample approximation to
Var

(
τ̂2

DL

)
.

An asymmetric interval based on a gamma distribution.
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(RE)ML estimator of τ2

The ML and REML estimators aren’t available in closed-form
But can be easily obtained using most standard software for fitting
mixed-effects models (S-PLUS, SAS, NONMEM, etc.)
In R we’ll the metafor package (Viechtbauer, 2010)

The DL and REML estimates will typically be very similar, though
there are times when they are not.

E.g., when Q < df , DL estimate is 0, but REML estimate may be
> 0.
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The Bayesian random effects meta-analysis model

For the Bayesian model, we add one more level to the hierarchical
model – prior distributions for θ and τ2.

The general Bayesian random effects model is

θ̂i | θi , s2
i ∼ N

(
θi , s2

i

)
data model

θi | θ, τ2 ∼ N
(
θ, τ2

)
study-level parameter model

θ ∼ f τ2 ∼ g prior distributions

For example, we might use θ ∼ N(µ, σ2) and τ ∼ U(0,a).
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There are 5 relevant aspects of a RE meta-analysis

1 Quantification of heterogeneity in results
2 Estimation of the mean effect
3 Estimation of study-specific effects
4 Prediction of the effect in a new study
5 Testing

Whether an effect exists in any study,
The consistency of the direction of effect
Whether an effect is predicted to exist in a new study

Objectives for a specific MA will vary

Higgins, Thompson, and Spiegelhalter. A re-evaluation of random effects
meta-analysis. JRSS-A. 2009. 172: 137-159.
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Recommendations from HTS

a) Use visual inspection of a plot, such as a forest plot, as a
preliminary inspection of heterogeneity

b) Allow for heterogeneity in a meta-analysis using covariates
and/or random effects

c) Interpret random-effects meta-analyses with due consideration of
the whole distribution of effects, ideally by presenting a
prediction interval

d) Focus statistical tests on the important questions of whether an
effect exists anywhere and whether it has a consistent direction
across studies.
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Recommend starting with a random effects
meta-analysis

We should always expect some heterogeneity in the treatment effect or
response

(Slightly) different treatment regimens, patient populations, summary
statistics, etc.

RE models naturally allow prediction of future studies, accounting for
variability above and beyond sampling error
If the estimate of τ2 is small (or 0), then the RE and FE estimates will be
similar (or identical).

So there is no loss in fitting the RE model
The CIs from a RE model will be (correctly) wider than for the FE model

In a review by Schmidt et al., they found that the nominal 95% FE CI’s
were, on average, 56% CI’s

Caveat: If the number of studies is small, no good choice!
Schmidt, Oh, and Hayes. Fixed- versus random-effects models in meta-analysis: Model
properties and an empirical comparison of differences in results. Br. J. Math. Stat. Psych. 2009.
62: 97-128.
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If the number of studies is small, you need to choose
among a few options

A random effects model is problematic because the estimate of τ2

will have poor precision

Could perform a fixed-effects analysis
Doesn’t allow generalization to wider population

Could take a Bayesian approach
Putting a moderately informative prior distribution on τ2

Probably the best option

Could report separate effects (skipping the MA all together)

Borenstein, Hedges, Higgins and Rothstein. Introduction to Meta-Analysis. 2009.
John Wiley & Sons Ltd.
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Let’s fit a random effects model to the LDL data
comparing 10 mg Atorvastatin to placebo

For this data, Yi is the mean difference from placebo in percent change
from baseline LDL in study i , i = 1, . . . ,8.

The random effects model is

Yi ∼ N(µi , s2
i ) and µi ∼ N(θ, τ2)

The forest plot of the data was shown in the FE analysis. The plot and
the estimates of Q and I2 demonstrate significant between-study
variability.

Recall, from the FE analysis Q = 15.61. With
∑

Wi = 1.684 and∑
W 2

i = 0.804 we have, τ̂DL
2 = Q−(r−1)∑

Wi−
∑

W2
i∑

Wi

= 7.13
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Random effects model for comparing 10 mg
Atorvastatin to placebo

Given τ̂DL
2 = 7.13, we can calculate θ̂RE and V̂ar

(
θ̂RE

)
.

Specifically, letting W ∗
i =

(
s2

i + τ̂DL
2
)−1

, we get

θ̂RE = −37.82 and V̂ar
(
θ̂RE

)
= 1.362

Thus, an approximate 95% CI for the mean difference from placebo is
given by

−37.92± 1.96× 1.36 = (−40.49,−35.16) .

How do these compare to the fixed effects estimates and 95% CI?
How would we calculate a prediction interval for a new study?
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Comparison of Fixed- and Random-effects estimates
and confidence intervals

Random effects estimate
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Using metafor and WinBUGS for random-effects
models

Now, we’ll look at using the metafor package and WinBUGS for fitting
random effects model.

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 117 / 372

Traditional meta-analysis Meta-regression

Understanding heterogeneity through
meta-regression
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The concept of meta-regression is a simple one

Meta-regression is simply a regression of the outcome (e.g.,
treatment effect) on study-level covariates

Goal is to describe study-to-study variability in treatment effect with
between study covariates (e.g., to describe different study
populations)

Covariates could also be on treatment arm-level covariates,
In a randomized study this shouldn’t be necessary
May have some benefit in an observational study

As we’ll see later, MBMA is an extension of meta-regression
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A simple extension of the fixed effects model

Suppose there is one covariate, xi , for study i .

Then the general fixed effects meta-regression model is

θ̂i = α + βxi + εi

with E (εi) = 0 and Var (εi) = ξ2
i as before.

We get estimates for α and β using generalized least squares.
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Similar approach to the random effects
meta-regression

The general random effects meta-regression model is

θ̂i = α + βxi + ηi + εi where ηi ∼ N
(

0, τ2
)

with E (εi) = 0 and Var (εi) = ξ2
i as before.

We will typically estimate α, β and τ2 using likelihood-based methods
(ML or REML).
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A Strategy for dealing with heterogeneity (Whitehead,
2002)

Things to consider before starting your meta-analysis (e.g., to include
in your analysis plan)

Will you test for heterogeneity or assume its there (i.e., fixed vs.
random effects models)

If testing, how will you test for heterogeneity?

What study-level covariates will be investigated?
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Don’t interpret meta-regression effects as subject-level
effects: ecological bias

Typically, group-level analyses must explore covariate effects
using characterizations of the studies at the group level

This is analogous to ecological analyses in which all individuals
(e.g., defined geographically) are assigned an average value for a
covariate (e.g., proportion of males)

Ecological bias is the difference between the association at the
individual and group levels

If we interpret the coefficients as effects at the individual level, we
run the risk of making an incorrect interpretation
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Two examples of ecological bias
Suicide Rates in 19th C Europe

In 19th century Europe, suicide rates
were higher in countries that were
more heavily Protestant.

Therefore, the social conditions of
Protestantism promote suicide
(Durkheim 1897)

So, we might infer that if you were
Protestant in 19th century Europe,
you were more likely to commit
suicide that if you werent (!?!)

The problem is that the Protestant
countries were different from the
Catholic countries in many ways
besides religion (Confounding)

Income and Nativity

Data from 1995 Current Population 
Survey from 50 states 

Ecological correlation = 0.52 

So, we might infer that individuals who are foreign
born are more likely to have a high income

But individual level correlation is -0.05

Freedman, Ecological Inference and Fallacy. Encyclopedia of the Social and Behavioral Sciences
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Causes of ecological bias
Ecological bias arises from the inability of aggregate data to
characterize within-group variability in covariates.

Confounding can lead to ecological bias
Confounding between the covariate and response
Completely controlling for confounders with AD is generally not
possible (Wakefield, 2008)

Mis-specification of the correct group-level model (aka Pure
Specification Bias or Aggregation Bias)

AD meta-regression models are rarely formulated as the average of
the IPD models

Wakefield (2008) gives a nice description of this problem and
several examples.

J. Wakefield. Ecological studies revisited. Annu.Rev.Public Health.2008. 29:75-90.
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Let’s look at the atorvastatin data more closely...

Difference from placebo vs. baseline
LDL
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Placebo response looks more promising as a covariate

The simple fixed effects meta-regression model is

θ̂i = β1 + β2 × (Placebo CFBi) + εi

The corresponding random effects model is

θ̂i = β1 + β2 × (Placebo CFBi) + ηi + εi

ηi ∼ N
(

0, τ2
)

For a categorical variable, the fixed effect model would be coded
similarly.
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We can still use the rma() function to fit the
meta-regression model
rma(yi=diff, sei=seDiff, data=ator10, mods=ldlPcfb.pbo,
method=”REML”, slab=trial)

Mixed-Effects Model (k = 8; tau2 estimator: REML)

tau2 (estimate of residual amount of heterogeneity): 6.7521 (SE = 7.7285)

tau (sqrt of the estimate of residual heterogeneity): 2.5985

Test for Residual Heterogeneity:

QE(df = 6) = 11.7588, p-val = 0.0676

Test of Moderators (coefficient(s) 2):

QM(df = 1) = 2.6447, p-val = 0.1039

Model Results:

estimate se zval pval ci.lb ci.ub

intrcpt -36.8594 1.4605 -25.2382 <.0001 -39.7219 -33.9970 ***

mods -0.7956 0.4893 -1.6263 0.1039 -1.7546 0.1633

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 128 / 372



Traditional meta-analysis Meta-regression

From that object we can derive the estimates for each
baseline value
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Be careful with meta-regression

Occasionally, we will pre-specify a meta-regression
E.g., based on prior work or publications

If it’s not pre-specified, we should probably view any significant
relationships cautiously

These are exploratory analyses
Not unlike other kinds of subgroup analyses
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Homework for meta-regression

We will revisit the LDL example to examine if there are any
covariates that might explain the heterogeneity of effect.

Starting with plots of the data (scatter and forest plots)

Then use the metafor package and WinBUGS to fit some
meta-regression models
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Miscellaneous (but important) topics
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Topics

Selection bias

Missing data

Combining different summary statistics
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Assessing selection bias

We can introduce bias if were not careful in how we select studies
for inclusion in a meta-analysis
Bias can result from

Including studies which themselves have biased estimates of
treatment effects
The “file drawer” effect (publication bias)

Sensitivity analyses can be used in the first case
Publication bias has received much more attention

Publication bias occurs when the research that is readily available
(or that you’re using for your analysis) differs in its results from the
results of all the research that has been done in an area

Funnel plots are the primary visual tool for the investigation of
publication and other bias in meta-analysis.

Rothstein, Sutton, and Borenstein. Publication Bias in Meta-Analysis. 2005. John
Wiley & Sons
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A scatter plot of the treatment effects (x) against a
measure of study size (y)

Symmetrical plot in the absence of
bias

Asymmetrical plot in the presence
of publication bias (smaller studies
showing no beneficial effects are
missing)

Smaller studies with 
no beneficial effect 

Rothstein et al. Publication Bias in Meta-Analysis. Chapter 5.
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In the absence of bias, the plot should look like a
(symmetrical) funnel

Results from small studies scatter at the bottom of the graph, with
the spread narrowing among larger studies.
If there is bias, then the funnel plot will appear asymmetrical
Publication bias is only one possible cause of funnel plot
asymmetry (Egger et al. 1997). Other causes include

Heterogeneity in results (e.g., differences in populations)
Poor methodological design/analysis of smaller studies
Random chance (e.g., more difficult to interpret with few studies)

Funnel plots should be seen as a generic means of examining
small-study effects

Rather than as a tool to diagnose specific types of bias.

Rothstein et al. Publication Bias in Meta-Analysis. Chapter 5.
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Recommendations for choice of axes for funnel plots

For studies with binary outcomes
Standard error is the best measure of study size
Log odds ratios should generally be used as the measure of
treatment effect

For studies with numerical/continuous outcomes
Standard error of treatment difference or sample size as a measure
of study size
Treatment difference as a measure of treatment effect

There are more formal means for testing for selection/publication
bias and attempting to correct for it.

Rothstein et al, Publication Bias in Meta-analysis, 2005
Whitehead, Meta-analysis of controlled clinical trials, 2002.
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Do you think these show any indication of small-study
effects / publication bias?

Atorvastatin 10 mg LDL data

Difference from placebo
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To meke these plots, use the funnel function.
For example, funnel(refit, xlab="Difference from placebo")
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Another useful plot is the radial plot

Also called a Galbraith plot
A plot of the standardized treatment effect vs. precision
Circular axis is the treatment effect axis (e.g., log hazard ratio or
log odds ratio)
Regression line through origin points to overall estimate
Approximate 95% confidence band should include ∼95% of points
(if there is a common effect)
Useful for assessing consistency amongst the studies
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Radial plots for the atorvastatin and pancreatic cancer
data sets

Atorvastatin 10 mg LDL data
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Complexities due to missing data in a meta-analysis

Missing data can impact a meta-analysis in (at least) two ways
Missing papers (e.g., due to publication bias or an incomplete
search of the literature)
Values from individual studies are based on missing data in the
individual studies

From White, Higgins & Wood, 2008
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Is missing data in an individual study really an issue?

If there is informative missingness in individual studies, then we
get biased estimates of effect in that study

If there is non-informative missingness in individual studies
We can get biased estimates of effects if missingness depends on
the “true” study-level effect
E.g., if there is higher drop-out in studies with small effects, the
studies with large effects get too much weight

This can be a particular issue when doing longitudinal
meta-analysis
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Methods for evaluating and assessing sensitivity to
missing data

How to handle this issue?
Funnel plots, etc. for publication bias (see previous caveats)
Frequently, issues with missing data within individual studies is
ignored!

Some principled ways for assessing sensitivity to missing data
mechanisms have been proposed

White, Higgins and Wood. Allowing for uncertainty due to missing
data in meta-analysis Part 1: Two-stage methods. Stat Med. 2008;
27:711-727
White, Welton, Wood et al. Allowing for uncertainty due to missing
data in meta-analysis Part 2: Hierarchical models. Stat Med. 2008;
27: 728-745

Some principled methods for handling bias when drop-out rate is
related to underlying size of treatment effect

Yuan and Little. Meta-analysis of studies with missing data.
Biometrics. 2009; 65: 487-496.
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Combining trials that report different summary
statistics

What to do if the studies report different summary statistics?
E.g., some studies report the hazard ratio (and se) and others
report only the % of subjects surviving at one year
E.g., Some studies report a responder rate (based on an underlying
continuous variable) and others report the mean and sd of the
continuous variable
E.g., some studies report the mean and others the median
response

What if they report a similar endpoint (e.g., log OR), but from
different regression models?

E.g., stratifying or adjusting for different covariates
What if they report results using a variety of different outcome
scales/instruments?

In Alzheimer’s Disease some studies measure cognitive effects
using the MMSE and others using ADAS-cog
In oncology, various quality of life scales are used

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 144 / 372



Traditional meta-analysis Miscellaneous topics in traditional meta-analysis

There are ways to handle this, but...

They rely heavily on making untestable assumptions
These assumptions can (will) affect the validity and interpretability
of the results
Combining different outcome scales/instruments

Frequently, use the standardized difference or response
Assumes that clinical important of x units is the same throughout
the scales and approximately normally distributed

Combining different summary statistics
Try to convert to a common or shared measure (see following
examples)
Often relies on completely untestable assumptions

It is always preferable to have the IPD to do the meta-analysis
This prevents these sorts of problems.
However, we rarely are in the position of having IPD outside of our
own studies.
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Examples of combining different endpoints

Combination of hazard ratios and % surviving at a time point
Treat % surviving as interval censored, then the OR approximates
the hazard ratio
Makes assumptions about censoring mechanism

Combination of responder rates and continuous summary
statistics

Approximate responder rate assuming normal (or some other)
distribution
Makes un-assessable distributional assumptions
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More examples of combining different endpoints

Combination of medians and means
Assume constant multiplier for relationship between standard errors
Depends on assumed underlying distribution (e.g., if normal,
multiplier is ∼1.25)

Combination of ordinal data when only some categories are
reported in each study

Consider modeling outcomes using ordered categorical model
(e.g., PASI analysis; Reich et al. Efficacy of biologics in the
treatment of moderate to sever psoriasis: a network meta-analysis
of controlled trials. Br J Dermatol 2012; 166(1): 179-88)
Makes relatively few assumptions
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Network meta-analysis
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(aka Mixed treatment comparisons)
(aka Multiple treatment meta-analysis)

More to come . . .

