
Blockchain Do It Yourself
Manual

DECEMBER 2018

Introduction 3
—

Build our blockchain demo application 5

1. The use case: Car tires 6
–

2. The issues: Complex bookkeeping and fraud 7
–

3. Why and how blockchain can be applied 7
–

4. Building a blockchain business network with Hyperledger Fabric 10
–

Build your own blockchain application 12

1. Create your own blockchain network 14
–

2. About support 26
–

TABLE OF CONTENTS

There is no shortage on blockchain news, one of the most
hyped technologies of 2018. It is, or was, supposed to "revolu
tionize the world economy" but so far we haven’t seen a mass
adoption of this technology. This has led to a lot of criticism
on the real potential of blockchain which is, if you’re a believer
of hype cycles, nothing to worry about. Technologies come,
go and reach maturity over time and we see no reason to
assume that this is will be any different for blockchain.

What we learned these last 4 years is that actual working
applications are a great way of learning what blockchain can
do. At first such an experiment would come at a significant
cost and would not deliver all the desired learnings. As a
response we started to develop a toolkit that would allow us
build a simple blockchainbased solution that would offer as
much insights as possible at an unprecedented value. We
succeeded and thanks to our toolkit we were able to deliver
a proofofconcept in one week for as little as € 9.990.

2019 Will be the year where more applications based on
blockchain technology will surface and we’re currently work
ing with our customers to make this happen. We want every
one to understand what blockchain has to offer and we feel
the best way to do so is to open source our toolkit so you can
try blockchain for yourself. We hope our blockchain toolkit
will increase your understanding of blockchain technology
without taking too much of your time, or breaking your bank.

Our toolkit helped many customers and now it is available
for you to download for free. This manual explains how you
can create a blockchain network and how you can customize
it to fit your needs. Each chapter starts with an explanation
and provides a list of actions you should perform to use the
template. First we explain our recycle business case to you
in detail and provide instructions to get it up and running
on your own Mac or PC so you can try it out for yourself. If
you’re interested to build your own blockchain application
the rest of the manual introduces you to our sample project
on GitHub which you can use as a boilerplate for your own
application. Everything is explained step by step and the de
ployment processes is fully automated which will save you a
lot of time.

Please keep in mind that this toolkit is meant to be used in
the first phase of blockchain projects. We strongly advise not
to use any application that is built with this toolkit in produc
tion. The sole purpose of this toolkit is to experiment with
blockchain technology and to build applications for demo
purposes. By walking through the steps you’ll also learn how
to use the Hyperledger Composer development tools.

Build our blockchain
demo application

6

—

1 https://www.bna.com/beyondbitcoinblockchainn73014476900/

2 https://www.allerin.com/blog/recyclingwithblockchainhowcoolisthat

3 https://www.tudelft.nl/en/delftoutlook/articles/circulariseusesblockchaintechnologytotracerawmaterials/

Blockchain technology is perceived by some1,2 to solve long outstanding
issues in the supply chain of waste management. So far the adoption of this
technology is not yet widespread but there are some interesting solutions
that show great potential such as the one built by Circularise3. In this manual
we outline how blockchain technology can be used to a) decrease cost by
reducing administrative overhead and b) incentivize parties to conduct their
business more honestly in the recycling industry. We will translate our ideas
into a working application using our toolkit to explain the impact of this new
and exciting technology.

1. The use case: Car tires
In countries where the collection of used car
tires is regulated there is usually a (nonprofit)
organization that collects fees when car tires are
imported and uses these fees to pay for the recy

cling of these tires. For example in the Nether
lands this is done by RecyBEM, for Belgium this
would be Recytyre and in Ireland it’s Repak ELT.
A general process would look like this:

When tires are imported (or manufactured in a
county) a recycling fee is paid for each tire to an
organization, labeled as a collecting agency in

the illustration above. This collecting agency will
later pay out to recycling companies when the
tires are endoflife.

