COVID-19 epidemic modelling

(very simplified version)

Felipe Rodrigues, PhD Assistant Professor, Operations Management & Analytics School of Management, Economics and Mathematics King's University College at Western University

Agenda

- Introduction
- Epidemiologic Modelling
- At risk populations, epidemiology toolbox
- Case for Ontario
- Questions

-

Introduction

- Pandemics are scary
- Health, economic implications
- Quarantine, social distancing cannot last forever (?)
- Flattening the curve -> "communication problem"

Epidemics are well behaved mathematically if you make the proper assumptions and have the reasonable parameters:

Source: Worldometer - www.worldometers.info

The "Susceptible-Infected-Removed" model (SIR) Key parameter R_0 R_1 R_2 R_1 R_2 R_2 R_2

- R₀ is the "basic reproduction number"
- The "R-zero", "R-naught"
 - β is a measurement of the force of infection
 - # contacts * prob of transmission

• $\frac{1}{4}$ is the infections period

The "Susceptible-Infected-Removed" model (SIR) てい アテアティリケット

The "Susceptible-Infected-Removed" model (SIR) – Building intuition 9/0 ð \mathcal{C}

Implications

- Flattening = spreading infection over time...there will still be the infection and will take time
- ICU beds need to be used by people with strokes, cardiac arrest, invasive surgeries, cancer etc...
 - When will it be safe to go outside?

Case fatality rate for COVID-19 based on age and pre-existing conditions.

*Case Fatality Rate (%) = (number of deaths / number of COVID-19 cases) x 100 for each group

Source: Worldometers.info. Accessed 14 March 2020

Ontario – reasonable assumptions, no quarantine

Ontario – effective intervention measures

Projected <u>critical care demand</u> with reductions in physical distancing effort

How does Modelling and forecasting help?

Community may cycle through levels of SD intensity

<u>Scenario</u>

Participation in community physical distancing decreases 1.5% per day (to min of 40%) when hospital capacity < 45 beds

Participation in community physical distancing increases 1.5% per day (to max of 75%) after hospital capacity > 45 beds

Cipriano, Haddara, Zaric, 2020

Community engagement affects need for hospital resource endurance

Scenario

Participation in community physical distancing decreases 1.5% per day (to min of 40%) when hospital capacity < 45 beds

Participation in community physical distancing increases 1.5% per day (to <u>max of 65%</u>) after hospital capacity > 45 beds

Cipriano, Haddara, Zaric, 2020

Preparing for Uncertainty Just in Time vs Just in Case

Cipriano, Haddara, Zaric, 2020

Questions?

Felipe Rodrigues, PhD

frodrig7@uwo.ca

Assistant Professor, Operations Management & Analytics School of Management, Economics and Mathematics King's University College at Western University