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 149 / 372

Model-based meta-analysis (MBMA)

Model-based meta-analysis
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Model-based meta-analysis (MBMA): What is it?

The distinction between traditional MA and MBMA is not a sharp
one. We’re really talking about a continuum from MA to
meta-regression to MBMA.
For our purposes let’s use the term MBMA to refer to
meta-regression using models based on pharmacometric
knowledge and principles.
These will often employ models that describe some efficacy- or
safety-related response as a nonlinear function of drug exposure
and possibly time. They may also consider other covariates such
as demographics and other baseline measurements.
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Role of MBMA: Objectives not adequately addressed
by traditional meta-analysis

Indirect statistical comparisons, i.e., comparisons of treatments
that were never administered within the same study. A more
“statistical” approach to this problem is known as network MA.
Predictions and inferences about responses that would occur at
values of independent variables that were never directly studied,
e.g., responses to doses that were never administered.
Integration of heterogeneous data and knowledge.
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Why Bayesian?

Natural extension of the types of hierarchical models we
commonly use for population modeling
Model parameter estimation and model-based inference do not
require a 2 step process
Inferences have a more natural and direct interpretation than do
those from a frequentist perspective.
Prior information about model parameters is easily integrated into
the modeling process.
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Why BUGS?

Flexibility!! The BUGS model specification language is very
flexible w.r.t. stochastic structure.

As many levels of variability as you want.
Easy to simultaneously fit multiple models even if the stochastic
structures are very different
Large selection of built-in probability distributions

On the other hand BUGS is not as flexible wrt models where the
deterministic components are complex. This is due to the lack of
control structures like if-then-else and true loops.
However the user can program custom functions in Component
Pascal, the language in which WinBUGS is written.
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Modeling sample statistics I: Sample means

Choosing a sampling distribution and adjusting for sample size
Let’s start with the simplest case: one sample mean per treatment
arm. The primary independent variables will usually describe the
treatments, e.g., the drug and the dose. Frequently the distribution of
the residual variation in the sample means may be adequately
described by a normal distribution with a variance adjusted for the
sample size.

y ∼ N
(
µ,
σ2

n

)
Possible justifications for the use of the normal distribution include:

The underlying individual data is normally distributed, or
An argument that the mean is asymptotically normal (central limit
theorem).
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Modeling sample statistics I: Sample means

Choosing a sampling distribution and adjusting for sample size
One variation of this approach is to use the reported standard error of
the mean instead of estimating it:

y ∼ N
(
µ, se2

)
This has the potential advantage of allowing for inter-trial (and
inter-arm) differences in variability.
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Modeling sample statistics I: Sample means

Choosing a sampling distribution and adjusting for sample size
Alternative distributions for the sample means may be considered,
e.g., log-normal or t, but rigorous treatment of sample size adjustment
and justification based on the distribution of individual data are elusive.
For example the mean of log-normally distributed individual data is not
log-normally distributed. Also if you log-transform the sample means, it
is not clear what the appropriate sample size adjustment in the
variance should be.
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Modeling sample statistics I: Sample means

Original scale vs CFB or PCFB
Clinical measurements are often reported in terms of change from
baseline (CFB) or percent change from baseline (PCFB). When
modeling endpoint data (as opposed to longitudinal data) the choice of
whether to use the measurement on the original scale or baseline
adjusted depends on what summary statistics are available and the
intended use of the model. If CFB (or PCFB) is commonly used for the
primary statistical analysis of clinical trials for the indication of interest,
then modeling of CPB (or PCFB) is a logical choice and will probably
appeal to the relevant decision-makers. In some cases predictions on
both the original and baseline adjusted scales may be desired, so it
may be necessary to construct models for both. Either or both models
may include the mean baseline response as a covariate.
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Modeling sample statistics I: Sample means

Original scale vs CFB or PCFB (cont.)
With longitudinal data that includes a baseline measurement a
reasonable approach is to model the entire time course on the original
scale. CFB can then be predicted by calculating the difference
between the predicted values for a given time and that for baseline.
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Modeling sample statistics I: Sample means

Other covariates
In addition to describing the effects of treatment we may want to
account for other differences in results among trials and treatment
arms. There may be summary statistics for covariates describing the
patients in a treatment arm, e.g., mean age, mean weight, fraction of
females, fraction taking a particular concomitant medication, etc. In
addition there may be covariates general to a whole trial, e.g.,
geographic location, phase of development, etc.
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Modeling sample statistics I: Sample means

Unexplained inter-trial variation
Finally we may want to quantify unexplained variation among trials via
random effects, i.e., inter-trial variation. Since there is only one
observation per treatment arm, inter-arm variation and other sources
of residual variation are not separately estimable.
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Modeling sample statistics I: Sample means

Interpretation of covariates and their effects
Because patient-specific covariates are in the form of summary
statistics, their values cover a narrower range than the individual
values. Consequently they are less informative about the their effects
unless the data have been stratified based on them, e.g., separate
means for males and females, or for young and elderly.

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 162 / 372
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Example: Dose response model based on sample
means
MBMA to assess dose-response of gemcabene-statin combinations
relative to marketed treatments

The scenario
This example revisits the MBMA of LDL concentrations described by
Mandema et al [MHW+05]. Differences from the original analysis
include use of a Bayesian method, and the gemcabene data is
simulated. The remaining data were extracted from public sources.
The primary objective of the analysis is to assess the benefit of
gemcabene add-on therapy relative to marketed treatments including
ezetimibe-statin combinations.
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Statin-gemcabene example MBMA of gemcabene-statin combinations

The data

The data
Sample means for LDL % change from baseline at study endpoint
from published sources

25 studies
154 treatment arms
Data reflects results from 9751 patients
4–16 week treatment duration

Available covariates: baseline LDL, treatment duration.
Objective

Construct a model for LDL % change from baseline as a function of
drug, daily dose and possibly other covariates.

Data file: statinGemcabene/ldlData.csv
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Statin monotherapy
Atorvastatin

dose (mg/d)

LD
L 

ch
an

ge
 fr

om
 b

as
el

in
e

−60

−40

−20

0

0 20 40 60 80

●

●

● ●

157

17

17 16

3

●

●

●

29

13
10

4522IL/0008

0 20 40 60 80

●

●

132

127

4522IL/0024

●
127

4522IL/0025

●
139

4522IL/0026

●
●

●
●

4339 42 41

4522IL/0033

●

●

●
●

51

55
53

52

981−25

−60

−40

−20

0
●

●
●

● ●
●

●

12

1113
1110 11

11

981−4
−60

−40

−20

0 ●

●

133

707

981−8

0 20 40 60 80

●
●

● ●

73
51 61 10

981−86

●

●
●

● ●
●

9

1110
10 13

12

981−96

0 20 40 60 80

●

●
● ●

●

60

6060 66
62

P00692

Lovastatin

dose (mg/d)

LD
L 

ch
an

ge
 fr

om
 b

as
el

in
e

−50

−40

−30

−20

−10

0

0 20 40 60 80

●

●

133

191

981−8

●
●

●

16 16

11

981−86

●

●

17

18

C96−411

0 20 40 60 80

−50

−40

−30

−20

−10

0●

●

●
●

64

73
74

73

P00679

Pravastatin

dose (mg/d)

LD
L 

ch
an

ge
 fr

om
 b

as
el

in
e

−30

−20

−10

0

0 10 20 30 40

●

116

4522IL/0028

●

●

●

14

41

25

981−86

−30

−20

−10

0●

●
●

●

65

66
69

70

P00691

Rosuvastatin

dose (mg/d)

LD
L 

ch
an

ge
 fr

om
 b

as
el

in
e

−60

−40

−20

0

0 20 40 60 80

●

●
●●

●
●

● ●

29

13
1317

16
13 34 31

4522IL/0008
●

●●

132

128129

4522IL/0024

0 20 40 60 80

●
●

127
128

4522IL/0025

●
●

135132

4522IL/0026

●
●

119
111

4522IL/0027

−60

−40

−20

0

●

●

121
115

4522IL/0028

−60

−40

−20

0

●
●

●
●

●

384538 44 42

4522IL/0033

Simvastatin

dose (mg/d)

LD
L 

ch
an

ge
 fr

om
 b

as
el

in
e

−40

−30

−20

−10

0

0 20 40 60 80

●

120

4522IL/0028

●

●

●

70

49
61

981−86

−40

−30

−20

−10

0●

●

●
●

●

70

70

61 65

67

P00680

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 165 / 372

Statin-gemcabene example MBMA of gemcabene-statin combinations

Non-statin monotherapy
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Non-statin / statin combinations

statin dose response with and without
ezetimibe 10 mg/d
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Proposed model

Emax models with interaction for mean LDL % change from
baseline in the i th treatment arm of the j th trial:

Eij ∼ N
(

E ij ,
σ2

nij

)
E ij = E0,j − Estatin,ij − Enon-statin,ij + 0.01γijEstatin,ijEnon-statin,ij

Estatin,ij =
Emax,statinDnstatin

statin,ij

EDnstatin
50,statin,ij + Dnstatin

statin,ij

Enon-statin,ij =
Emax,non-statin,ijD

nnon-statin,ij
non-statin,ij

EDnnon-statin,ij
50,non-statin,ij + Dnnon-statin,ij

non-statin,ij

E0,j ∼ N
(

E0, ω
2
E0

)
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Proposed model

Emax models with interaction for mean LDL % change from
baseline in the i th treatment arm of the j th trial:

ED50,statin,ij =


ED50,atorvastatin, statinij = atorvastatin
ED50,rosuvastatin, statinij = rosuvastatin
ED50,simvastatin, statinij = simvastatin
ED50,lovastatin, statinij = lovastatin
ED50,pravastatin, statinij = pravastatin

Emax,non-statin,ij =

{
Emax,ezetimibe, non-statinij = ezetimibe
Emax,gemcabene, non-statinij = gemcabene

ED50,non-statin,ij =

{
ED50,ezetimibe, non-statinij = ezetimibe
ED50,gemcabene, non-statinij = gemcabene

nnon-statin,ij =

{
nezetimibe, non-statinij = ezetimibe
ngemcabene, non-statinij = gemcabene

γij =

{
γezetimibe, non-statinij = ezetimibe
γgemcabene, non-statinij = gemcabene
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Proposed model

Prior distributions

E0 ∼ N
(
0,106)

log (ED50,statin) ∼ N
(
0,106)

Emax,non-statin ∼ U (0,100)

nezetimibe = 1
log (γnon-statin) ∼ N

(
0,106)

1
ω2

E0

∼ gamma (0.01,0.01)

Emax,statin ∼ U (0,100)

nstatin ∼ U (0.1,10)

log (ED50,non-statin) ∼ N
(
0,106)

ngemcabene ∼ U (0.1,10)

1
σ2 ∼ gamma (0.01,0.01)
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Re-parametrization to improve MCMC convergence

CLINICAL PHARMA COLOGY & THERAPEUTICS 

VOLUME 63, NUMBER 2 

Ameticun Society fw Clinical Pbumcology mad Thempet& 19 9 

PII- PII- 
DOUBLE BLIND, PLACEBO-CONTROLLED, RANDOMIZED, 

CROSSOVER, PHARMACODYNAMIC STUDY OF 10 AND 20 MCI 

DOSES OF ZALEPLON AND ZOLPIDEM. DR Drover, MD, 

HJM Lemmens, MD, S Naidu, MS*, WH Cevallos, PhD*, S Troy, MS*, 

PI’ Martin, MD*, DR Stanski, MD, Aries. Dept., Stanford Univ., 

Stanford, CA and Wyeth-Ayerst Res., Radnor, PA. 

Zaleplon is an investigational non-benzodiazepine for the treatment 

of insomnia. We compared the sedative effects of zaleplon 10 and 20 

mg and zolpidem 10 and 20 mg with placebo in 5 men and 5 women, 

aged 22 to 31 yrs. Sedation was assessed by a single observer using 

a 12 characteristic visual analogue scale (VAS), word list and digit- 

symbol-substitution-test. Zaleplon and zolpidem produced more 

sedation than placebo and zolpidem more than zaleplon. In general, 

the zaleplon groups returned to baseline by 5 hours compared to 8 

hours for zolpidem (p<O.O5). The following is a representative figure 

of one of the 12VAS. 

PII- 

PHARMACOMETRIC MODELLING OF RISK FACTORS FOR 

CIPROFLOXACIN RESISTANCE (Cip-R) IN P AERUGZNOSA (Pa). 

Judith M. Hyatt*, Alan Forrest*, Steve Feurstein* &Jerome J. Schentag. 

SUNY-Buffalo Clinical PKs Laboratory & School of Pharmacy, Millard 

Fillmore Health Systems, Buffalo, NY 

All patients (pts) at our hospital, cultured (any site) l/93 + 12/96 

with an initially Cip-sensitive Pa, were identified (computerized 

database). Factors predictive of emergence of Cip-R (same site, 

within 21 d of the initial culture), were determined using classifica- 

tion and regression tree analysis, logistic and non-linear regression. 

Factors considered included: length of stay prior to initial Pa culture 

(PLOS), isolation site, initial MIC, antibiotic AUC,, total AUIC 

(AUC&IC summed for all active drugs), antibiotic(s) used as 

dichotomous variables (yes/no present) and use of mono- or combi- 

nation therapy. 

Of 635 pts, 42 (6%) subsequently had Cip-R Pa isolated. Four 

significantly-differing patient groups (G) were identified: Gl, Pa 

isolates from all sites other than the respiratory tract (RT), treat- 

ed with any drugs; G2, RT isolates treated with drugs other than 

Cip; G3, RT isolates treated with Cip at AU101 10; and G4, RT 

isolates treated with Cip at AUIC <llO. The data were well fit by 

the logistic function. The observed % resistant (tabulated values), 

was a continuous function of PLOS, in all four groups: 

PHARMACOMETRIC MODELLING OF RISK FACTORS FOR 

IMIPENEM RESISTANCE (Imi-R) IN II AERUGINOSA (Pa). 

Judith M. Hyatt*, Alan Forrest*, Steve Feurstein* & Jerome J. 

Schentag. SUNY-Buffalo Clinical Pharmacokinetics Laboratory & 

School of Pharmacy, Millard Fillmore Health Systems, Buffalo, NY. 

All patients (pts) at our hospital, cultured (any site) l/93 -+ 12/96 

with an initially Itn-sensitive Pa, were identified (computerized 

database). Factors predictive of emergence of Imi-R (same site, with 

in 21 d of the initial culture), were determined using classification 

and regression tree analysis, logistic and non-linear regression. 

Factors considered included: length of stay prior to initial Pa culture 

(PLOS), isolation site, initial MIC, antibiotic AUC,, total AUIC 

(AUC,/MIC, summed for all active drugs), antibiotics-used as 

dichotomous variables (yes/no present) and use of mono- or combi- 

nation therapy. 

Of 631 pts, 26 (4%) subsequently had Imi-R Pa isolated. The data 

were well fit by the logistic function. Three significantly-differing pt 

groups (G) were identified. Gl was Pa isolates from all sites other 

than the respiratory tract (RT) which were treated with any drug; 

Imi-R emerged in 5 of 430 (1%) isolates. Gl pts exposed to Imi had 

Imi-R emerge in 1 of 12 (8%) isolates. RT isolates treated with drugs 

other than Imi (G2) had Imi-R emerge in 16 of 196 (8%) isolates and 

% R was a continuous function of PLOS. For example, at PLOS 12 

wk, the observed % emergence of Imi-R was 1% and, at PLOS >2 

mo, was 38%. G3 was RT isolates treated with Imi, in which Imi-R 

developed in 5 of 6 (83%) cases. 

Of the 18 pts exposed to Imi, Imi-R emerged in 6 (33%) cases. RT 

isolates exposed to Imi had significantly higher Imi-R emergence 

rates than RT isolates exposed to other agents (83% vs 8%). A high- 

er rate of Imi-R was also seen in Pa isolated from sites other than the 

RT; where 8% of strains emerged resistant following Imi exposure, 

ltersus 1% Im-R emergence in isolates exposed to other agents. No 

factors, we have considered to date, including AUIC or combination 

of Imi with other drugs, seem to lessen the probability of In&R. 

