
THE POWER OF
COMPONENTS*

Lode Vanhove

Solution Architect  
React Native & iOS Developer

* AND DESIGN SYSTEMS

The Power of Components / Intro

This talk is about how a component-based
approach can close the gap between
design & development (and positively
impact both at the same time).

The Power of Components / Overview

Topics

• Cross-platform Development

• Design Systems

• Components

• Tooling

CROSS-PLATFORM
DEVELOPMENT
Now & then

Cross-platform Development / Now & Then

The "Dark Ages"

• Phonegap/Cordova, Ionic, ...

• Hybrid (using webviews)

• Limited functionality

• Bad UX/performance

You end up sacrificing a lot for the sake of a
common codebase.

• Xamarin

• Forms = limited

• Native = no sharing of UI code

• Design process not as streamlined

• Screens often designed separately

• Cluttered mess of information

• Hard to maintain set of assets &
guidelines

Cross-platform Development / Now & Then

The "Modern Days"

• The advent of component-based
frameworks

• React (Native)

• Vue.js

• Angular 2 (or was it 4?)

• A "bottom-up" design approach

• Focus on creating a consistent set of
assets that can be easily combined &
reused

• The rise of new tools like

• Sketch

• Zeplin

DESIGN SYSTEMS
A shared vocabulary

Design Systems / A shared vocabulary

What is it? • The consistency it brings enables:

• less user confusion

• a faster design process

• faster development

• easier onboarding

• higher-level thinking & allows to
focus on more challenging things

• Centralised source of "design truth"

• Contains colours, typography, icons,
layout, grids, interface elements, ...

• Often accompanied by a set of rules and
guidelines

• Acts as a shared vocabulary

Design Systems / A shared vocabulary

Atomic Design • Defines a set of hierarchical layers in
which our UI components will reside:

• Atoms (avatar, button, spinner, ...)

• Molecules (search bar, list item, ...)

• Organisms (header, form, list view, ...)

• These are combined into screens or
pages

• A framework or methodology for helping
to create design systems

• Helps us reason about UI as a cohesive
whole and a collection of parts at the
same time

• Goes beyond the basics such as colours,
typography, grids, etc...

COMPONENTS
A great fit

Components / A great fit

React (Native) • Contain related (user interface) logic
and styling for maximum reusability

• Easy to reason about:

• props (external data)

• state (internal data)

• both trigger rendering

• One-way, top-down data flow

• A view-centric technology

• focused on rendering

• focused on composition (≠ inheritance)

• Declarative user interfaces (markup) for
the win (compared to layout in code, XIBs,
Storyboard, ...

PRESENTATIONAL
COMPONENTS

CONTAINER
COMPONENTS

Components / A great fit

Presentational Components

• Concerned with how things look

• Contain styling & markup

• No dependencies on the rest of the app
architecture

• Don't specify how/where data is loaded/
mutated

• Receive data & callbacks exclusively via
props

• Rarely have state (except for UI state)

• e.g. isSelected, isActive, ...

• Are written as functional components
unless they need state, lifecycle hooks,
or performance optimisations

Components / A great fit

Container Components

• Concerned with how things look

• No styling & minimal markup

• render() usually only contains one
presentational component

• Provides data & behavior

• Calls actions and provides them as
callbacks

• Often stateful (tend to serve as data
sources)

• Often created by higher-order-
components

• e.g. connect() from Redux

Components / A great fit

Reap the benefits

• Better separation of concerns

• Responsibilities are clear

• No massive components

• Better reusability (e.g. presentation is
not coupled with data retrieval)

• Forces you to "extract" UI components
& reason about responsibilities, data
flow, ...

• All presentational components
effectively form your app's UI library

TOOLING
Some interesting evolutions

Tooling / Some interesting evolutions

Living Styleguides

• The ability to document your design
through code

• The ability to dynamically render out
design assets based on the actual
implementation/code

• "Painting with code"

• React Sketch.app 
https://github.com/airbnb/react-sketchapp

• Storybook 
https://storybook.js.org/

https://github.com/airbnb/react-sketchapp
https://storybook.js.org/

React Sketch.app

DEMO

$ cd ~/Playground/react-sketchapp/examples

$ cd styleguide

$ cd foursquare-maps

$ npm run install && npm run render

Tooling / Some interesting evolutions

Snapshot Testing

• The ability to take a snapshot of your
components

• ≠ screenshots (requires building the
entire app)

• Generates serializable representations

• Used to verify that your UI does not
change unexpectedly

• Part of your test setup & very easy to
accomplish

• https://facebook.github.io/jest/docs/en/
snapshot-testing.html

https://facebook.github.io/jest/docs/en/snapshot-testing.html
https://facebook.github.io/jest/docs/en/snapshot-testing.html

Sassevaartstraat 46/401

9000 Gent

+32 9 234 34 25

hello@inthepocket.mobi

In The Pocket

THANK YOU! !

mailto:hello@inthepocket.mobi