MANUFACTURER

COLLECTING AGENCY

DISTRIBUTOR RETAILER CAR OWNER RECYCLING

7

2. The issues: Complex bookkeeping and fraud
In these systems there are 2 key challenges that
we would want to solve. The first challenge is the
high administrative cost resulting from the way
payments are structured. The second challenge
is related to fraud due to grey import of tires that
are offered to recycling companies.

By law it is the owner of the car who should pay
the recycling fee and ideally that fee is depos
ited directly into a fund to prevent unnecessary
transfers. Today these funds are transferred from
entity to entity depending on how the tires are
transferred through the value chain. This makes
accountability easier from a followthemoney

perspective but also has its disadvantages. First it
requires each party to keep a record of all incom
ing and outgoing payments, second this method
locks up expensive working capital as each party
is obliged to finance the recycling fee upfront.

The other problem is fraud at the end of the
chain. As there is no traceability of tires being
sold more tires can be offered to recycling
stations. This problem is outlined in the year
report4 of Recytyre, for the Belgian market
109,90% of the tires sold are offered for recy
cling, an excess of 7.543 tons.

3. Why and how blockchain can be applied
A blockchain is in fact a shared ledger that is
distributed across multiple participants. This is a
different architecture than what we mostly use
today which is a centralized architecture. In a
centralized architecture there is one controlling
party that all other parties must trust. A cen
tralized architecture aligns nicely with a lot of
use cases that exist today such as a loyalty card
scheme where the users that save points trust
the organization to pay out on a later date. In
cases where fraud amongst the parties is sus
pected this architecture could be challenged by
some of the parties. This is also the case where
value is exchanged between parties and where
parties are incentivized to act dishonestly in order

to protect themselves. In our case the recycle fee
income stream is divided amongst the recycling
parties based on the amount of tires they col
lect. If their competitors collect more tires from
the grey market than they do they will receive a
lower fee which will impact their financial results.

The other challenge we highlighted was that of
high financing cost due to the obligation to pay all
fees upfront. If there was a system that all par
ties could use to prove to the regulator that there
were no unaccounted tires in the entire supply
chain they could eliminate the reason for upfront
financing and collect the fees at the Point of Sale
when the tires are bought by a customer.

—

4 http://www.recytyre.be/media/89990/jaarverslag%202017%20recytyre%20%20pdf.pdf

8

To summarize a system that could make the
internal accounting of recycled tires transpar
ent to all parties could help to tackle fraud and

to prevent unnecessary upfront funding. Such a
system could look like this:

In our alternative design we applied blockchain
technology as a shared ledger for all parties.
The new process flow would look like this:

1. Manufacturers report on the ledger how
many tires they have produced for a country.

2. When tires are sold to a distributor both the
manufacturer and the distributor confirm
the sale on the ledger. This means that the
manufacturer remains responsible for all
tires he produced and can’t allocate them
without consent.

3. For the distributor the process is similar. When
the tires are sold to the retailer both parties
have to acknowledge the sale on the ledger.

These steps no longer require any upfront financ
ing. The ledger can prove at any point how many
tires a party holds. Tires that were “lost” will
remain in the account of the party who lost them.
It is possible to make tires expire automatically
after a specific period of time, upon expiration
the party that holds them is then automatically
billed for the recycle fees.

MANUFACTURER

COLLECTING AGENCY

DISTRIBUTOR RETAILER

SHARED LEDGER

CAR OWNER RECYCLING

Verify and claimReport imported/sold

Report sold VF23VRHYF42356165

9

The rest of the process looks like this:

4. When the retailer sells the tires to a con
sumer he marks the tires as sold on the
ledger and logs the VIN number of the car
on which the tires will be fitted. The retailer
will also deposit the recycle fee with the col
lecting agency.

5. When the car owner wants to dispose of the
tires he submits the VIN number to the recy
cling party. If there is no sale of tires to this
VIN number on the ledger the owner has
acquired these tires from i.e. another coun
try and will need to pay the recycle fee.

