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Quantification of Covariate Effects for Labeling

Points to Consider when Making Inferences 
about Covariates
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Informing the Drug Label: Dosage and Administration
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Informing the Drug Label: Special Populations
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Informing the Drug Label: Drug Interactions
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Informing the Drug Label: Special Populations (zoom-in)
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Informing the Drug Label: Study Design and Analysis

- Dedicated Clinical Pharmacology Studies
Ø Single clinical trial with primary goal of assessing covariate effect
Ø Randomization, Stratification, Test and Reference Control
Ø Sample size justification based on expected power
Ø Typically, otherwise healthy volunteers
Ø Extensive PK sampling and simple data analysis (NCA)
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Informing the Drug Label: Age and Gender (Model-Based)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020699s107lbl.pdf
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Informing the Drug Label: Study Design and Analysis

- Population PK(PD) Studies
Ø Often pooled data – cross-study comparisons
Ø Covariate effect assessment is not primary goal
Ø Typically no randomization, stratification, or control for covariates
Ø Target patient population
Ø Model-based analysis
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Correlation and Collinearity
Covariate effects to be included in model 
should be independent, e.g. they carry 
unique information.

Rule of thumb: 
Be cautious when   |corr. coef.| > 0.3

See:
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Appropriate Inference About Covariates?
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Appropriate Inference About Covariates?
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Statement of the Problem

How to inform labeling given sparse population PK(PD) 
data and model-based analyses?

ØIndependent (marginal) inferences about each covariate
ØAccurate estimation of covariate effect magnitude
ØPrecision of covariate effect estimate



13Gastonguay ACoP2017 Covariate Effects for Labeling

Different Objectives of Covariate Model Development

- Understand causes of variability and apply the knowledge
ØFor better clinical therapeutic use (dosing, adjustment, labeling)
ØTo allow for better control in clinical trials
ØIn other words, make causal inferences about covariate effects from 

modeling results

- Improve predictions of the dependent variable
ØFor subjects in the current data set
ØFor simulation of future studies
ØFor future patients
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Inferences Based on Posterior Distribution of Effect
First, define effect magnitude likely to be clinically 
important (e.g. greater than +/- 20% of null value)

Clinically Important: Entire 95% interval of posterior 
distribution for covariate effect lies within clinically 
important region (always SS)

Not Clinically Important: Entire 95% interval of 
posterior distribution for covariate effect lies within 
clinically unimportant region. May be important in 
combination with other effects. (NSS or SS)

Insufficient Information: 95% interval of posterior 
distribution for covariate effect spans across values of 
covariate effect that are both clinically important and 
unimportant. (NSS or SS)

Or… Probabilistic Approach: Quantitatively describe 
probability of being clinically important using posterior 
distribution and reference range.

3   37     60

0.8     1     1.2     1.4    1.6
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Estimation of Effect Magnitude and Precision vs. Stepwise P-Value

Summary of 42 population analyses (32 PK, 10 PD)
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A Purpose-Driven Parsimony Principle

“When competing hypotheses are equal in other respects, select 
the hypothesis that introduces the fewest assumptions and 
postulates the fewest entities while still sufficiently answering the 
question.” -Occam's razor

- Stepwise p-value reduced models do not allow for inferences 
about “non-significant” covariate effects and result in biased 
standard errors and point estimates. They do not sufficiently 
answer the question about clinical importance of covariate effects.

- For the purpose of making inferences about covariate effects, a 
model which includes the covariates of interest is the most 
parsimonious model.
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Pre-Specified Covariate Plan

Covariate Model Parameters Rationale
Weight CL, V1, Q, V2 Clinical interest
Age CL Clinical interest
Race CL, V1 Clinical interest. 

Bridging goal.
Disease State Type CL Clinical interest
Child-Pugh Score CL Clinical interest. Prior 

knowledge of hepatic 
elimination mechanism; 
CYP3A4

Drug X Interaction CL Clinical interest. Known 
CYP3A4 inhibitor and 
common con-med

etc…
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“The data analyst knows more than the computer… 
failure to use that knowledge produces inadequate 
data analysis”.

- Henderson and Velleman. Building multiple regression models interactively. 1981, Biometrics 37: 
391–411.
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