PII- 

‘TRUNCATED SIGMOID E,, MODELS”: A REP ARAMETERIZA- 

TION OF THE SIGMOID E,, MODEL FOR USE WITH 

TRUNCATED PK/PD DATA. WJ Bachman PhD and WR Gillespie 

PhD, GloboMax LLC, Hanover, MD. 

The parameters of the sigmoid E,,, model are poorly estimated 

when the range of PK/PD data available is limited to <0.95E,, 

[Dutta et al. J Pharm Sci 85:232 (1996)]. The following reparame- 

terized form of the sigmoid E,, model has improved parameter esti- 

mation properties: 

E=E 
0 

+ (P’ +w* --q)C7 
cey i- pcy 

Gl G2 G3 G4 

# of isolates 425 102 74 34 

PLOS<2 wk. 2% 2% 4% 18% 

PLOS22 mo. 19% 30% 33% 67% 

RT isolates, treated with inadequate Cip (G4) had the highest % Cip- 

R. RT isolates exposed to Cip at AUIC >llO (G3) had similar % Cip- 

R to RT isolates exposed to other agents (G2). This suggests that 

application of PK/PD principles to dosing of Cip could reduce the 

risk of Cip-R to that seen for isolates exposed to other agents. 

where E is the effect measure and C is a measure of drug exposure 

(e.g., concentration or dose). The parameter E* is the estimated effect 

resulting from C*, y is the usual “sigmoidicity” parameter, and E. is 

the baseline effect. p is a measure of the degree to which the function 

deviates from linearity in Cy. One approach to applying this parame- 

terization is to fix C* (or E*) at a value and estimate the remaining 

parameters E,, E* (or C*), fl and y by nonlinear regression. The 

properties of this approach are evaluated by application to simulated 

PIUPD data that is truncated at various fractions of E,,. When C* 

(or E*) is chosen within the range of the observed data, then the para- 

meters E* (or C*) and p are more precisely and accurately estimated 

than ECso and E,, of the standard parameterization. 

Model parameterization implemented
in statinGemcabeneTruncEmax.txt
CP&T 63:199 (1998) [BG98]
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Proposed model
Advanced topic: Re-parametrization to improve MCMC convergence

Alternative prior distributions based on the use of truncated Emax
parametrization [BG98]:

Emax,statin =

(
1

bnstatin
atorvastatin

+ 1
)

E∗
statin

ED50,statin,ij =
D∗

statin

bstatin,ij
bstatin,ij = πstatin,ijbatorvastatin

πstatin,ij =


1, statinij = atorvastatin
πrosuvastatin, statinij = rosuvastatin
πsimvastatin, statinij = simvastatin
πlovastatin, statinij = lovastatin
πpravastatin, statinij = pravastatin

D∗
statin = 80 E∗

statin ∼ U (0,100)

batorvastatin ∼ U (0,1000) πstatin ∼ N
(
0,106)
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Proposed model
Advanced topic: Re-parametrization to improve MCMC convergence (cont.)

Alternative prior distributions based on the use of truncated Emax
parametrization [BG98]:

Emax,ezetimibe =

(
1

bezetimibe
+ 1
)

E∗
ezetimibe

ED50,ezetimibe =
D∗

ezetimibe

bezetimibe

D∗
ezetimibe = 40 E∗

ezetimibe ∼ U (0,100) bezetimibe ∼ U (0,1000)

Emax,gemcabene =

(
1

bngemcabene

gemcabene

+ 1

)
E∗

gemcabene

ED50,gemcabene =
D∗

gemcabene

bgemcabene

D∗
gemcabene = 900 E∗

gemcabene ∼ U (0,100) bgemcabene ∼ U (0,1000)
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Hands-on Problem 3: Statin dose-response MBMA of LDL concentrations

Hands-on Problem 3: Dose response model based on
sample means
MBMA to assess dose-response of atorvastatin and rosuvastatin

The scenario
This exercise explores the effects of two statins on LDL concentration
% change from baseline. The data were extracted from public sources.
The primary objective of the analysis is to compare the dose-response
of atorvastatin and rosuvastatin.
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Hands-on Problem 3: Statin dose-response MBMA of LDL concentrations

The data

The data
Sample means for LDL % change from baseline at study endpoint
from published sources

12 studies
56 treatment arms
Data reflects results from 3721 patients
6–16 week treatment duration

Available covariates: baseline LDL, treatment duration.
Exercise

Construct a model for LDL % change from baseline as a function of
drug, daily dose and possibly other covariates.
Try both standard and truncated Emax parametrizations.

Data file: statinHandsOn/ldlData.csv
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Hands-on Problem 3: Statin dose-response MBMA of LDL concentrations

LDL % change from baseline following atorvastatin
and rosuvastatin
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Hands-on Problem 3: Statin dose-response MBMA of LDL concentrations

Proposed model

Emax models with interaction for mean LDL % change from
baseline in the i th treatment arm of the j th trial:

Eij ∼ N
(

E ij ,
σ2

nij

)
E ij = E0,j − Estatin,ij

Estatin,ij =
Emax,statinDnstatin

statin,ij

EDnstatin
50,statin,ij + Dnstatin

statin,ij

E0,j ∼ N
(

E0, ω
2
E0

)
ED50,statin,ij =

{
ED50,atorvastatin, statinij = atorvastatin
ED50,rosuvastatin, statinij = rosuvastatin
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Hands-on Problem 3: Statin dose-response MBMA of LDL concentrations

Proposed model

Proposed prior distributions

E0 ∼ N
(
0,106)

Emax,statin ∼ U (0,100)

log (ED50,statin) ∼ N
(
0,106)

nstatin ∼ U (0.1,10)

1
ω2

E0

∼ gamma (0.01,0.01)

1
σ2 ∼ gamma (0.01,0.01)
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Modeling sample statistics II Modeling sample standard deviations

Modeling sample statistics II: Sample standard
deviations

Why?
If the intended application of the model is adequately supported
by prediction and comparison of population mean responses for
different treatments then analysis of sample mean data is
probably sufficient.

Including analysis of sample standard deviations will usually
provide only marginal benefit—mainly by accounting for inter-trial
differences in variability and thereby more appropriately weighting
the studies.

On the other hand some applications, such as trial design and
simulation, benefit significantly from better estimates of variability
and the degree to which that variability varies from trial to trial. In
such cases it is worth the additional effort to model the sample
standard deviations along with the means.
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Modeling sample statistics II Modeling sample standard deviations

Modeling sample statistics II: Sample standard
deviations

How?
If the underlying individual data is normally distributed with mean µ
and standard deviation σ then (n−1)s2

σ2 ∼ χ2 (n − 1) where s is the
sample standard deviation and n is the sample size. Equivalently,

s2 ∼ gamma
(

n − 1
2

,
n − 1
2σ2

)
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Statin-gemcabene example MBMA of gemcabene-statin combinations

Example: MBMA of gemcabene-statin combinations

The statin-gemcabene example is extended to include modeling of the
sample standard deviations. This is demonstrated using the data and
code provided in the following folders:

statinGemcabeneSDTruncEmax: Same residual standard deviation
for all trials
statinGemcabeneSDTruncEmax2: Inter-trial variation in the residual
standard deviation
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Hands-on Problem 3b: Statin dose-response MBMA of LDL concentrations

Hands-on Problem 3b: Dose response model based
on sample means and standard deviations
Extend the statin dose-response model you implemented in hands-on
problem 3 to use the reported standard error data. Do this in 3 ways:

1 Directly use the observed standard error in the likelihood for the
sample mean (ala statinGemcabeneTruncEmax2)

2 Model the sample mean and standard deviation data assuming
the same residual standard deviation for all trials (ala
statinGemcabeneSDTruncEmax).

3 Model the sample mean and standard deviation data allowing for
inter-trial variation in the residual standard deviation (ala
statinGemcabeneSDTruncEmax2).

Compare the results of the 3 models.
Is it appropriate to compare the model 1 results with those of
models 2 and 3 using DIC or mean deviance? Why or why not?
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Hands-on Problem 3b: Statin dose-response Recent example: Comparative efficacy of DPP-4 inhibitors

Recent example: Comparative efficacy of DPP-4
inhibitors

BMJ Open 2013;3: e001844
(http://bmjopen.bmj.com/content/3/3/e001844) [GRP+13]
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Population simulations

Population simulations

Here I use the term “population simulation” to refer to simulation of
a population estimand, e.g., population mean, population
percentile, probability of an event, etc.
This is in contrast to simulation of clinical trial results or individual
observations.
The idea is to use simulations to characterize the probable range,
e.g., 90 or 95% credible interval, for the population estimand for
each treatment of interest.
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Population simulations Simulations with models based on summary data

Simulations with models based on analysis of only
summary data

Models based on analysis of summary statistics alone are not
ideally suited for simulation of individual patient data.
They are appropriate for simulation of:

The summary statistic on which they are based and
A population estimand for which the summary statistic is an
estimator.

For example a sample mean is an estimator of the population mean,
and the fraction of patients that experience a particular outcome is an
estimator of the probability of that outcome.
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Population simulations Simulations with models based on summary data

Simulations with models based on analysis of only
summary data

Suppose we have a model of the following form describing the
sample mean for a clinical measurement in the i th treatment arm:

y i ∼ N
(
µi ,

σ2

ni

)
µi = f (Di ,drugi , θ)

For now let’s assume no inter-trial variation in the model
parameters (θ).

For this case the population mean response to dose Di of drug
drugi is just µi .
Given MCMC generated posterior samples of θ we can generate
posterior predictions of µ for the dose of any drug in the model.
The 50th, 5th and 95th percentiles of those predictions estimates the
median and 90% credible interval for the population mean.

This approach is readily generalized to distributions other than
normal, most easily in cases when the expected value for that
distribution is an analytic function of the parameters.

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 186 / 372



Population simulations Example: Population simulations

Example: Population simulations
Simulations to assess dose-response of gemcabene-statin
combinations relative to marketed treatments

This example uses the MCMC samples generated in
statin-gemcabene modeling example to simulate the posterior
distribution of population mean LDL % change from baseline
predicted to result from various doses of statins, ezetimibe,
gemcabene and combinations of statins and non-statins.
The primary objective of the simulations is to assess the benefit of
gemcabene add-on therapy relative marketed treatments
including ezetimibe-statin combinations.
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Population simulations Example: Population simulations

Example: Population simulations
Simulation specifications

Statin doses: c(0:4, seq(5, 80, by = 5)) mg/d
Ezetimibe doses: c(0, 0.25, 0.5, 1, 2.5, 5, 10, 20, 30, 40) mg/d
Gemcabene doses: seq(0, 900, by = 50) mg/d
Number of posterior samples: 1000 per dose combination
Create plots showing posterior median and 90% credible intervals
for the population mean LDL % change from baseline versus dose

Statin monotherapy
Non-statin monotherapy
Atorvastatin dose-response with and without ezetimibe 10 mg/d
Atorvastatin dose-response with and without gemcabene 900 mg/d
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Population simulations Simulations with models that include inter-individual variation

Simulations with models that include inter-individual variation
Simulations to describe the probable range of a population estimand

Suppose we want to describe the probable range of a population
estimand, but we have a model constructed by analysis of
individual data. Usually such a model will include inter-individual
variation in some parameters.
For simplicity let’s assume a model of the following form for an
observation on the i th occasion in the j th individual:

yij ∼ N
(

ŷij , σ
2
)

ŷij = f
(

tij ,Dj ,drugj , θj

)
θj ∼ N

(
θ̂,Ω

)
Again we assume no inter-trial variation.
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Population simulations Simulations with models that include inter-individual variation

Simulations with models that include inter-individual variation
Simulations to describe the probable range of a population estimand

In most cases we do not have a closed-form solution to the
function for the population estimand, so we approximate it via
simulation:

For each MCMC generated posterior sample of the model
parameters and set of independent variable values, we simulate
many replicates of the predicted response at a desired time tij and
treatment (drugij and Dij ).
We can then readily calculate simulated values for the desired
population estimand using the appropriate sample statistic, e.g., the
sample mean to estimate the population mean, the sample
percentile to estimate the corresponding population percentile, etc.
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Population simulations Simulations with models that include inter-individual variation

Simulations with models that include inter-individual variation
Simulations to describe the probable range of a population estimand

for m = 1 to npost do
sample θ̂(m), Ω(m) and σ(m) from the posterior distribution
for j = 1 to npop do

sample θ(m)
j ∼ N

(
θ̂(m),Ω(m)

)
calculate ŷ (m)

ij = f
(

tij ,Dij ,drugij , θ
(m)
j

)
sample y (m)

ij ∼ N
(

ŷ (m)
ij , σ2

(m)

)
end for
calculate the appropriate sample statistic for the desired estimate,
e.g., the sample mean for the population mean:
y (m)

i = 1
npop

∑npop
j=1 ŷ (m)

ij . In the case of the population mean we don’t
need to sample from the residual variation because E

(
yij
)

= ŷij .
end for
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Population simulations Simulations with models that include inter-individual variation

Simulations with models that include inter-individual variation
Simulations to describe the probable range of a population estimand

For such models it has been suggested that another approach to
calculating a population mean is to substitute the population mean
of the patient-specific parameters into the function for predicting a
new response.
I would argue that estimand is better described as a typical
response for an individual patient (or a response for a typical
patient).
The posterior distribution of that estimand might be called the
posterior distribution of a typical response.
However that distribution is not useful for inferences except in
cases where it is a good approximation to the distribution of the
population mean response, e.g., linear models.
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Population simulations Simulations to describe the distribution of individual observations

Simulations to describe the distribution of individual observations

How might we use simulations to describe or make inferences
about interindividual variation?
Let’s look at 3 different types of simulations that communicate
somewhat different things about the distribution of individual
observations.
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Population simulations Simulations to describe the distribution of individual observations

Simulations to describe the distribution of individual observations
Posterior predictive distribution of individual observations

Simulations from the posterior predictive distribution of individual
observations are appropriate for inferences regarding the
probable range of observations in an individual.
That distribution reflects all sources of variability, e.g.,
inter-individual and residual, and uncertainty in the model
parameters. As a result it is more disperse that one would predict
for the distribution of observations in a typical population.
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Population simulations Simulations to describe the distribution of individual observations

Simulations to describe the distribution of individual observations
Posterior predictive distribution of individual observations

Samples from the posterior predictive distribution may be generated
according to:

for j = 1 to npost do
sample θ̂(j), Ω(j) and σ(j) from the posterior distribution

sample θ(j)
j ∼ N

(
θ̂(j),Ω(j)

)
calculate ŷ (j)

ij = f
(

tij ,Dij ,drugij , θ
(j)
j

)
sample y (j)

ij ∼ N
(

ŷ (j)
ij , σ

2
(j)

)
end for

Note that nested loops are not required.
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Population simulations Simulations to describe the distribution of individual observations

Simulations to describe the distribution of individual observations
Distribution of individual observations for a “typical” population

The notion here is to simulate a “typical” distribution of
observations in order to communicate the scale of variability in a
“typical” population.
This distribution is generally not suitable for formal Bayesian
statistical inference but it may be useful as a communication
device.
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Population simulations Simulations to describe the distribution of individual observations

Simulations to describe the distribution of individual observations
Distribution of individual observations for a “typical” population

Samples from the distribution of individual observations for a “typical”
population may be generated according to:

calculate posterior means θ = 1
npost

∑npost
m=1 θ̂

(m) and

Ω = 1
npost

∑npost
m=1 Ω(m) (or medians) of the posterior samples of the

model parameters.
for j = 1 to npop do

sample θj ∼ N
(
θ,Ω

)
calculate ŷij = f

(
tij ,Dij ,drugij , θj

)
sample yij ∼ N

(
ŷij , σ

2)
end for

This is a Bayesian analog to the distribution used in what is often
called “visual predictive checks” based on point estimation methods.
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Population simulations Simulations to describe the distribution of individual observations

Simulations to describe the distribution of individual observations
Posterior distributions of the population median (or mean) and tail
percentiles (e.g., 5th and 95th)

Simulations to describe the posterior distribution of tail percentiles
provide a more statistically formal approach for communicating the
extent of variability.
While you’re at it, you may as well also simulate the population
median or mean.
The medians and credible intervals for these population
estimands may be plotted together to depict both central tendency
and variability of the observations in the population.
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Population simulations Simulations to describe the distribution of individual observations

Simulations to describe the distribution of individual observations
Posterior distributions of the population median (or mean) and tail
percentiles (e.g., 5th and 95th)

The simulation algorithm is the same as that described for population
mean simulations except that the final step is calculation of a sample
percentile instead of a mean, i.e.,

for m = 1 to npost do
sample θ̂(m) and Ω(m) from the posterior distribution
for j = 1 to npop do

sample θ(m)
j ∼ N

(
θ̂(m),Ω(m)

)
calculate ŷ (m)

ij = f
(

tij ,Dij ,drugij , θ
(m)
j

)
sample y (m)

ij ∼ N
(

ŷ (m)
ij , σ2

(m)

)
end for
calculate the appropriate sample percentiles of y (m)

ij
end for
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Population simulations Simulations to describe the distribution of individual observations

Example: Population mean factor Xa inhibition

Use the MCMC samples from the popPK and popPD models for a
hypothetical factor Xa inhibitor for the following:

Simulate posterior median and 90% CI’s for population mean
factor Xa inhibition vs concentration (overall, not stratified by dose)
Simulate posterior median and 90% CI’s for population mean
factor Xa inhibition vs time by dose
Single doses: placebo, 1.25, 5, 10, 15, 20, 30, 40, 60 and 80 mg
ME-2 concentration range = [0, 1600].
Time range: [0, 24] hours.
Summarize as plots showing posterior medians and 90% credible
intervals (by time or concentration as appropriate).
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Population simulations Simulations to describe the distribution of individual observations

Population PK-PD modeling of time-matched biomarker and PK
data

Phase 1 single dose study in healthy volunteers
Parallel dose-escalation design
8 subjects per dose arm
Single doses of ME-2

Placebo, 1.25, 5, 10, 15, 20, 30, 40, 60 and 80 mg

PK: plasma concentrations of parent drug
Biomarker: ex vivo inhibition of factor Xa activity in plasma

PK and biomarker measured at 0, 0.083, 0.167, 0.25, 0.5, 0.75, 1,
1.5, 2, 3, 4, 6, 8, 12, 18 and 24 hours after dose.