6. The recycling company marks the tires as
recycled and receives (a part of) the recycling
fee from the collecting agency.

By registering the VIN number with the tires the
loophole is closed and recycling parties can’t
claim recycling fees for tires for which they can’t
provide a VIN number. While we will use this
approach for our use case and POC demonstra
tion this approach is not fully “watertight” and we
want to highlight some of the concerns that arose
during our research:

Today tires are measured in weight,
no by VIN number
When tires are collected and transported they
are usually weighted and compensation is calcu
lated based on weight. To facilitate this procedure
we could look up the average weight of that tire
and use that to exchange compensation between

collectors and recycling parties. Using this method
implies shifting some of today’s challenges to
the “edge” of the supply chain which should be
researched further to make sure it is an accept
able offer to make in comparison to the losses.
Capturing and understanding the objections and
benefits of all affected parties when introducing
a new process is key in the adoption, or rejection,
of new solutions.

Logging VIN numbers is time consuming/
error prone for the retailer
To some it would make more sense to use a
license plate as it’s easier to memorize but a
license plate is not always tied to a car, depend
ing on which country you reside in. I.e. in The
Netherlands a license plate is issued when a car
is imported but in Belgium a license plate is issued
to a person5 and you can take the license plate
off when you sell your car. A compromise could
be sought in acquiring access to national license
plate registries to do a lookup of the VIN number
based on the license plate at that time.

It would be better to track individual tires
Tires have a DOT serial number6 which could be
used to individually register each tire. This would
make the system completely foolproof but it is
very time consuming to locate and enter each
DOT number manually. RFID is currently research
by the tire industry 7 which would solve some of
the problems mentioned as the technology can
be used to scan tires in bulk at a high speed.

—

5 https://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Belgium

6 http://www.bridgestone.co.in/HowToReadTyreSideWall.aspx

7 https://www.rubbernews.com/article/20180621/NEWS/180629982/columnrfidistransformingthetireindustry

10

4. Building a blockchain business network
with Hyperledger Fabric

Based on our research we found at least 2 use
cases for the tire recycling industry that are worth
exploring. Next we want to validate the following:
 Can blockchain technology be applied as

outlined above?
 Can the expected benefits be realized?
 Are the processes feasible to implement?
 Did we miss anything? (either good or bad)
 What would be a logical next step for all

parties?

In order to solicit constructive feedback from the
various parties in the supply chain we will build
an applications using our toolkit that will demon
strate the functionality that we intended. In the
next chapter we’ll demonstrate how to do this.
For this application we will use the Hyperledger
Fabric blockchain and if you follow the steps below
you’ll have it running in no time.

1. Install prerequisites
To run the template on your local machine you need to install Git and Docker.

1.1 Download and install Git for your OS from https://gitscm.com/book/en/v2/
GettingStartedInstallingGit . Git is used to clone the template project from our public
repository on Github. On Windows you’ll need to run this command as Administrator
after installing: git config --system core.longpaths true && git config --global core.eol lf
&& git config --global core.autocrlf input.

1.2 Install Docker from https://www.docker.com/getstarted . You’ll need to create a (free)
Docker community account. Docker is used to build and deploy your blockchain network.
Start docker on your local machine and login to your account. Linux users will also need
to install dockercompose.

2. Clone the template from the public Github repository
Clone the project in a folder on your local machine with the following command in a terminal:
git clone https://github.com/cegeka/hyperledgerrecyclingpoc

When you have successfully copied the project, you can navigate into the newly created
folder: cd hyperledger-recycling-poc

11

3. Start the blockchain network
Deployment is fully automated via a dockercompose container to initialize & deploy
the blockchain network. Navigate to the docker folder (cd docker) and run the following
command:

For MacOS and Linux: sudo ./composer-setup.sh
For Windows (run cmd as Administrator): composer-setup.bat

After about 15 minutes you can use your application by opening http://localhost:8080 in your
web browser. As a first step you can login as an administrator (user = “admin”, password = “”)
to list all the users in your application (there are no passwords set for any of the users).
To try our the use case, you can login as a manufacturer, distributor, retailer or recycling
station. You can create a tire as a manufacturer and transfer it to a distributor, sell it to a
retailer, put the tire on a car and recycle it as a last step.

