

Introduction

- High-throughput screening (HTS) can be used to quickly and effectively move drug candidates through development. An automated liquid handling platform offers a programmable system for increasing the capacity and turnaround of assays routinely conducted manually.
- Here we describe our efforts to develop methods on the Hamilton Microlab[®] STAR automated liquid handling platform. Our first goal was to evaluate and place into production an automated method for a basic drug discovery assay. We chose metabolic stability for our first method. We would then build upon this basic program, more sophisticated enzyme kinetics schemes.
- We designed a web-based portal with a user-friendly design to generate parameters for the Hamilton program for each in vitro assay. We executed the method for metabolic stability with several commercially available compounds; the results were consistent with our manual procedure. These results suggest that the Hamilton Microlab STAR is an appropriate platform to develop HTS methods for our routine in vitro assays.

Methods

• The web portal was used to generate a tailored experimental procedure and input file.

Study# 1906x01			c	Client In House			DPU DM		Client Rep		Experiment#	
Assay Type			M	Matrix			ProjectID		Special Requests		Version#	replicat
	Add Line 20 Set Multi-Line (will delete current lines)											
#	Compound Name	Client	Lot	Source	Well	Conc	Mouse	Rat	Mini Pig	Dog	Monkey	Human
1												
Ċ.	Warfarin	Client	Lot#	plate •	A01 •	5 mM 🔹	м	R	MP	D	МК	н
2	Ethoxycoumarin	Client	Lot#	plate 🔻	B01 '	5 mM 🔹	м	R	МР	D	мк	н
3	Dextromethorphan	Client	Lot#	plate 🔻	C01 •	5 mM 🔹	м	R	МР	D	мк	н
4	Verapamil	Client	Lot#	plate 🔻	D01 •	5 mM •	м	R	MP	D	мк	н
5	Enalapril	Client	Lot#	plate 🔻	E01 •	5 mM 🔹	м	R	МР	D	мк	н
6	Eucatropine	Client	Lot#	plate •	F01 •	5 mM 🔹	м	R	МР	D	мк	н
7	Aclidinium	Client	Lot#	plate •	G01 •	5 mM 🔹	м	R	МР	D	мк	н
8	Propranolol	Client	Lot#	plate •	H01 •	5 mM 🔹	м	R	МР	D	мк	н
9	Amprenavir	Client	Lot#	plate •	A02 •	5 mM 🔹	м	R	мр	D	мк	н

Figure 1: Drug Metabolism Information Management Web Portal Input

Compounds were tested for metabolic stability in mouse and human liver microsomes, *n*=3. Compounds were spiked into liver microsomes purchased from BioIVT for an incubation concentration of 0.5 µM. Microsomes were prepared at a protein concentration of 0.5 mg/mL in potassium phosphate buffer. An NADPH-regenerating system was used as a cofactor. Time points were quenched with acetonitrile containing internal standard at 0, 5, 15, 30, and 45 minutes.

EXPANSION OF IN VITRO DRUG METABOLISM ASSAY CAPACITY AND EFFICIENCY TOWARDS HIGH-THROUGHPUT SCREENING USING AUTOMATED LIQUID HANDLING

Andrew Schofield, Bruce Zhu, Christopher Welsh, Chuong Pham, and Frank Li Alliance Pharma, Inc., 17 Lee Blvd, Malvern, PA 19355

Average Hamilton									
nination Constant (min-1)	Elimination Rate Standard Deviation	Half-life (t1/2) (min)	Intrinsic Clearance (CLint) (mL/min/g liver)						
0.0038	NA	>180	<0.3						
0.644	0.080	1.093	61.778						
0.092	0.007	7.610	8.794						
0.254	0.033	2.785	24.345						
0.0038	NA	>180	<0.3						
0.027	0.005	26.437	2.609						
0.585	0.040	1.190	56.188						
0.310	0.023	2.244	29.797						
0.231	0.019	3.014	22.219						
0.084	0.017	8.603	8.018						
0.043	0.007	16.444	4.152						
0.149	0.009	4.682	14.264						
0.0038	NA	>180	<0.3						
0.299	0.016	2.328	28.660						
0.004	0.002	>180	0.406						
0.011	0.003	70.140	1.019						
0.011	0.002	66.804	1.030						
0.0038	NA	>180	<0.3						
0.0038	NA	>180	<0.3						
0.357	0.060	2.001	34.266						
0.357	0.061	2.003	34.307						
0.0038	NA	>180	<0.3						
0.109	0.012	6.450	8.636						
0.027	0.002	25.466	2.178						
0.134	0.028	5.379	10.665						
0.0038	NA	>180	<0.3						
0.0038	NA	>180	<0.3						
0.158	0.009	4.409	12.527						
0.017	0.000	41.025	1.342						
).444	0.082	1.608	35.265						
0.0038	NA	>180	<0.3						
0.114	0.018	6.222	9.068						
0.0038	NA	>180	<0.3						
0.0038	NA	>180	<0.3						
0.006	0.001	118.753	0.474						
0.017	0.002	42.413	1.310						
0.0038	NA	>180	<0.3						
0.0038	NA	>180	<0.3						
0.0038	NA	>180	<0.3						
0.0038	NA	>180	<0.3						
0.033	0.007	21.723	2.635						
0.190	0.042	3.834	15.072						

Table 2: Average half-life

rate constant

- from our manual procedure
- plasma and blood.

The authors of this poster would like to thank Taylor MacArthur, Marcus Sullivan, and Christopher Sullivan for their assistance in method development and implementation of the Hamilton Microlab® STAR system and the QC team.

www.AlliancePharmaco.com

Results (Cont.)

and star	ndard de	viation	of histo	rical o	data for	midazolam,	<i>n</i> =10
Platform	Average Half-life (min)	SD	Relative SD				

 0.944
 0.181

 1.057
 0.215

Conclusions

4.914

• The elimination rate constants calculated from data generated by the automated method for metabolic stability are similar to those calculated

 The newly developed automated method allows for more efficient execution of studies. The method used in this study supports the incubation of up 300 conditions per instrument per day.

• After demonstrating that the Hamilton Microlab® STAR is suitable for reactions involving liver microsome metabolism, we will develop more complicated methods using liver microsomes, such as the IC_{50} and time-dependent inhibition assays. Additionally we plan on developing methods utilizing other matrices, such as stability and protein binding in

Acknowledgements