Modeling objective:
Apply a direct action PK/PD model to the time-matched factor Xa
inhibition and ME-2 plasma concentrations.
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Population simulations Simulations to describe the distribution of individual observations

EDA: PK and biomarker data
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Population simulations Simulations to describe the distribution of individual observations

EDA: Relationship between biomarker and PK data

ME−2 plasma concentration (ng/mL)

fa
ct

or
 X

a 
in

hi
bi

tio
n 

(%
)

0
50

100

−0.4 0.2

0 mg

05 15 25

1.25 mg

0 4080

5 mg

0100250

10 mg
0100 300

15 mg

0 200 500

20 mg

0 400

30 mg

0 400 1000

0
50
100

40 mg

0
50

100

0 500

60 mg

0 1000

80 mg

ME−2 plasma concentration (ng/mL)

fa
ct

or
 X

a 
in

hi
bi

tio
n 

(%
)

0

50

100

0 500 1000 1500

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●●

●

●

●

●

●●●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

● ●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ● ●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ● ●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 203 / 372

Population simulations Simulations to describe the distribution of individual observations

PD model description

Sigmoid Emax model relating % inhibition of factor Xa activity to
ME-2 plasma concentration on the i th occasion in the j th subject:

Eij ∼ N
(

Êij , σ
2
)

Êij =
Emaxcγij

ECγ
50,j + cγij

log
(
EC50,j

)
∼ N

(
log
(

ÊC50

)
, ω2

EC50

)
Some possible weakly informative prior distributions:

Emax ∼ U (0,100) log
(

ÊC50

)
∼ N

(
0,106

)
γ ∼ U (0,10)

ωEC50 ∼ U
(
0,105) σ ∼ U (0,1000)
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Population simulations Simulations to describe the distribution of individual observations

Population PK

A phase IIa PoC trial of ME-2 for prevention of post-op VTEs has
just been completed.
One of your tasks is to do a pop PK analysis based on the
accumulated ME-2 PK data (Phase I SD (described above),
Phase I MD & Phase IIa)
Phase 1 multiple dose study in healthy volunteers

Parallel dose-escalation design
8 subjects per dose arm
Placebo or ME-2 5, 10, 20, 40 or 80 mg bid (q12h) x 7 days
PK: plasma concentrations of parent drug

PK measured at 0, 0.083, 0.167, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8,
12, 12.1, 12.2, 12.2, 12.5, 12.8, 13, 13.5, 14, 15, 16, 18, 20, 24, 36,
48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 168, 168, 168, 168,
169, 169, 170, 170, 171, 172, 174, 176, 180, 186 and 192 hours after
the first dose.
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Population simulations Simulations to describe the distribution of individual observations

Population PK

Phase IIa trial design:
Treatments

ME-2 20 mg bid (q12h) x 7 days
Enoxaparin 30 mg bid (q12h) x 7 days

100 patients per treatment arm
Sparse ME-2 PK data (3-6 samples/patient)

LOQ = 10 ng/mL

Available patient-specific covariates: weight, age, gender
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Population simulations Simulations to describe the distribution of individual observations
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Population simulations Simulations to describe the distribution of individual observations

time (h)

M
E

−
2 

pl
as

m
a 

co
nc

en
tr

at
io

n 
(n

g/
m

L)
0

50
10

0
15

0

0 50 150

5 mg

0
50

15
0

25
0

10 mg

0
20

0
40

0
60

0

0 50 150

20 mg

0
40

0
80

0
12

00

40 mg

0 50 150

0
50

0
15

00

80 mg

ME-2 PK data from
Phase I MD trial

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 208 / 372



Population simulations Simulations to describe the distribution of individual observations

PK data from Phase IIa trial
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Population simulations Simulations to describe the distribution of individual observations
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Population simulations Simulations to describe the distribution of individual observations

PK model
Two compartment model with first order absorption describing ME-2 plasma
concentration on the i th occasion in the j th subject as a function of time, dose and
body weight:

log
(
cij
)
∼ N

(
log
(
ĉij
)
, σ2
)

ĉij = f2cpt
(
tij ,Dj , τj ,CLj ,Qj ,V1j ,V2j , kaj

)
log
(
CLj ,Qj ,V1j ,V2j , kaj

)
∼ N

(
log

(
ĈL
(

bwj

70

)0.75

, Q̂
(

bwj

70

)0.75

, V̂1

(
bwj

70

)
, V̂2

(
bwj

70

)
, k̂a

)
,Ω

)

Some possible weakly informative prior distributions:

log
(

ĈL
)
∼ N

(
0, 106

)
log
(

Q̂
)
∼ N

(
0, 106

)
log
(

V̂1

)
∼ N

(
0, 106

)
log
(

V̂2

)
∼ N

(
0, 106

)
log
(

k̂a − λ1

)
∼ N

(
0, 106

)
σ ∼ U (0, 100)

Ω−1 ∼ Wishart

5


0.05 0 0 0 0

0 0.05 0 0 0
0 0 0.05 0 0
0 0 0 0.05 0
0 0 0 0 0.05

 , 5


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Role of inter-trial variation

Role of inter-trial variation
In the previous sections I ignored the issue of inter-trial variation
and how it should enter the posterior distributions and the
simulations used to approximate them.
This is, in part, because I still debate with myself about this. It
comes down to what I think the inter-trial variation represents.

Do all the trials randomly sample from the target population of
interest?
Or do they sample from a range of populations that may contain the
population of interest to us, but is not necessarily restricted to that
population?

If the answer to the first question is yes then I would calculate the
population estimand by averaging over the inter-trial variation.
If the answer to the second question is yes then I would include
the inter-trial variation in the posterior distribution of the model
parameters. To date I have usually chosen to go with the second
approach, in part because it is more conservative in the sense that
the estimated uncertainty in the population estimand is greater.
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Hands-on Problem 4: Population simulations Statin dose-response simulations

Hands-on Problem 4: Population simulations
Simulations to compare dose-response of atorvastatin and rosuvastatin

This exercise uses the MCMC samples generated in Hands-on
Problem 3 to simulate the posterior distribution of population
mean LDL % change from baseline predicted to result from
various doses of atorvastatin and rosuvastatin.
The primary objective of the simulations is to compare the
dose-response of the two statins.
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Hands-on Problem 4: Population simulations Statin dose-response simulations

Hands-on Problem 4: Population simulations
Suggested simulation specifications

Statin doses: c(0:4, seq(5, 80, by = 5)) mg/d
Number of posterior samples: 1000 per dose combination
Create plots showing posterior median and 90% credible intervals
for the population mean LDL % change from baseline versus
dose.
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Issues arising from analysis of summary data Applying individual models to summary data

Issues arising from analysis of summary data
Applying individual models to summary data

In MBMA it is common to apply models originally developed to
describe responses in individuals to data consisting of summary
statistics, particularly sample means.
However our usual PK and PD models are strictly relevant only for
describing responses in individual organisms—not for summary
stats for groups.
Nonlinear individual models do not “collapse” to the same model
for sample means except in special cases, e.g., when the model
function is linear with respect to individual-specific parameters.
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Issues arising from analysis of summary data Applying individual models to summary data

Applying individual models to summary data
Example: One compartment PK model

Consider a drug with PK following an iv bolus best described by a one compartment model.

Each patients data is described by monoexponential function, but the mean concentration
time-course of n patients data is described by a polyexponential with n exponential terms
(unless their elimination rate constants are equal).

Concentration-time course in the i th individual following a single dose D (neglecting
residual variation to keep things simple):

ci (t) =
D
Vi

e−ki t

Mean concentration-time course in n individuals:

c (t) =
1
n

n∑
i=1

ci (t) =
1
n

n∑
i=1

D
Vi

e−ki t

6=
1
n

( n∑
i=1

D
Vi

)
e−kt

unless ki = k for all individuals
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Issues arising from analysis of summary data Applying individual models to summary data

Applying individual models to summary data

Example: Emax model
Suppose the dose-response in an individual is described by an Emax model.

The mean dose-response for n patients will not be an Emax model except in the special
case where all patients share the same ED50.

Dose-response in the i th individual (neglecting residual variation to keep things
simple):

Ei (D) =
Emax,i D

ED50,i + D

Mean dose-response in n individuals:

E (D) =
1
n

n∑
i=1

Ei (D) =
1
n

n∑
i=1

Emax,i D
ED50,i + D

6=
1
n

(∑n
i=1 Emax,i

)
D

ED50 + D
unless ED50,i = ED50 for all individuals

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 217 / 372

Issues arising from analysis of summary data Applying individual models to summary data

Applying individual models to summary data

No easy remedy for the discrepancy between models fro
individual and summary data.
One recommendation arising from such discrepancies between
model functions for individual and mean data is that mechanistic
interpretations of model structure and parameter values should be
approached cautiously.
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Analysis of longitudinal data

Analysis of longitudinal data

To some extent treatment arms may be viewed as
“super-individuals.”
Like data from individuals within a population analysis, multiple
observations within a treatment arm are correlated, and our
analysis should account for that.
This is further complicated by the fact that the treatment arms are
not “created equal.”

Sample sizes differ among the treatment arms, and some treatment
arms may be from the same study and some from other studies.

Relevant publications: [GRIG09, AF10, RPG+12, DF12]
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Analysis of longitudinal data

Analysis of longitudinal data

Sample size affects not only the residual variance but also the
inter-arm variance in model parameters—the analog to IIV in
population analysis.
One approach for dealing with these issues is to use a hierarchical
model with at least 3 levels of variation: inter-trial, inter-arm, and
residual. In addition both the inter-arm and residual variances
should be adjusted for sample size.
The approach can be derived from population models for
individual data.

In the special case where the individual data model is linear with
respect to all random effects and the random effects are normally
distributed, the derivation is exact.
For the general nonlinear case it is an approximation.
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Analysis of longitudinal data Linear case

Linear case
Model for individual patient data

Consider a model that is linear with respect to the inter-patient and residual random
effects, and has normally-distributed residual, inter-patient and inter-study variation.
Dependent variable yijk on the i th occasion in the j th patient in the k th study:

yijk ∼ N
(

ŷijk , σ
2
k

)
ŷijk = f

(
tijk , xjk , θ,Hjk ,Kk

)
= f0

(
tijk , xjk , θ,Kk

)
+

nH∑
m=1

fm
(
tijk , xjk , θ,Kk

)
ηmjk

where

xjk ≡ independent variables for the j th patient and k th study, e.g., assigned treatment
θ ≡ model parameters

Kk =
{
κ1k , κ2k , · · · , κnKk

}
= inter-study random effects for k th study

∼ N (0,Ψ)

Hjk =
{
η1jk , η2jk , · · · , ηnH jk

}
= inter-patient random effects for j th patient in k th study

∼ N (0,Ω)
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Analysis of longitudinal data Linear case

Linear case
Modifications for sample mean and variance
Since yijk |Hjk ,Kk ∼ N

(
ŷijk , σ

2
k

)
, the sample mean y ijk on the i th occasion in the j th treatment arm

in the k th study is also normally distributed:

y ijk ∼ N

(
ŷijk ,

σ2
k

njk

)

where

ŷijk = f
(

tijk , xjk , θ,Hjk ,Kk

)
= f0

(
tijk , xjk , θ,Kk

)
+

nH∑
m=1

fm
(
tijk , xjk , θ,Kk

)
ηmjk

Hjk =
{
η1jk , η2jk , · · · , ηnH jk

}
= inter-arm random effects for j th arm in k th study

∼ N

(
0,

Ω

njk

)
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Analysis of longitudinal data Linear case

Linear case
Modifications for sample mean and variance

In this case ŷijk represents the expected value conditioned on
treatment arm j and study k . Similarly the distribution of yijk
conditioned only on study k is normally distributed, i.e.,
yijk |Kk ∼ N

(
f0
(
tijk , xjk , θ,Kk

)
, σ2

marginal,ijk

)
. It follows that the

normalized sample variance
((

nijk − 1
)

s2 (y)ijk

)/
σ2
marginal,ijk is

χ2 (nijk − 1
)

distributed or equivalently:

s2 (y)ijk ∼ gamma

(
njk − 1

2
,

njk − 1
2σ2

marginal,ijk

)

where σ2
marginal,ijk is the variance of yijk conditioned on study k .

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 223 / 372

Analysis of longitudinal data Linear case

Linear case
Modifications for sample mean and variance

An expression in terms of the model parameters is derived below:

σ2
marginal,ijk = Var

(
yijk |Kk

)
= Var

(
E
(
yijk |Hjk ,Kk

)
|Kk
)

+ E
(
Var

(
yijk |Hjk ,Kk

)
|Kk
)

=

nH∑
`=1

nH∑
m=1

f`
(
tijk , xjk , θ,Kk

)
fm
(
tijk , xjk , θ,Kk

)
Ω`m + σ2

k

In the case where Ω is a diagonal matrix the equation simplifies to:

σ2
marginal,ijk =

nH∑
m=1

fm
(
tijk , xjk , θ,Kk

)2
ω2

m + σ2
k

where ω2
m = Ωmm = Var (ηm).
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Analysis of longitudinal data Nonlinear case

Nonlinear case
Model for individual patient data

Now consider the more general case where the model may be nonlinear with respect to
the inter-patient and residual random effects, and has normally-distributed residual,
inter-patient and inter-study variation.