Build your
own blockchain

application

13

Cegeka built the Hyperledger Composer Angular Quick-start template to
speed up development of blockchain proof-of-concept projects. If you have
a basic understanding of JavaScript and the Angular framework you will be
able to clone our sample project and create your own blockchain application
in no time.

This manual will help you to quickly start Hyperledger Composer projects
and interact with them through a web frontend. It contains a basic backend
(server folder) built on top of the standard composer-rest-server npm
package with additional scripts to build & deploy the business network
and a frontend application (client folder) with basic user management and
transaction monitoring8. The project contains a fully self-contained Docker-
compose deployment environment (docker folder) that can be used for
production servers.

This manual does not cover the design of a business network. Excellent guides
that cover this in great detail can be found at https://hyperledger.github.io/
composer/latest/tutorials/tutorials .

We accept pull requests should you run into any problems and decide to fix
them yourself. If you’re keen to get started with Ethereum instead we highly
recommend using Microsoft’s Azure Blockchain Workbench solution found
at https://azure.microsoft.com/en-us/features/blockchain-workbench/ .

—

8 The transaction monitoring (explorer) is currently disabled but will be fixed in Q1 2019

14

1. Create your own blockchain network
Before building your application you first need
to create a business network to connect to the
frontend application. Hyperledger Composer has
overly simplified the process of building business
networks. Even if you don’t have programming
skills, you can still create a simple business net
work with this manual.

Every business network that you built with Hyper
ledger consists of 3 base resources: Assets, Partic
ipants and Transactions. Simply out, a participant
can interact with assets by writing a transaction
to the ledger. Any use case you can think of can
be modelled with these 3 base resources. If you
need to make your model more complex you can
write events and use enumerated types (enums)
and concepts as a variable of a participant, asset
or transaction. These resources are typically used
in other objectoriented programming languages
as well. To summarize:

 Assets can represent anything of value
that can be shared or transacted

 Participants are the actors in a business
network who make transactions.

 Transactions describe what can be done
to the assets as they move around the
business network

Just like with our example case you can get a
blockchain application running right away, in
this template you’ll find very basic functionality
in place where 3 parties can exchange assets.

If you want to get started right away and design
your own blockchain network go to https://com
poserplayground.mybluemix.net/ and use the
online playground of Hyperledger Composer
(free) to create your own business network defi
nition or analyze one of the provided samples.
Hyperledger Composer uses an objectoriented
modeling language to define the domain model
and to implement access control rules in your
business network. If you’re happy with your busi
ness network you can easily copyandpaste your
code in this template to transform it into a real
application with a web frontend by following the
instructions below.

15

1. Install prerequisites
To run the template on your local machine you first need to install Git and Docker.
If you haven’t already done so please refer to the previous chapter for detailed steps.

2. Clone the template from the public Github repository
Find the code base in the following public Github repository. This is a slightly different
repository than our example case in the previous chapter so you can start off fresh:
https://github.com/cegeka/hyperledgerpocquickstart

Clone the project in a folder on your local machine with the following command in a terminal:
git clone https://github.com/cegeka/hyperledgerpocquickstart.git

When you have successfully copied the project, you can change directory in your terminal
to move into the newly created folder: cd hyperledger-poc-quickstart

3. Editing the Hyperledger Composer code (optional)
If you have designed your own business network you can copypaste your code into the
corresponding files below. If not you can skip right to step 5 and run the included application.
Data model: server/models/com.cegeka.cto
Access control rules: server/permissions.acl
Transaction logic: server/lib/logic.js
Named Queries: server/queries.qry

You can use Visual Studio Code (free) or any other integrated development environment to
update the Hyperledger Composer files in your project: https://code.visualstudio.com/

Note: Before a business network definition can be deployed all the information must be packaged into
a Business Network Archive (.bna) file. This file is automatically created and deployed in the template.

4. Change composer data initialization script (optional)
The script in server/setup/setup.js runs after the composer network is started. It will create all
preregistered composer entities, like user accounts & initial assets. Customize the JavaScript
file to create all entities by calling the appropriate REST endpoints.

16

Update the setup script with your own user functions to initialize participants from your data
model file. The function createCustomer initializes the demo application with 3 participants
of type Customer.

5. Start the blockchain network
The following script has to be ran every time the Hyperledger Composer code is changed.
It will take care of rebuilding the Hyperledger composer backend, start the Fabric network,
install the composer application and initialize the sample data.

Deployment is fully automated via a dockercompose container to initialize & deploy
the blockchain network. Navigate to the docker folder (cd docker) and run the following
command:

For MacOS and Linux: sudo ./composer-setup.sh
For Windows (run cmd as Administrator): composer-setup.bat

17

Well done, now you can use your application! Login with the admin role to manage the users
in your application and create functionality for your app’s users. By default, the frontend
will connect to http://localhost:8080 and redirect to the login page. In the demo, you can
login with username: admin, customer1, customer2, customer3 (all without passwords).
You can create new participants of the class Customer with the admin user.

6. Customize frontend application (optional)
You can customize the frontend application and connect it with your own blockchain network.
Web applications that need to interact with a deployed business network should make calls
to a REST API.

A connection with the REST API is already implemented in the template. Using our demo
Angular project as example, you can copy pieces of code to create the logic that is needed to
interact with the participants, assets and transactions you’ve created. Once you understand
how to use the GET, POST, PUT and DELETE actions of the REST API, you will have your own
customized application up and running really fast.

If you completed step 5 you can operate all REST API actions in the Hyperledger Composer
REST server which is available at http://localhost:3000/explorer/

18

You can customize most aspects of your frontend application such as your logo or the colors
of the banner on the login page and top menu for logged in users. After that you can add the
participants of your business network as user roles in the application’s user service, create
pages for your participants, manage login redirects, implement assets and transactions,
use transaction monitoring to show specific transaction details in the blockchain transaction
detail view. Finally, you should also create menu items based on the user roles in your
application. The steps below detail these options step by step:

7.1 Update the logo placeholder in both the login form in the login page (client/src/app/pages/
login/login.component.html) and in the top navbar menu items in the banner page
(client/src/app/components/banner.component.html). You can add an image of your choice
to the folder (client/src/app/assets) which can be used to replace the placeholder images.
You can also simply remove the placeholder image from the assets folder, and add your
logo with exact the same title ‘logoplaceholder.jpg’.

7.2 Update the colors of the banner on the login page and top menu for logged in users
by changing the background color of .navbardefault in the css styles component
(client/src/app/components/banner/banner.component.css) and .banner in the main
css styles file (client/src/styles.css).

7.3 Edit the UserRole enum in client/src/app/services/user.service.ts and add the roles used by
the application. The string value of the role must match the Hyperledger Composer object
name in the DTO. Also edit the getUserRole() method to infer the role based on user names,
or replace with a different mechanism.

19

7.4 Create any needed home pages for the new roles and add them to the routes list
(client/src/app/app.routes.rs) and modules list (client/src/app/app.modules.ts)

20

There’s a dashboard as homepage for the customer role by creating the Customer
component (client/src/app/pages/customer/customerhome/customer.component.ts)
and the html content for the page (client/src/app/pages/customer/customerhome/
customer.component.html).

7.5 Alter the way login redirects work, based on user roles. Change the method login() in the
client/src/app/pages/login/login.components.ts class to perform redirect to the correct
userrole specific routes.