Dependent variable yijk on the i th occasion in the j th patient in the k th study:

yijk ∼ N
(

ŷijk , σ
2
k

)
ŷijk = f

(
tijk , xjk , θ,Hjk ,Kk

)
where

xjk ≡ independent variables for the j th patient and k th study, e.g., assigned treatment
θ ≡ model parameters

Kk =
{
κ1k , κ2k , · · · , κnKk

}
= inter-study random effects for k th study

∼ N (0,Ψ)

Hjk =
{
η1jk , η2jk , · · · , ηnH jk

}
= inter-patient random effects for j th patient in k th study

∼ N (0,Ω)
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Analysis of longitudinal data Nonlinear case

Nonlinear case
Modifications for sample mean and variance

Approximate equations for the sampling distributions of the sample
means (y ijk ) and variances (s2 (y)ijk ) are derived by first approximating
the model using a first order Taylor series and then deriving the
relationships as described above for the linear case. Begin by
approximating ŷijk for individual patients with a first order Taylor series
where the inter-patient random effects (η’s) are expanded about their
expected values, i.e., 0:

ŷijk = f
(
tijk , xjk , θ,Hjk ,Kk

)
≈ ŷapprox,ijk = f

(
tijk , xjk , θ,0,Kk

)
+

nH∑
m=1

fηm

(
tijk , xjk , θ, 0,Kk

)
ηmjk

where fηm is the derivative of f with respect to ηm.
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Analysis of longitudinal data Nonlinear case

Nonlinear case
Modifications for sample mean and variance
Proceeding as before the approximate equations used for fitting the sample means and
variances follow.

y ijk ∼ N

(
ŷijk ,

σ2
k

njk

)

s2 (y)ijk ∼ gamma

(
njk − 1

2
,

njk − 1
2σ2

marginal,ijk

)
where

ŷijk = f
(

tijk , xjk , θ,Hjk ,Kk

)
Hjk ∼ N

(
0,

Ω

njk

)

σ2
marginal,ijk =

nH∑
`=1

nH∑
m=1

fη`
(
tijk , xjk , θ,Kk

)
fηm

(
tijk , xjk , θ,Kk

)
Ω`m + σ2

k

In the case where Ω is a diagonal matrix the equation simplifies to:

σ2
marginal,ijk =

nH∑
m=1

fηm

(
tijk , xjk , θ,Kk

)2
ω2

m + σ2
k

where ω2
m = Ωmm = Var (ηm).
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Analysis of longitudinal data Nonlinear case

Nonlinear case
Modifications for sample mean and variance

When the individual data model is not linear with respect to
inter-patient random effects, the sampling distributions for treatment
means and variances are approximated in 3 senses:

The sampling distributions are approximated as normal for the
mean and gamma for the variance.
The conditional expectation for the treatment mean is
approximated using the individual data model in which the
variances of the inter-arm random effects are sample size
adjusted inter-patient variances.
The marginal variance is approximated via the delta method.

Additional research is required to assess the extent to which these
approximations may adversely affect model-based inferences using
this approach.
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MBMA of the ADAS-cog

Example: MBMA of the ADAS-cog score time course
in patients with Alzheimer’s disease

The scenario
The imagined scenario is that you are involved in the development
of one or more new potential drug treatments for Alzheimer’s
disease (AD).
The ADAS-cog score is commonly used as a measure of AD
symptoms in clinical trials.
A model of the ADAS-cog time course during treatment with
placebo or marketed drugs will be useful to support
decision-making regarding trial designs, dose selection and
possibly go/no-go in drug development programs.
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MBMA of the ADAS-cog

The data

Post-baseline sample means and sample variances for ADAS-cog
change from baseline from published sources
Data set obtained from http://OpenDiseaseModels.org

Processed to reduce data management tasks

55 studies
114 treatment arms

465 sample means
263 sample variances
Data reflects results from 16543 patients and 68177 observations

Objective
Construct a model for ADAS-cog change from baseline as a
function of drug, daily dose, time and possibly other covariates.

Data file: adasCog/adasCogData.csv
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MBMA of the ADAS-cog

Mean ADAS-cog change from baseline
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MBMA of the ADAS-cog

Mean ADAS-cog change from baseline
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MBMA of the ADAS-cog

Standard deviation of ADAS-cog change from baseline
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MBMA of the ADAS-cog

Standard deviation of ADAS-cog change from baseline
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MBMA of the ADAS-cog

Model for individual patient data

We begin by conceptualizing the model in terms of individual patient
data. Then we modify as necessary to model the sample statistics.

ADAS-cog change from baseline on the i th occasion in the j th patient in
the k th study:

∆ADASijk ∼ N
(

∆̂ADASijk , σ
2
k

)
∆̂ADASijk = αjk tijk + Eplacebo,ijk + (1− Iplacebo,jk) Edrug,ijk + ηintercept,jk

Eplacebo,ijk = β
(

e−kel tijk − e−keq tijk
)

Edrug,ijk =

(
Djk

Dref ,jk

)γjk E∆,jk eηdrug,k tijk
ET50,jk + tijk
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MBMA of the ADAS-cog

Model for individual patient data

Dref ,jk =

 5,
24,
6

E∆,jk =

 E∆,donepezil, drugjk = donepezil
E∆,galantamine, drugjk = galantamine
E∆,rivastigmine, drugjk = rivastigmine

ET50,jk =

 ET50,donepezil,
ET50,galantamine,
ET50,rivastigmine

γjk =

 γdonepezil, drugjk = donepezil
γgalantamine, drugjk = galantamine
γrivastigmine, drugjk = rivastigmine

ηintercept,jk ∼ t
(
ηintercept,study,k , ω

2
intercept, dfintercept

)
ηintercept,study,k ∼ N

(
0, ψ2

intercept

)
αjk ∼ t

(
αstudy,k , ω

2
α, dfα

)
αstudy,k ∼ N

(
α̂, ψ2

α

)
ηdrug,k ∼ N

(
0, ψ2

drug

) 1
σ2

k
∼ gamma

(
ασ , ασσ̂

2
)
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MBMA of the ADAS-cog

Model for sample means and variances

Modifications for sample mean and variance of ADAS-cog change from
baseline on the i th occasion in the j th treatment arm in the k th study:

∆ADASijk ∼ N
(

∆̂ADASijk ,
σ2

k
njk

)
s2 (∆ADAS)ijk ∼ gamma

(
njk − 1

2
,

njk − 1
2σ2

marginal,ijk

)
σ2
marginal,ijk ≈ t2

ijkω
2
α + ω2

intercept + σ2
k

ηintercept,jk ∼ t

(
ηintercept,study,k ,

ω2
intercept

njk
,dfintercept

)

αjk ∼ t
(
αstudy,k ,

ω2
α

njk
,dfα

)
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Hands-on Problem 5 MBMA of the donepezil dose-response

Hands-on Problem 5: Longitudinal dose-response
model based on longitudinal summary data
MBMA of the ADAS-cog as a function of time and donepezil dose

Post-baseline sample means and sample variances for ADAS-cog
change from baseline following various doses of donepezil from
published sources
Data set obtained from http://OpenDiseaseModels.org

Processed to reduce data management tasks

12 studies
24 treatment arms

183 sample means
82 sample variances
Data reflects results from 2581 patients

Hands-on exercise
Construct a model for ADAS-cog change from baseline as a
function of donepezil daily dose and time.

Data file: adasCogHandsOn/donepezilAdasData.csv
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Hands-on Problem 5 MBMA of the donepezil dose-response

Hands-on Problem 5: Mean and SD of ADAS-cog change from
baseline
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Hands-on Problem 5 MBMA of the donepezil dose-response

Hands-on Problem 5: Proposed model
Model for individual patient data
ADAS-cog change from baseline on the i th occasion in the j th patient in
the k th study:

∆ADASijk ∼ N
(

∆̂ADASijk , σ
2
k

)
∆̂ADASijk = αjk tijk + Eplacebo,jk +

(
1− Iplacebo,jk

)
Edrug,ijk

Edrug,ijk =

(
Djk

Dref

)γ E∆,k tijk
ET50 + tijk

Dref = 5

E∆,k ∼ N
(

Ê∆, ψ
2
E∆

)
Eplacebo,jk ∼ N

(
Eplacebo,study,k , ω

2
Eplacebo

)
Eplacebo,study,k ∼ N

(
Êplacebo, ψ

2
Eplacebo

)
αjk ∼ N

(
αstudy,k , ω

2
α

)
, αstudy,k ∼ N

(
α̂, ψ2

α

)
1
σ2

k
∼ gamma

(
ασ , ασσ̂

2
)
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Hands-on Problem 5 MBMA of the donepezil dose-response

Hands-on Problem 5: Model for sample means and variances

Modifications for sample mean and variance of ADAS-cog change from
baseline on the i th occasion in the j th treatment arm in the k th study:

∆ADASijk ∼ N
(

∆̂ADASijk ,
σ2

k
njk

)
s2 (∆ADAS)ijk ∼ gamma

(
njk − 1

2
,

njk − 1
2σ2

marginal,ijk

)
σ2
marginal,ijk ≈ t2

ijkω
2
α + ω2

Eplacebo
+ σ2

k

Eplacebo,jk ∼ N

(
Eplacebo,study,k ,

ω2
Eplacebo

njk

)

αjk ∼ N
(
αstudy,k ,

ω2
α

njk

)
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Modeling other types of summary statistics Number or fraction of patients

Modeling other types of summary statistics
Number or fraction of patients that experience a particular
outcome or event

Binary outcomes in individual patients are often summarized in
terms of the number or fraction of patients with one of the two
possible outcomes.
Such binary outcomes could include the occurrence of some
event or an indicator variable for whether or not the patient
benefited from treatment. Examples include:

Discrete events
Death
MI
DVT
AE
Dropout

Other outcomes
Responder or remission status, e.g., achieving a specified degree of
improvement
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Modeling other types of summary statistics Number or fraction of patients

Modeling other types of summary statistics
Number or fraction of patients that experience a particular
outcome or event

The appropriate likelihood function for the number of patients with
a particular outcome is the binomial distribution.
This is parametrized in terms of the probability of an outcome (p)
in an individual and the total number of individuals (n).
The probability p is typically a function of independent variables
like daily dose, time and mean demographic variables, and it must
be restricted to (0, 1). Beyond that it is difficult to generalize about
the specific function for p.
One approach would be some variation on logistic regression, i.e.,
describing p using a logit transformation.
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Modeling other types of summary statistics Number or fraction of patients

Example: Effects of factor Xa inhibitors on incidence of
post-op VTE’s

Meta-analysis of factor
Xa inhibitor effect on
VTE incidence
Published VTE rates
from 7 dose-finding
trials comparing new
factor Xa inhibitors to
enoxaparin. Horizontal
lines show observed
values for enoxaparin
40-60 mg/d.
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Proposed model
Linear logistic regression model for VTE occurrence in the i th treatment
arm of the j th study as a function of dose:

nVTE,ij ∼ Binomial
(
pVTE,ij ,nij

)
logit

(
pVTE,ij

)
= Ep,j + Edrug,ij

Edrug,ij = θdrug log
(
Dij + 1

)
Ep,j ∼ N

(
θp, σ

2)
where nVTE,ij is the number of patients experiencing a VTE and nij is the
total number of patients in the in the i th treatment arm of the j th study,
respectively.
Weakly informative priors for drug effects:

θdrug ∼ N
(
0,106)

Informative priors for placebo effects (fictional but it illustrates the idea of
using historical knowledge about control treatment response):

θp ∼ N
(
logit (0.45) ,0.12) log (σ) ∼ N

(
log (0.4) ,0.52)
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WinBUGS implementation
model{

for(i in 1:nobs){

## likelihood

vte[i] ∼ dbin(p.vte[i],n[i])

## posterior prediction for new observations in same study

vte.cond[i] ∼ dbin(p.vte[i],n[i])

logit(p.vte[i]) <- ep[study[i]] + edrug[i]

## +1 added so that intercept still corresponds to dose = 0

edrug[i] <- theta[drug[i]]*log(dose[i]+1)

## posterior predictions for new observations

## in new study of same design

vte.pred[i] ∼ dbin(p.vte.pred[i],n[i])

logit(p.vte.pred[i]) <- ep.pred[study[i]] + edrug[i]

}

for(i in 1:nstudy){

## interstudy variation in the intercept

ep[i] ∼ dnorm(ep.hat,tau)

ep.pred[i] ∼ dnorm(ep.hat,tau)

}

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 246 / 372



Modeling other types of summary statistics Number or fraction of patients

WinBUGS implementation (cont.)

## informative prior on placebo response

ep.hat ∼ dnorm(ep.hat.prior.mean, ep.hat.prior.precision)

ep.hat.prior.mean <- logit(0.45)

ep.hat.prior.precision <- 1/pow(0.1,2)

log.sigma ∼ dnorm(log.sigma.prior.mean, log.sigma.prior.precision)

log.sigma.prior.mean <- log(0.4)

log.sigma.prior.precision <- 1/pow(0.5,2)

log(sigma) <- log.sigma

tau <- 1/(sigma*sigma)

for(i in 1:6){

theta[i] ∼ dnorm(0,1.0E-6)

}

}
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Results

10000 × 3 chains
burn-in = 4000 / chain, thin by 5
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Prediction of new data in same
studies
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Horizontal lines show observed (gray) and predicted values for enoxaparin
40-60 mg/d
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Model parameter estimates

parameter mean sd 2.5%ile 25%ile median 75%ile 97.5%ile effective N
deviance 217 5.37 209 214 217 220 230 2420
θp −0.247 0.0976 −0.44 −0.313 −0.248 −0.183 −0.0509 3450
σ 0.59 0.164 0.351 0.472 0.564 0.682 0.984 1710
θ1 −0.17 0.052 −0.267 −0.205 −0.171 −0.136 −0.0629 708
θ2 −0.379 0.0693 −0.514 −0.426 −0.38 −0.332 −0.241 809
θ3 −0.579 0.123 −0.817 −0.662 −0.579 −0.498 −0.331 1130
θ4 −0.168 0.0689 −0.3 −0.215 −0.17 −0.122 −0.031 1430
θ5 −0.466 0.0861 −0.64 −0.523 −0.465 −0.409 −0.299 1840
θ6 −0.371 0.117 −0.597 −0.454 −0.369 −0.293 −0.145 2290
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Modeling other types of summary statistics
Number or fraction of patients within each level of an ordinal scale

Ordinal variables are often used to measure symptom severity or
treatment response.

Frequently the results of such measurements are reported as
means.
Occasionally they may be reported in terms of the fraction of
patients within each level of the ordinal scale.

One option for dealing with such data is to lump the levels together
to produce only 2 levels as was done in the triptan example. Then
you can apply the approach described in the previous section.
If you prefer to retain all levels of the ordinal scale then the
numbers of patients within each level for a particular treatment
arm and time may be modeled with a multinomial likelihood.

One approach to modeling the required probability vector is to use
a cumulative logit model [SBD97, LWRP01].
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Modeling other types of summary statistics
Mean number of events per patient

Another type of outcome is the number of events within a
specified period of time.

Examples include number of seizures, number of emesis events,
number of adverse events, etc.

Most often such data are summarized as the mean number of
events over either the total study period or for the periods between
study visits.
When modeling individual patient count data the Poisson
distribution or some over-disperse or zero-inflated extension of the
Poisson distribution is often used [God07].
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Modeling other types of summary statistics
Mean number of events per patient

One approach to modeling of mean count data is to rely on the
central limit theorem and use a normal likelihood.

If it is reasonable to assume that the hazard for an event is
approximately constant over time, then the mean should be
proportional to the duration of the observation period.
The variance should also be proportional to that duration and
inversely proportional to the sample size.

Alternatively you could take advantage of the addition property of
the Poisson distribution, i.e., the sum of Poisson distributed
random variables is also Poisson distributed. In particular if
θi ∼ Poisson (λi) for all i , then

∑n
i=1 θi ∼ Poisson

(∑n
i=1 λi

)
.

It follows that if the individual count data are Poisson distributed,
then the sum of those counts is also Poisson distributed.
That sum can be calculated by multiplying the mean count by the
number of patients.
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Example: Effect of topiramate on mean number of
migraine days per month

Meta-analysis of topiramate’s
effect on migraine frequency.

Published number of migraine
days/month from 7 migraine
prophylaxis trials in which one
or more doses of topiramate
was compared to placebo.

A migraine day is defined as
any calendar day during which
a patient had a migraine
headache of at least 30-min
duration.
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Proposed initial model
Poisson model for total number of migraine days in the i th treatment
arm of the j th study:

nmigraine,ij ∼ Poisson
(
nijλij∆tij

)
log
(
λij
)

= aij + bijDij

aij = a1j + a2 log
(
λ0ij

6

)
bij = b1j + b2 log

(
λ0ij

6

)
a1j ∼ N (a, ωa) b1j ∼ N

(
b, ωb

)
where λij is the model estimated number of migraine days/month for an
individual, λ0ij is the mean baseline migraine days/month, ∆tij is the
elapsed time over which the migraine events were counted and Dij is
the topiramate daily dose.
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Suggested homework

Improve upon the non-optimal preliminary model while retaining
the strategy of modeling event counts as discrete random
variables.

Implement a model using a normal likelihood.

Compare the results.
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Modeling other types of summary statistics
Summary statistics for time-to-event measurements

The modeling of time-to-event measurements in individual patients
typically has to deal with the complication of right censoring, i.e.,
the case where no event occurs prior to the end of the study.
Unless an event occurs in all (or at least a large majority) of the
patients, a mean event time is not a very good statistic for
meta-analysis.

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 257 / 372

Modeling other types of summary statistics Summary statistics for time-to-event measurements

Modeling other types of summary statistics
Summary statistics for time-to-event measurements

Some publications may present the results in the form of a Kaplan-Meier
plot that depicts the fraction of patients that have not yet experienced an
event. You could tabulate values from the plot and use those values to
construct a model.
However, it is likely that most of the publications contributing to your data
base will not provide such plots.
More likely the data will be summarized in the form of the fraction or
number of patients that experienced an event during the study period.

In that case the approach for binary data described previously is
appropriate though the probability of an event must be adjusted for
the trial duration given some assumption about the hazard time
course.

For cases when survival curves are available, modeling approaches
have been proposed in the statistical literature ([PTS98, AHS08, Dea94]
and [SAJ+00, pp 277–283]) and could be adapted for a Bayesian
approach.
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Meta-analysis of longitudinal
time-to-event data

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 259 / 372

Modeling other types of summary statistics Longitudinal time-to-event data

Analysis of time-to-event data
The gold-standard for meta-analysis of time-to-event data is using
IPD
When only AD is available, analysis of time-to-event data is
typically done using

(Log) Hazard ratios if using comparative studies
Median endpoint values (median OS, median PFS, etc.)
Estimated survivor rates at specific times (% surviving at 1 year, at
2 years, etc.)

The first approach requires all studies to be
comparative—eliminating information in the single-arm trials
The other two approaches consider each outcome separately

E.g., separate models for % surviving at 1 year and % surviving at
2 years

While these approaches are fairly easy to implement, they may be
under-utilizing the available data

E.g., If not all studies report the same time points
This leads us to consider jointly modeling survivor rates
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Example Kaplan-Meier curves

maybe related to an increased toxic death rate in the early phase of
treatment in patients older than 75 years.20 In this specific study, the
dose of both melphalan and thalidomide was not adjusted to age
(thalidomide up to 400 mg/d and melphalan 0.25 mg/kg days 1 to 4
versus thalidomide 100 mg/d and melphalan 0.2 mg/kg days 1 to 4 in
our trial). Moreover the proportion of patients with poor perfor-
mance status was significantly higher in this study (WHO 3 or 4: 30% v
4% to 8% in other studies). These characteristics likely contributed to
more frequent early deaths in the MP plus thalidomide group. Sur-
vival data in the HOVON trial are not yet interpretable due to the short
follow-up.21 The highest doses of drugs are not always optimal in
elderly patients, as it has been demonstrated with dexamethasone.6

Despite the elderly population in the current trial, a substantial
number of patients received subsequent treatment with novel agents
at the time of relapse, especially in the MP arm in which more than
80% of the patients received at least one the three novel agents cur-
rently available. Survival time after progression was similar in the two
groups, strongly suggesting that first-line treatment is of major impor-
tance in this population of elderly patients.

Toxicity in the MP plus thalidomide arm was acceptable, with a
median thalidomide treatment duration longer than 1 year. Interest-
ingly, no increase in thrombosis event rate was noted, possibly related
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Fig 2. Kaplan-Meier curves for overall survival, progression-free survival, and
survival after progression among all patients in an intention-to-treat population. (A)
Estimates of median overall survival: melphalan and prednisone (MP) plus thalidomide
group, blue curve (44.0 months; 95% CI, 33.4 to 58.7 months), and MP plus placebo
group, gold curve (29.1 months; 95% CI, 26.4 to 34.9 months); hazard ratio of 0.68 in
favor of MP plus thalidomide; P ! .028. (B) Estimates of median time of progression-free
survival: MP plus thalidomide group, blue curve (24.1 months; 95% CI, 19.4 to 29.0
months), and MP plus placebo group, gold curve (18.5 months; 95% CI, 14.6 to 21.3
months); hazard ratio of 0.62 in favor of MP plus thalidomide, P ! .001. (C) Estimates of
median survival time after progression: MP plus thalidomide group, blue curve (11.5
months), and MP plus placebo group, gold curve (9.9 months; log-rank P ! .89).

Table 2. Best Response to Treatment (219 patients assessable)

Response

MP "
Placebo

( n ! 112)

MP "
Thalidomide
(n ! 107)

PNo. % No. %

At least PR 35 31 66 62 # .001
At least VGPR 8 7 23 21 # .001
CR 1 1 7 7 # .001

Abbreviations: MP, melphalan and prednisone; PR, partial response; VGPR,
very good partial response; CR, complete response.

Table 3. Adverse Events

Adverse Event

MP "
Placebo

(n ! 116)

MP "
Thalidomide
(n ! 113)

P !No. % No. %

Peripheral neuropathy by
grade

1 19 17 20 18 .003
2 4 3 21 19
3 2 2 2 2

Neutropenia, grade 3 or 4 10 9 26 23 .003
Thrombosis or embolism,

grade 3 or 4 4 3 7 6 .33
Somnolence, grade 2 to 4 3 3 7 6 .19
Depression, grade 2 to 4 3 3 8 7 .11
Constipation, grade 2 to 4 12 10 19 17 .16
Nausea/vomiting,

grade 2 to 4 5 4 3 3 .5
Edema, grade 2 to 4 8 7 15 13 .11

Abbreviation: MP, melphalan and prednisone.

Hulin et al

3668 © 2009 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

Downloaded from jco.ascopubs.org on April 8, 2013. For personal use only. No other uses without permission.
Copyright © 2009 American Society of Clinical Oncology. All rights reserved.

C. Hulin et al. J Clin Oncol. 2009. 27(22): 3664-70.

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 261 / 372

Modeling other types of summary statistics Longitudinal time-to-event data

Two related approaches have been described in the
literature

Models for the observed survival rates
Dear, KBG. (1994). Iterative Generalized Least Squares for
Meta-Analysis of Survival Data at Multiple Times. Biometrics. 50:
989–1002.
Arends LR, Hunink MGM and Stijnen T. (2008). Meta-analysis of
summary survival curve data. Statistics in Medicine 27: 4381–96.

Models for the number of events between time points
Ouwens MJMN, Philips Z, and Jansen JP. (2010). Network
meta-analysis of parametric survival curves. Res Syn Meth. 1:
258–71.
Jansen JP. (2011). Network meta-analysis of survival data with
fractional polynomials. BMC. Med Res Methodol 11:61.

For this course, we’ll
Outline the key elements/assumptions
Work through an example of each
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Fixed effects model of Dear
Let sijk be the true survival probability in treatment arm j in study i at
the k th time point.

We assume that we have estimates, ŝijk , along with their standard
errors.

Dear fitted a linear regression model relating ŝijk to between- and
within-study covariates, such as time, study, treatment characteristics
and their interactions. Specifically, the model is

ŝi = Xiθ + εi

where ŝi is a vector of ŝijk and εi is a vector of residuals with

εi ∼ N (0,Vi) .
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The covariance matrix has a fixed structure

The key to Dear’s model is recognizing that Vi will have a fixed
structure that depends only on the reported standard errors and the
survival probabilities.

Specifically,
Vi is block diagonal with blocks corresponding to treatment arms
within the study.
The main diagonal is set to the reported squared standard errors.
The correlations of the proportions at times tijk > tijl are

corr
(
sijk , sijl

)
=

√
sijk
(
1− sijl

)(
1− sijk

)
sijl
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Estimation is done iteratively

1 Start by using the observed survival proportions to approximate
Vi .

2 Given Vi , use generalized least squares to estimate θ.

3 Using this estimate of θ, compute the model-based estimates of
the sijk ’s and plug into equation for Vi .

4 Iterate until convergence.
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Key differences between Arends et al. and Dear
models

Arends et al. use a linear mixed effects model in contrast to a
fixed effects model.

They use a transformation of the sijk to improve linearity and
interpretability.

They focus on using parametric models for the effects of time (and
presumably covariates).
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Mixed effects model of Arends
Arends et al. propose the following model:

log
(
− log

(
ŝi
))

= Xiθ + Ziηi + εi

where

ηi ∼ N (0,Ω)

εi ∼ N (0,Vi)

and Vi is block diagonal with elements

seijk

ŝijk log
(
ŝijk
)√sijk

(
1− sijl

)(
1− sijk

)
sijl

seijl

ŝijl log
(
ŝijl
)

Estimation is done iteratively as before but using mixed effects
software.
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Fitting the Arends model using standard software

We need to have software that can
Fix the residual error variance
Output the fitted survival estimates for updating the Vi matrix.

This can be done in SAS PROC MIXED and in S-Plus function
lme

Not possible in the R function lme (because we can’t fix the residual
error variance)
Could conceivably be done in a combination of R (or some other
programming language) and NONMEM, but not NONMEM alone

We’ll fit a related version of this model using WinBUGS
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Obtaining the standard error of KM estimates

Both of these approaches require having the standard error of the
survival probabilities
Sometimes (okay, rarely) they will be reported in the paper
A bit more often a confidence interval may be included with the
KM plot.

Can digitize the figure, read the CI at each time point of interest and
derive the standard errors.. ugh.
E.g., if a 95% CI then the approximate standard error is
(upper limit− lower limit) / (2 · 1.96).

If neither of these are available, youll need to do some additional
approximation based on the survivor curve and the number of
patients at risk.
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The standard error of the estimated survival proportion
with no censoring
If there is no censoring, it is simple to show that

Var
(

Ŝ (t)
)

=
Ŝ (t)

(
1− Ŝ (t)

)
N

where N is the number of patients in the treatment group at the start of
the study.

This could be a reasonable estimate when there is a small amount of
censoring.

However, when there is a moderate to large degree of censoring, this
will underestimate Var

(
Ŝ (t)

)
. Thus, we might consider a different

estimate in this case.
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An approximation to the standard error of the
estimated survival proportion
From first principles, we know that Ŝ (t) = exp

(
Λ̂ (t)

)
. Using the Delta

method approximation, we have

Var
(

Ŝ (t)
)
≈
(

Ŝ (t)
)2

Var
(

Λ̂ (t)
)
.

where Λ̂ (t) is the estimated cumulative hazard.

Also,

Var
(

Λ̂ (t)
)

=
∑
i:ti<t

# events at time ti
(# at risk at time ti)

2

where the ti are the event times.

Parmar et al. [PTS98] provide a method for approximating the number
of events and number of patients at risk during each time interval.
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Example of combining K-M curves

We’ll use the data published in Fine et al (1993) and reproduced in
Dear [Dea94].

The data come from a meta-analysis of 17 randomized controlled trials
that tested the addition of chemotherapy to radiotherapy in
postoperative malignant glioma in adults.

They estimate the survival separately at 6, 12, 18 and 24 months after
surgery.
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Model for malignant glioma survival data

To start, we’ll fit a model that assumes the survival follows an
exponential distribution with between study variabily in the event rates.

Sg
i (t) = exp

(
−λg

i t
)

log
(
λ

g
i

)
= µi + δi I (g = RC)

µi ∼ N
(
µ, ω2

µ

)
δi ∼ N

(
δ, ω2

δ

)
where i = 1, . . . ,17 denotes the study and g ∈ {R,RC} denotes the
treatment group.
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Model for malignant glioma survival data
Using the logit transformation, we model the observed survival
estimates as

logit
(

Ŝg
i

(
tij
))

= logit
(
Sg

i

(
tij
))

+ ε
g
ij

We’ll use a covariance model for the εgij residuals similar to the one
given by Arends but adapted to the logit transformation. Specifically,

ε
g
i ∼ N

(
0,V g

i

)
and V g

i is block diagonal with elements

seijk√
Ŝijk

(
1− Ŝijk

)
√√√√√ Ŝijk

(
1− Ŝijl

)
(

1− Ŝijk

)
Ŝijl

seijl√
Ŝijl

(
1− Ŝijl

)
The key difference is that we’ve replaced S(t) with Ŝ(t) in the middle
term.
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Model for malignant glioma survival data

Finally, we will use relatively non-informative prior distributions for the
mean log event rate in the R arms (µ), the mean log hazard ratio
comparing RC to R (δ) and the beween study standard deviations:

µ ∼ N(0,100)

δ ∼ N(0,100)

ωµ ∼ U(0,10)

ωδ ∼ U(0,10)

We will fit the model using WinBUGS.
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BUGS code for fitting the model

model {

for (i in 1:nArms) {

ostran[i,1:4] ~ dmnorm( mutran[i,1:4] , prec.os[i,1:4,1:4] )

for (j in 1:maxObsPerArm) {

mu[i,j] <- exp( -lam[i] * time[i,j]/12 )

mutran[i,j] <- logit(mu[i,j])

}

lam[i] <- exp(loglam0[trial[i]] + logdelta[trial[i]]*equals(trt[i],2))

}

# Model for study-level effects

for (j in 1:nTrials) {

loglam0[j] ~ dnorm(mu.lam0, prec.lam0)

logdelta[j] ~ dnorm(mu.delta, prec.delta)

}

# Prior distributions

mu.lam0 ~ dnorm(0, 1.0E-2)

mu.delta ~ dnorm(0, 1.0E-2)

prec.lam0 <- pow(omega.lam0, -2)

omega.lam0 ~ dunif(0,10)

prec.delta <- pow(omega.delta, -2)

omega.delta ~ dunif(0,10)

}
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Exponential model fit to Fine data
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Time-to-event homework #1

The exponential model is a poor fit for some of the studies.

There appears to be a consistent underprediction of survival at the
early time points, suggesting that a model with a time-varying hazard
might provide a better fit.

For homework, fit an alternative survival model such as a Weibull,
Gompertz or log-normal survival function. I would suggest allowing the
shape parameter to vary across studies but be shared by the treatment
arms within the same study.

You may also want to compare the results to a model that does not
account for the correlation within a treatment arm.
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An alternative approach to modeling survival data

Ouwens et al. [OPJ11] provide an alternative to the Arends et al.
approach.

Instead of modeling the estimated survival curves directly, they model
the number of events in non-overlapping time intervals.

They develop their model in the context of network meta-analysis but
we can easily extend this to a model-based meta-analysis framework.
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Multiple Myeloma data

Ouwens et al. [OPJ11] present data from 6 clinical trials comparing
treatments for multiple myeloma.

We’ll focus on the 5 studies comparing melphalan and prednisone
(MP) with melphalan-prednisone-thalidomide (MPT) in patients not
eligible for bone marrow transplant.

The objective of the analysis was to compare the overall survival
across first-line treatments for multiple myeloma in patients
non-eligible for transplant based on RCT evidence.
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Model for the multiple myeloma data
The proportion of subjects alive at time tj is given by S

(
tj
)

The number of subjects alive at time tj who die between time tj and
time tj+1 can be modeled using a binomial distribution. Specifically,

rj ∼ Binomial
(
nj ,pj

)
,

where
rj is the number of patients dying in the interval [tj , tj+1),
nj is the number of patients alive (i.e., at risk of dying) at time tj
and

pj =
S(tj)−S(tj+1)

S(tj)
is the conditional probability of dying in the time

interval given a patient is alive at time tj
Because of the way they’re defined, the rj are independent across time
intervals within a treatment arm.
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Model for the multiple myeloma data

To start, we will model S (t) using an exponential distribution with
treatment effects on the rate constant. Specifically,

Sg
i (t) = exp

(
−λg

i t
)

log
(
λ

g
i

)
= µi + δi I (g = MPT)

µi ∼ N
(
µ, ω2

µ

)
δi ∼ N

(
δ, ω2

δ

)
where i = 1, . . . ,5 denotes the study and g ∈ {MP,MPT} denotes the
treatment group.
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Model for the multiple myeloma data

We will use relatively non-informative prior distributions for the mean
log event rate in the MP arms (µ), the mean log hazard ratio
comparing MPT to MP (δ) and the beween study standard deviations:

µ ∼ N(0,100)

δ ∼ N(0,100)

ωµ ∼ U(0,10)

ωδ ∼ U(0,10)

We will fit the model using WinBUGS.
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BUGS code for fitting the model

model {

# Model

for (i in 1:nObs) {

r[i] ~ dbin(p[i], n[i])

Sstart[i] <- exp(-lam[i] * start[i])

Send[i] <- exp(-lam[i] * end[i])

p[i] <- (Sstart[i] - Send[i])/Sstart[i]

log(lam[i]) <- lambda0[study[i]] + delta[study[i]] * equals(group[i],2)

}

for (j in 1:nStudies) {

lambda0[j] ~ dnorm(mu.lambda0, prec.lambda0)

delta[j] ~ dnorm(mu.delta, prec.delta)

}

# Priors

mu.lambda0 ~ dnorm(0, 1.0E-2)

mu.delta ~ dnorm(0, 1.0E-2)

omega.lambda0 ~ dunif(0,10)

omega.delta ~ dunif(0,10)

# Transformations

prec.lambda0 <- pow(omega.lambda0 , -2)

prec.delta <- pow(omega.delta , -2)

}
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Exponential fit to the multiple myeloma data

Shaded regions are 90% credible intervals
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Time-to-event homework #2

Ouwens et al. [OPJ11] include data for a sixth trial that compares MP
and cyclophosphomide, thalidomide, and dexamethasone attenuated
(CTDa).

Re-fit the model including data from this study.
Evaluate whether you think an exponential model provides an
adequate fit or if a more flexible model (e.g., Weibull or Gompertz)
provides a better fit.
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Which approach should you use?

The Ouwens approach may appear to make fewer assumptions than
the Arends approach.

No need for standard errors of Ŝ (t)
No assumptions about / approximations for the correlation
No arbitrary choice of transformation of S(t)

However, there are assumptions underlying this approach.
Censoring is assumed to either be non-existant or to occur within
an interval before the events
Need to derive/approximate the number of events in an interval
from reported survival curves
Most reliable implementation needs number of patients at risk
over time (e.g., below K-M plots)
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Which approach should you use?

It really depends on what data are available to you.

If you have numbers at risk over time, then the Ouwens approach
seems preferable.

They also provide and algorithm for calculating the number of
events in a time interval.
See also Guyot et al. [GAOW12] for an algorithm for calculating rj

Otherwise, the Arends approach can be quite useful
Because we are modeling the underlying survival function in both
approaches, some combination of the two approaches could also
be used if you have numbers at risk for some studies and not for
others.
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More issues arising from analysis of summary data Summary statistics when there are dropouts

Summary statistics when there are dropouts

Summary statistics such as treatment means are typically summaries
of:

LOCF (last observation carried forward) data for all intent to treat
patients or
OC (observed cases) data

Both types of statistics are potentially biased estimates of as treated
outcomes

If assigned treatment affects dropout behavior
If the measured quantity systematically changes with time

LOCF statistics are most commonly reported and may be the only
values available.
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Combining summary and individual data Simultaneous analysis of summary and individual data

Combining summary and individual data

Simultaneous analysis of summary and individual data
The modeling approach for longitudinal data described in section on
longitudinal data may also be used to simultaneously model summary
and individual data. Recall that the derivation of that method began
with a population model for individual data.
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Combining summary and individual data Sequential analysis

Sequential analysis

Sequential analysis
Another approach is to leverage the Bayesian machinery to
construct a model based on summary and individual data
sequentially.
For example a model might initially be developed based only on
summary data.
The posterior samples (MCMC samples) of the parameters
resulting from that analysis could be approximated by parametric
distributions. Those distributions could be used as prior
distributions for subsequent analysis of the individual data.
This seems a reasonable approach to use if you already have a
model “on the shelf” and new data becomes available.
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Hands-on Problem 6 MBMA of donepezil and metupezil

Hands-on Problem 6: Longitudinal dose-response
model based on a combination of summary and
individual data

In this exercise we extend Problem 5 by the addition of individual
patient data obtained from a (simulated) dose-response trial of the
new drug metupezil.
You will simultaneously analyze the individual patient data from
that trial and the same summary data used in Problem 5.
This approach has the potential to enhance the analysis of
metupezil dose-response by (1) borrowing information from prior
data and (2) permitting more precise comparative inferences.
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Hands-on Problem 6: The data
Post-baseline sample means and sample variances for ADAS-cog
change from baseline from published sources

See Problem 5 for details.
Post-baseline ADAS-cog change from baseline observed in a
metupezil dose-response trial

Treatments
Placebo: 41 patients
Donepezil 5 mg/d: 33 patients
Metupezil 30 mg/d: 44 patients
Metupezil 60 mg/d: 39 patients
Metupezil 120 mg/d: 39 patients

Observations at 6, 12, 18 and 24 weeks
Hands-on exercise

Construct a model for ADAS-cog change from baseline as a
function of drug, daily dose, time and possibly other covariates.

Summary data file: adasCog2HandsOn/donepezilAdasData.csv
Individual patient data file: adasCog2HandsOn/metupezil.csv
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Metupezil individual data
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Metupezil individual data
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Hands-on Problem 6 MBMA of donepezil and metupezil

Metupezil individual data
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Incorporating a broader range of data and knowledge

Incorporating a broader range of data and knowledge

So far the course has focused on MBMA as a somewhat isolated
process. Logically it should be an integral part of a larger model-based
effort to support decision-making. Elements of such an approach
include:

Leveraging the Bayesian framework to incorporate additional
quantitative knowledge via informative prior distributions

This may (and probably should) include use of more mechanistic
models in which the parameters have more direct physiologic
interpretation. Prior quantitative knowledge about such parameters
might be obtained from a variety of sources.

Integrating models of the relationships among preclinical,
biomarker and clinical outcome data to improve prediction and
decision-making in early clinical development

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 299 / 372

Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Trial simulation to design a Phase II dose finding
strategy

Example illustrating integration of several Bayesian M&S
components including:

Model-based meta-analysis
Modeling of a preclinical-to-clinical relationship
Bayesian trial analysis including use of prior information and
adaptive elements
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Trial simulation to design a Phase II dose finding
strategy

Phase II objective: Efficiently find a dose of drug X that:
Is at least non-inferior to the standard of care (drug R 10 mg/d) with
respect to both efficacy and safety.
With sufficient certainty that we can risk a Phase III program with
only one dose level.

Efficacy
Decrease in fraction of patients with a disease-related event

Probable dose-limiting AE
Same biological mechanism as efficacy
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Available information
Drug X:

Clinical pharmacokinetics from Phase I.
Pre-clinical response thought to be predictive of clinical outcomes
related to mechanism of action (both efficacy and dose-limiting AE)

Data for drug X and competitors

Public-source data:
5 marketed drugs, 27 clinical trials, 77 treatment arms
Disease-related events

Number of patients with events and total number of patients for each
treatment arm

Dose-limiting AEs
Number of patients with events and total number of patients for each
treatment arm

Pharmacokinetics
Mean clearance

Two categories of patients known to have different risks for both
disease events and AEs (designated group 1 and group 2)
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Modeling strategy: Simultaneously model pre-clinical biomarker
and frequency of clinical efficacy and AE events
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Implementing the modeling strategy

Hierarchical model
Binomial models for numbers of disease and adverse events
Normal model for preclinical responses
Inter-trial variation in clinical response
Inter-drug variation in the preclinical-to-clinical model to account for
model misspecification

Bayesian data analysis
Implemented with WinBUGS

Easy to implement complicated probabilistic structure
Rigorous approach to quantifying uncertainty in model parameters
and predictions

Relatively non-informative priors
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Integrated preclinical-clinical model: disease event,
AE and preclinical response

Preclinical response sub-model
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Integrated preclinical-clinical model: disease event,
AE and preclinical response

Disease event sub-model
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Integrated preclinical-clinical model: disease event,
AE and preclinical response

AE sub-model

This is a simplified description of the model. The gory details are available on request.
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Inhibition of preclinical response
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Prevention of disease event: Dose-response by drug
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Major AE: Dose-response by drug

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 310 / 372



Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Preclinical-to-clinical outcome: Modeled relationships
between preclinical and clinical potencies
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Modeling of disease events and AEs lead to consistent
but highly uncertain predictions of the drug X dose
equivalent to drug R 10 mg/d
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Clinical design and analysis options considered
Number of patients per treatment arm (210, 630 or 1050)
Number (5 or 7) and spacing (linear- or log-spaced) of doses
Trial analysis

Dose-response modeling using conventional logistic regression
Bayesian modeling using prior information, e.g., the dose-response
model described in the previous slides
In either case the dose-response model is used to select a dose
with efficacy equivalent to drug R 10 mg/d

Adaptive pruning of treatment arms for lack of efficacy or excess
AEs

Based on frequentist confidence intervals and observed fraction of
events for drug R 10 mg/d
Based on posterior probabilities from Bayesian modeling

Trial performance is assessed by whether the selected dose is
non-inferior to drug R 10 mg/d (under the simulated truth)

Fraction of simulated trials where Pr(disease event) and Pr(AE) at
the selected dose are less than 1.25 times that for drug R 10 mg/d
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Trial simulation results: Effects of number and spacing
of doses and sample size

Results using logistic
regression without prior
information

Best performance is seen
with 7 log-spaced doses

Only trials with ≥1050
patients offer sufficient
certainty to consider risking
a Phase III program with
only one dose level.
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Trial simulation results: Impact of using prior information

Bayesian modeling using prior
information

Increases the probability of
selecting a non-inferior
dose, particularly in trials
with smaller sample sizes

Also improves the
probability of making
correct pruning decisions

Bottom line: Simulations led to more efficient designs that can find a non-inferior
dose with high probability
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Incorporating a broader range of data and knowledge Trial simulation to design a Phase II dose finding strategy

Summary of key points from the case study

Integration of pre-clinical and public-source clinical data permits
construction of a model for predicting clinical outcomes for the
NCE.
Leveraging prior information permits more efficient design and
analysis of a Phase II trial to select a dose for Phase III:

Optimizes range, number and spacing of doses
Adaptive pruning assigns patients to most relevant doses
Enhances characterization of dose-response and therefore dose
selection
=⇒ Shorter, more informative Phase II program
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Network Meta-analysis

Network meta-analysis
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Network Meta-analysis Introduction

What is Network meta-analysis?

Classical meta-analysis focuses on the direct pairwise comparison
of two treatments
In the MBMA examples weve considered, weve implicitly been
making comparisons between treatments using a combination of
direct comparisons and indirect comparisons.
Network meta-analysis (aka mixed treatment comparisons meta
analysis or indirect comparisons meta-analysis) is an extension of
classical meta-analysis methods to do the same thing
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Network Meta-analysis Introduction

What is Network meta-analysis?

There has been a tremendous amount of theoretical work done on
NMA over the past 10 years.
This has led to a very rich set of papers. . . Well only cover the
basics and point you to some additional interesting and important
papers.
While NMA has a developed theoretical background (unlike
MBMA) it is still not without its detractors . . .
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Network Meta-analysis Introduction

A few references to get started
General background

Dias, S., Welton, N.J., Sutton, A.J. & Ades, A.E. NICE DSU Technical Support Document 2: A Generalised Linear
Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011; last updated
March 2013; available from http://www.nicedsu.org.uk

Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, Lee K, Boersma C, Annemans L, Cappelleri JC.
Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the
ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value Health. 2011
Jun;14(4):417-28.

David C. Hoaglin, Neil Hawkins, Jeroen P. Jansen, David A. Scott, Robbin Itzler, Joseph C. Cappelleri, Cornelis Boersma,
David Thompson, Kay M. Larholt, Mireya Diaz, Annabel Barrett, Conducting Indirect-Treatment-Comparison and
Network-Meta-Analysis Studies: Report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research
Practices: Part 2, Value in Health, Volume 14, Issue 4, June 2011, Pages 429-437

Classic references
Bucher HC, Guyatt GH, Griffith LE, Walter SD. The Results of Direct and Indirect Treatment Comparisons in
Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Epidemiology 1997;50:683-691.

Lumley T. Network meta-analysis for indirect treatment comparisons. Statistics in Medicine 2002;21:2313-2324

Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine
2004;23:3105-3124.

Salanti, G., Higgins, J.P.T., Ades, A.E., Ioannidis, J.P.A. Evaluation of networks of randomized trials. Statistical Methods
in Medical Research 2008; 17(3):279-301.
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Network Meta-analysis Motivating Example

A network meta-analysis of treatments for depression

Ramsberg J, Asseburg C, and Henriksson M. (2012) Effectiveness and Cost-Effectiveness of Antidepressants in Primary Care: A

Multiple Treatment Comparison Meta- Analysis and Cost-Effectiveness Model. PLoS ONE 7(8): e42003.
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Network Meta-analysis Motivating Example

A network meta-analysis of treatments for depression

There were 73 studies for these 10 treatments.

Ramsberg J, Asseburg C, and Henriksson M. (2012) Effectiveness and Cost-Effectiveness of Antidepressants in Primary Care: A

Multiple Treatment Comparison Meta- Analysis and Cost-Effectiveness Model. PLoS ONE 7(8): e42003.
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Network Meta-analysis Motivating Example

A network meta-analysis of treatments for depression
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Duloxetine

Escitalopram

Fluoxetine

Fluvoxamine

Mirtazapine

Paroxetine

Reboxetine

Sertraline

Venlafaxine

As an example, we’ll
focus on the network
meta-analysis of
remission rates among
these 10 treatments for
depression:

Citalopram,
Duloxetine,
Escitalopram,
Fluoxetine,
Fluvoxamine,
Mirtazapine,
Paroxetine,
Reboxetine,
Sertraline,
Venlafaxine
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Network Meta-analysis Motivating Example

Ramsberg data

Here are a few rows of the data from the Ramsberg paper.

Study Drug.1 Drug.2 N.drug.1 Remission.drug.1 N.drug.2 Remission.drug.2
Ventura et al 2007 Escitalopram Sertraline 104 51 107 57
Behnke et al 2003 Mirtazapine Sertraline 171 76 168 73
Rossini et al 2005 Sertraline Fluvoxamine 48 25 40 28
Haffmans et al 1996 Citalopram Fluvoxamine 108 15 109 9
Schwartz et al 2002 Reboxetine Venlafaxine 80 20 87 21
Blier et al 2009 Mirtazapine Paroxetine 21 4 19 5

They also report covariate values for duration of study and
setting.
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Network Meta-analysis Review pair-wise comparisons

Consider two pairwise comparisons

Let’s recall the models we used for pairwise comparisons.

We’ll focus on the Venlafaxine vs. Sertraline (n=5) and Venlafaxine vs.
Paroxetine (n=7) comparisions.

We would model these two differences separately, using models
similar to this one for the V vs. S data:

Yij ∼ Binomial(Nij ,pij)

logit
(
pij
)

= µi,V + δi,VS × I (j = S)

δi,VS ∼ N
(

∆VS, τ
2
VS

)
where i denotes study and j denotes treatment group - e.g., j ∈ {V,S}.
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Network Meta-analysis Review pair-wise comparisons

The pairwise models

The objective would be to estimate
∆VS = mean difference in log odds betwen S and V
∆VP = mean difference in log odds betwen S and V
τ2

VS = the between-study variances in log odds in S-V studies
τ2

VP = the between-study variances in log odds in P-V studies

We would use only the direct, head-to-head data to estimate these
parameters and would estimate them separately.

The assumption δi,VS ∼ N
(
∆VS, τ

2
VS

)
means that the δi,VS ’s are

exchangeable across the V-S studies.

What if we are interested in the difference between Paroxetine and
Sertraline?
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Network Meta-analysis Review pair-wise comparisons

Use of indirect evidence

For the P-S comparision we have one study with direct,
head-to-head comparison

From that study, we could estimate ∆PS directly from the
head-to-head data.

However, we also have some information from the indirect
comparisions through Venlafaxine (and also Mirtazapine).

From the Venlafaxine studies, we can get an indirect estimate using
∆VP −∆VS

If we assume the direct and indirect evidence are consistent, then
we can combine the direct and indirect effects

∆PS = ∆VP −∆VS
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Network Meta-analysis Review pair-wise comparisons

The consistency assumption

The consistency assumption is necessary to make the network
meta-analysis inference theoretically justifiable.

Within a study the consistency assumption holds by definition.
That is, in a 3-arm study δi,PS = δi,VP − δi,VS

The assumption is a property of loops of evidence, not of specific
head-to-head comparisons

It can only be evaluated when there is both direct and indirect
information
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Network Meta-analysis Review pair-wise comparisons

When might consistency not-hold?

Consistency might not hold when there is a covariate that affects
the treatment effects which is also imbalanced across the studies.

Suppose, we have the following:
∆VS = ∆VP = 0 in men
∆VS = ∆VP = 2 in women
In a head-to-head trial, the direct effect estimate is ∆direct

SP ≈ 0.

Now, suppose the V-S studies are mostly in men and the V-P
studies are mostly in women.

The estimate of ∆VP (ignoring the sex effect) is close to 0
The estimate of ∆VS (ignoring the sex effect) is close to 2
Based on the indirect evidence, ∆indirect

SP = ∆VS −∆VP ≈ 2

In this case, the direct and indirect estimates are not consistent
with each other.
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Network Meta-analysis Review pair-wise comparisons

The network meta-analysis model
Let’s assume (for now) that all studies are two-arm studies.

Under the consistency assumption, we have fewer identifiable
parameters than actual comparisions.

For example, for the P-S-V loop there are three comparisons:
∆VP ,∆VS, and ∆SP .

However, we only need to define (#treatments − 1) treatment
differences because we can derive all of the others from these.

These T − 1 parameters are called the fundamental parameters
but are somewhat arbitrary.

Conventionally, they are chosen to be the pair-wise differences from
a single reference treatment.
For the depression analysis, we’ll use Venlafaxine because all
drugs (but not all studies) have that as a reference point.
Note, that we can use any of the treatments as the reference
treatment.

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 330 / 372



Network Meta-analysis A statistical model for two-arm studies

The network meta-analysis model
We’ll start by giving numeric labels to all treatments, with the
reference treatment getting a value of 1.

E.g., Venlafaxine=1, Citalopram=2, Duloxetine=3, . . . ,
Reboxetine=9, Sertraline=10

We define a data variable, tij that defines which treatment the j th

arm in the i th study receives.
By convention, j = 1 for the reference treatment in the i th study.
For example, if study i compares Citalopram and Venlafaxine then
ti1 = 1 (Venlafaxine) and ti2 = 2 (Citalopram)
If study i compares Reboxetine and Sertraline, then ti1 = 9
(Reboxetine) and ti2 = 10 (Sertraline)

The fundamental parameters are the pairwise differences from
treatment 1: ∆2,∆3, . . . ,∆10

By defintion ∆1 = 0
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Network Meta-analysis A statistical model for two-arm studies

The network meta-analysis model
With that notation, the network meta-analysis model for the depression
data is:

Yij ∼ Binomial
(
Nij ,pij

)
logit

(
pij
)

= µi + δij

δi2 ∼ N
(

∆ti2 −∆ti1 , τ
2
)

δi1 = 0

where

i = 1, . . . ,# studies
j = 1,2 (for now, we assume 2 arms per study)

µi = log odds of remission in the control treatment in study i
δi2 = difference between treatment ti2 and treatment ti1
τ2 = between study variance in treatment differences
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Network Meta-analysis A statistical model for two-arm studies

Exchangeability as a way to consistency

This seemingly small part of the model is very important:

δij ∼ N
(

∆tij −∆ti1 , τ
2
)

This says that the δij values are exchangeable across all studies in
the network, not just the studies that involve that particular
comparison!

Suppose Study i compares Citalopram and Venlafaxine and study j
compares Sertraline and Venlafaxine. There is a hypothetical
(unobserved) comparision of Sertraline and Venalfaxine in study i that
coms from the same distribution as study j .

As a result of this assumption, consistency in the network
automatically follows. Consistency is not an additional assumption.
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Network Meta-analysis A statistical model for two-arm studies

Key assumptions of network meta-analysis model

Study-specific treatment effects are exchangeable across all
studies

Implies consistency in the network

Equal variance, τ2, for all between-study effects
This can be relaxed.
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Network Meta-analysis A statistical model for two-arm studies

Evaluating the consistency assumption
This is an active area of research. Commonly used approaches
include:

For simple networks
Bucher method for single loops of evidence - a statistical test
comparing direct and indirect estimates

For more general networks
Repeated application of Bucher’s method
Fitting an inconsistency model - assuming no consistency in the
network - and compare results (model fit and posterior summary
values) to those from the standard model
Node splitting (Dias et al. 2010)

Dias, S., Welton, N.J., Sutton, A.J., Caldwell, D.M., Guobing, L. and Ades, A.E. NICE DSU Technical Support Document 4.
Inconsistency in Networks of Evidence Based on Randomised Controlled Trials. 2011.

Dias, S., Welton, N. J., Caldwell, D. M., and Ades, A. E. Checking consistency in mixed treatment comparison meta analysis.
Statistics in Medicine 2010; 29 932-944.

Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR: Consistency and inconsistency in network meta-analysis: concepts
and models for multi-arm studies. Res Syn Meth 2012, 3(2):98110.
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Network Meta-analysis Return to the major depression remission data

Analyzing the depression network

We’ll perform the analysis using all drugs for which there are at least 2
studies, which is all of the original 10 except Reboxetine.

We have N = 72 trials in the resulting dataset and T = 9 treatments.

We’ll use Venlafaxine as our reference treatment and estimate
T − 1 = 8 parameters for the differences between the other treatments
and Venlafaxine.
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Network Meta-analysis Return to the major depression remission data

Analyzing the depression network
Our model for the number of remitters in arm j of study i is

Yij ∼ Binomial
(
Nij ,pij

)
logit

(
pij
)

= µi + δij

δi2 ∼ N
(

∆ti2 −∆ti1 , τ
2
)

δi1 = 0

where

i = 1, . . . ,72
j = 1,2
µi = log odds of remission in the control treatment in study i
δi2 = difference between treatment ti2 and treatment ti1
τ2 = between study variance in treatment differences
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Network Meta-analysis Return to the major depression remission data

Analyzing the depression network

We’ll fit the model using WinBUGS and use the following prior
distributions

µi ∼ N (0,1000) , i = 1, . . . ,72
∆j ∼ N (0,1000) , j = 2, . . . ,9
τ ∼ U (0,10)

We’ll review the WinBUGS code during the next lab session.
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Network Meta-analysis Return to the major depression remission data

How can we use the network model to compare
treatments?

Pairwise comparisons of effects (i.e., differences in ∆j values)

Comparisons of rank probabilities
Probability of being the best treatment
Probability of being one of the best 2 treatments
Median or average rank
Surface under the cumulative ranking curve (SUCRA) ([SAI11])

Probability of being within x% of the best treatment

Could also perform a more formal analysis using utilities
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Network Meta-analysis Return to the major depression remission data

Pairwise comparisons of effects
Sertraline vs. Venlafaxine

RE Model

0.18 0.38 0.79 1.68 3.56

Odds Ratio (log scale)

Sir et al 2005

S414

S402

Shelton et al 2006

Mehtonen et al 2000

1.23 [ 0.65 , 2.31 ]

1.07 [ 0.75 , 1.51 ]

0.74 [ 0.52 , 1.04 ]

0.64 [ 0.34 , 1.21 ]

0.52 [ 0.27 , 1.01 ]

0.83 [ 0.63 , 1.08 ]

0.83 [ 0.69 , 0.99 ]Network model

Paroxetine vs. Venlafaxine

RE Model

0.09 0.24 0.68 1.91 5.37

Odds Ratio (log scale)

Casabona et al 2002

S349

McPartlin et al 1998

Dufour et al 2001

S632

Salinas 1997

Ballus et al 2000

1.35 [ 0.61 , 2.98 ]

0.96 [ 0.49 , 1.88 ]

0.95 [ 0.63 , 1.43 ]

0.89 [ 0.58 , 1.36 ]

0.81 [ 0.34 , 1.93 ]

0.58 [ 0.33 , 1.00 ]

0.38 [ 0.16 , 0.92 ]

0.83 [ 0.67 , 1.03 ]

0.86 [ 0.74 , 1.00 ]Network model

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 340 / 372



Network Meta-analysis Return to the major depression remission data

Pairwise comparisons of effects

Paroxetine vs. Sertraline

FE Model

0.69 0.93 1.24 1.66 2.23

Odds Ratio (log scale)

.berg−Wistedt et al 2000 1.24 [ 0.82 , 1.89 ]

1.24 [ 0.82 , 1.89 ]

1.04 [ 0.84 , 1.29 ]Network model
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Comparision of rank probabilities

Posterior distributions of ranks
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Comparision of rank probabilities

Probability of treatment being the best
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Network Meta-analysis Network models for multi-arm trials

Extension of the model to multi-arm trials

Suppose now that we have trials that include more than two treatment
arms.

The framework which we presented previously can easily be extended
to include this situation.

Each multi-arm trial will have a vector of random effects, δi .

Each trial will have one fewer random effect than treatments (since
we’re modeling the differences within a study)

A three-arm trial will have two random effects, a four-arm trial will have
three random effects, etc.
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Network Meta-analysis Network models for multi-arm trials

Extension of the model to multi-arm trials

Under the assumption that all betwen-study effects have the same
variance, then

δi2 ∼ N
(

∆ti2 −∆ti1 , τ
2
)

becomes, for a 4-arm study

δi =

δi2
δi3
δi4

 ∼ MVN

∆ti2 −∆ti1
∆ti3 −∆ti1
∆ti4 −∆ti1

 , τ2

 1 1/2 1/2
1/2 1 1/2
1/2 1/2 1


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Network Meta-analysis Network models for multi-arm trials

Why is the correlation 0.5?

The correlation is 0.5 because we have assumed the between-study
variance is the same for all of the treatment differences.

This assumption implies that Var (δi2) = Var (δi3) = Var (δi2 − δi3).

From first principles and this assumption, we have

Var (δi2 − δi3) = Var (δi2) + Var (δi3)− 2Cov (δi2, δi3)

τ2 = τ2 + τ2 − 2Cov (δi2, δi3)

Cov (δi2, δi3) = τ 2/2

which means Corr (δi2, δi3) = 1/2.
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Network Meta-analysis Network models for multi-arm trials

Multi-arm network meta-analysis models for treatment
differences

When modeling treatment differences, there is an additional correlation
induced because the differences within a trial are taken with respect to
the same reference group.

This correlation does not arise from model assumptions but from the
data themselves.

The correlation can be calculated in closed-form. Specifically,
Cov (YAB,YAC) = Var (YA).
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Network Meta-analysis Network models for multi-arm trials

Multi-arm network meta-analysis models for treatment
differences

Using a 4-arm study as an example, the resulting model is

Y i =

Yi,21
Yi,31
Yi,41

 ∼ MVN

θi2
θi3
θi4

 ,

Vi2 se2
i1 se2

i1
se2

i1 Vi3 se2
i1

se2
i1 se2

i1 Vi4


θi =

θi2
θi3
θi4

 ∼ MVN

∆ti2 −∆ti1
∆ti3 −∆ti1
∆ti4 −∆ti1

 , τ2

 1 1/2 1/2
1/2 1 1/2
1/2 1/2 1


where Vij is the variance of difference between arms j and 1 and sei1
is the standard error of the response in group 1.
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Network Meta-analysis Network meta-analysis vs. MBMA

How does Network meta-analysis compare to MBMA?

Both approaches account for multiple treatment comparisions and
make use of indirect comparisons to make inferences.

NMA has been developed with regard to the theory and there are
many examples in the peer-reviewed literature.

Let’s look at an example . . . .
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Network Meta-analysis Network meta-analysis vs. MBMA

Recall the ADAS-cog data

Week

C
ha

ng
e 

fr
om

 b
as

el
in

e 
A

D
A

S
−

co
g

−4
−2

0
2
4

10 20 30 40 50

●

●●
●●

●
●

●●●●
●

●

●
● ● ●

●

●

● ● ● ●

●

1 2

10 20 30 40 50

6

●
●
●●●●

●
●

●
●
●●

●

●

●

●
●●

7

10 20 30 40 50

●

● ●
●

●●

● ● ● ●

8

9 11

●
●

●
●●●●

13 16

−4
−2
0
2
4

22
−4
−2

0
2
4

●

●
● ●

●

●

23

●

● ●

26 30 31 33

34

●

●
●

●

35 36 39

−4
−2
0
2
4

107
−4
−2

0
2
4

●
●

●
● ●

●
●

111

10 20 30 40 50

115

donepezil
galantamine

placebo
rivastigmine

● ● ●

©2013 Metrum Institute Model-based Meta-analysis Spring 2013 350 / 372



Network Meta-analysis Network meta-analysis vs. MBMA

Recall the ADAS-cog data

We will focus on the
12 studies that
evaluated registered
doses of donpezil,
galantamine and
rivastigmine and
have Month 6 data.

donepezil 10 mg

donepezil 5 mg

galantamine

placebo

rivastigmine

2

14

4

3
2
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Network Meta-analysis Network meta-analysis vs. MBMA

There are a number of potential objectives of interest

What are the relative effects of marketed doses at Month 6?

Donepezil 10 mg vs. placebo
Donepezil 10 mg vs. Galantamine 24 mg
Donepezil 10 mg. vs. Rivastigmine

What are the effects at other time points (e.g., Months 1, 3, 12)?

What are the effects at other doses?

What is the rate of change (disease progression) in this patient
population?

What is the effect and/or rate of change in different populations?
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Network Meta-analysis Network meta-analysis vs. MBMA

For the ADAS-cog data, we will use a model very similar to the longitudinal
dose-response model published by Ito et al. (2009):

Yijk = η1i + αi · tijk + β ·
(

e−Keq·tijk − e−Kel·tijk
)

+
Emaxj ·

(
dijk
RDj

)θj

· tijk
ET50j · eη3i + tijk

+ εijk

where

αi = α + η2i

i indexes study, j indexes treatment arm, k indexes visit

Emaxj , ET50j , and θj are drug-specific parameters.

ηi = (η1i , η2i , η3i )
T ∼ MVN(0,Ω)

εijk ∼ N(0, σ2/Nijk )
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Network Meta-analysis Network meta-analysis vs. MBMA

Estimating differences with the MBMA model

The traditional and network meta-analysis models, model the difference
between groups directly.

With the MBMA model, we derive these from the model. For example, at
Month 6

δi,D10 =
EmaxD ·

( 10
5

)θD · 6
ET50D · eη3i + 6

and

∆D10 = median[δi,D10] =
EmaxD ·

( 10
5

)θD · 6
ET50D + 6
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Analysis of ADAS-cog data
Compare estimates and uncertainty from various models and
approaches

Donepezil 10 mg vs. placebo at Month 6

Direct and indirect evidence of effect

Donepezil 10 mg vs Galantamine 24 mg at Month 6

Limited direct evidence + indirect evidence

Donepezil 10 mg vs. Rivastigmine at Month 6

Indirect evidence only

Effects of donepezil at doses other than 5 and 10 mg

Indirect evidence via the model
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Network Meta-analysis Network meta-analysis vs. MBMA

Donepezil 10 mg vs. Placebo at Month 6

−8 −6 −4 −2 0 2

Difference from placebo

Study 26

Study 23

Study 8

Study 1

−2.09 [ −4.94 ,  0.76 ]

−3.89 [ −6.98 , −0.80 ]

−2.80 [ −3.86 , −1.74 ]

−2.88 [ −4.27 , −1.49 ]

−2.86 [ −4.20 , −1.58 ]Pairwise meta−analysis

−2.84 [ −3.73 , −2.00 ]Network meta−analysis

−2.80 [ −3.35 , −2.26 ]Model−based meta−analysis
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Donepezil 10 mg vs. Galantamine at Month 6

−3 −2 −1 0 1 2

Donepezil 10 mg − Galantamine 24 mg

Study 35 −0.27 [ −2.40 , 1.86 ]

0.20 [ −0.92 , 1.26 ]Network meta−analysis

0.13 [ −0.98 , 1.16 ]Model−based meta−analysis
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Donepezil 10 mg vs. Rivastigmine at Month 6

−3 −2 −1 0 1 2

Donepezil 10 mg − Rivastigmine

−0.41 [ −1.78 , 0.90 ]Network meta−analysis

−0.34 [ −1.15 , 0.63 ]Model−based meta−analysis
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Donepezil dose response at Month 6
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