21

A sample asset transferring demo application is part of the template, which shows you how
to implement an asset Tradeable and a transaction Trade for the user role Customer. In file
asset.service.ts the GET, POST, PUT and DELETE actions are created for the sample asset
Tradeable. The tradeCommodity function is the POST action in this service component
for the Trade transaction.

7.6 Add a new service for assets in your blockchain network by extending the
BaseResourceService class (take a look at client/src/app/services/asset.service.ts).
Register these services in the client/src/app/app.modules.ts class.

22

The logic for the Tradeable asset and Trade transaction is implemented in the assets.compo
nent.ts file (client/src/app/pages/customer/customerassets/assets.component.ts). The file
assets.component.html demonstrates how you can implement a table to list your assets
with the functionality to create, update and delete assets. The tradeCommodity function
shows how the sample transaction Trade can be used by the user role Customer. The button
‘Transfer’ opens a modal (pop up screen) on which a user can transfer assets to other users
of the Customer class.

23

7.7 Add a sample asset and transaction
When you have created the asset.service.ts file in the previous step, then you can use the
service to implement the GET, POST, PUT and DELETE actions for assets and the POST
action for transactions in the frontend application.

The standard REST API actions can be used to create, update and delete assets and
partici pants in the ledger. But these functions of the REST API don’t allow you to add
specific transaction details in the frontend application. Therefore, a better solution is to
create specific transactions for creating, updating and deleting asset and participant objects.
The Trade transaction demonstrates how this works. First in the file history.service.ts the
getAssetTransferredTx function is created to retrieve all Trade transactions.

In the file txdetail.component.ts (client/src/app/pages/txdetail/txdetail.component.ts) the
addSpecificTx function is updated with the Trade class, and the addAssetTransferred functions
imports all the fields of transaction type Trade.

24

In the txdetail.component.html file you can update the view of the component. Here you
can see how the details of the Trade transactions are shown on the transaction detail page.
In this example, we show the transaction type, asset type, sender, new owner and the
timestamp of the transaction. Add your own ngcontainer tags in the table and customize
the *ngIf statements with the transaction detail items that you want to show.

The result is the txdetail page where there are specific transaction details for each individual
Trade transaction in the ledger. Go to the top menu in your application, click on blockchain
and choose the sub item Transactions. In this list, you see all ledger updates from the start
of your successful deployment of the business network. Click on the arrow at the right side
of the table rows to see transaction details of transactions.

25

7.8 Implement custom transaction monitoring
The client/src/app/pages/txdetail/txdetail.component.ts class is used to display details
about specific transactions. This class (and the underlying history.service.ts file) can be
customized to retrieve additional business information for specific transaction types
and present this to the user.

26

7.9 Implement menu items based on the user roles in your application.
Update the routerlinks in the top menu navbar in the Banner component html file
(client/src/app/components/banner/banner.component.html).

2. About support
Cegeka does not offer any support on these repositories but we do maintain them. If you run into
any issues you can open a ticket on Github and we will respond to your request as soon as possible.

WWW.CEGEKA.COM

HEADQUARTERS:
Universiteitslaan 9
3500 Hasselt
Belgium

MORE OFFICES:
www.cegeka.com/offices

Cegeka has experimented with and worked on blockchain projects since 2015 and is
considered a pioneer in Europe. Thanks to our business partners Cegeka can offer a
comprehensive blockchain solution from idea to hosting, maintenance and support.

Visit www.cegeka.com for more information.

FOLLOW US ON

www.twitter.com/cegeka

www.linkedin.com/company/cegeka

www.facebook.com/cegeka

www.cegeka.com

info@cegeka.be

http://www.facebook.com/cegeka
http://www.twitter.com/segeka
http://www.linkedin.com/company/cegeka
http://www.cegeka.com

	Knop 6:
	Knop 7:
	Knop 8:
	Knop 9:

