Amplify Science

New York City Department of Education

Grade 2: Plant and Animal Relationships Summer Institute: Day 1

Date

resented by Your Name

Overarching goals

By the end of this institute, you will be able to:

- Navigate program resources and describe how Amplify Science addresses 3-D Learning and NYSSLS/NGSS.
- Use Plant and Animal Relationships unit resources to plan lessons that support ALL learners.

Getting to know the unit Day 1

© 2018 The Regents of the University of California

Day 1 Objectives

By the end of today, you will be able to:

- Explain what students learn in the unit, and how they learn it.
- Navigate the Amplify Science curriculum.
- Recognize how lessons engage students in the three dimensions of NYSSLS/NGSS (as appropriate).
- Articulate how lesson activities support students in building complex explanations.

Norms: Establishing a culture of learners

Take risks: Ask any questions, provide any answers.

Participate: Share your thinking, participate in discussion and reflection.

Be fully present: Unplug and immerse yourself in the moment.

Physical needs: Stand up, get water, take breaks.

Plant and Animal Relationships Plan for the day – Day 1

• Framing the day

- What is Amplify Science?
- Navigating the Digital Guide

Experiencing the unit

- Amplify Science approach
- NYSSLS anticipatory activity
- Instructional sequence with model lesson
- Reflecting on the sequence

Closing

- Amplify Science in NYC
- Reflection
- Questions

Plant and Animal Relationships Plan for the day – Day 1

- Framing the day
 - What is Amplify Science?
 - Navigating the Digital Guide
- Experiencing the unit
 - Amplify Science approach
 - NYSSLS anticipatory activity
 - Instructional sequence with model lesson
 - Reflecting on the sequence

Closing

- Amplify Science in NYC
- Reflection
- Questions

Framing the day

The purpose of this part of the day is for you to:

• Navigate the Amplify Science curriculum

Amplify Science

Elementary school course curriculum structure

Grade K

- Needs of Plants and Animals
- Pushes and Pulls
- · Sunlight and Weather

Grade 1

- Animal and Plant Defenses
- Light and Sound
- Spinning Earth

Grade 2

- Plant and Animal Relationships
- Properties of Materials
- Changing Landforms

Grade 3

- Balancing Forces
- Inheritance and Traits
- Environments and Survival
- Weather and Climate

Grade 4

- Energy Conversions
- Vision and Light
- Earth's Features
- Waves, Energy, and Information

Grade 5

- Patterns of Earth and Sky
- Modeling Matter
- The Earth System
- Ecosystem Restoration

AmplifyScience

All curriculum materials ©2016 The Regents of the University of California. © 2018 Amplify Education, Inc. All trademarks and copyrights are the property of Amplify or its licensors.

Elementary school components

Digital Teacher's Guide

Hands-on materials

Student books

Digital applications (grades 2-5)

Assessments

Amplify Science: What's new for 2019-2020

Teacher action:

At the top of that column, draw just the outline of a rectangle. (Leave enough room to insert a medium-bright rectangle between the dark and bright rectangles in a later lesson.) Label the outlined rectangle "bright." Point to the label and read it aloud.

See Students: What is the difference between dark and completely dark?

Students may respond:

Students may respond: In completely dark places, you cannot see anything. In dark places, you can still see some things.

Classroom Slides

New digital K–5 Student Books

Amplify.

Hands-on Flextensions

What are the digital components of Amplify Science Elementary?

Students apps page

Elementary digital experience for students grades 2-5 is through the student apps page:

apps.learning.amplify.com/elementary

ВАСК	Earth's Features				
Simulation					
1 Earth's Peatures					
Cience Pro	ictice Tools				
1	2	3	4		
1.6 Fossil Formation Model	3.2 Rock Layers Model	4.4 Erosion: Speed Model	4.4 Erosion: Time Model		
Student Bo	oks				
1	2	3	4	5	
Arguing to Solve a Mystery	Clues from the Past	Fossil Hunter's Handbook	Rocky Wonders	Through the Eyes of a Geologist	

Teacher's Guide navigation

© 2018 The Regents of the University of California

Unit

Lessons

22 Lessons Plant and Animal Relationships

TEACHER-LED DISCUSSION

Revisiting the Bengal

Tigers Reserve

Lesson 2.1:

Chapter 2: Why aren't the chalta seeds getting what they need to grow? 5 Lessons

Chapter 4: How are

Lesson 2.3: Lesson 2.4:

WRITING

Explanation

Writing a Scientific

Activities

A Good Place to Grow in the Everylader

MODELING TOOL

the Everglades

.

Questions?

Plant and Animal Relationships Plan for the day – Day 1

• Framing the day

- What is Amplify Science?
- Navigating the Digital Guide
- Experiencing the unit
 - Amplify Science approach
 - NYSSLS anticipatory activity
 - Instructional sequence with model lesson
 - Reflecting on the sequence

Closing

- Amplify Science in NYC
- Reflection
- Questions

Experiencing the unit

The purpose of this part of the day is for you to

- Explain what students learn in the unit, and how they learn it.
- Recognize how lessons engage students in the three dimensions of NYSSLS (as appropriate).

Problem-based deep dives Students inhabit the role of scientists and engineers to explain or predict phenomena. They use what they figure out to solve realworld problems.

© 2018 The Regents of the University of California

Amplify Science approach

Figure out, not learn about

© 2018 The Regents of the University of California

Three Dimensions of NGSS and NYSSLS

Standards as three-dimensional performance expectations that integrate **disciplinary core ideas**, **science and engineering practices**, and **crosscutting concepts**

Plant and Animal Relationships

Instructional sequence

Lesson 2.1: Exploring Plant Parts	Lesson 2.2: A Plant Is a System	Lesson 2.3: 2.3 Investigating How Roots and Leaves Grow
Lesson 2.4: 2.4 Finding a Good Place to Grow	Lesson 2.5: Why Aren't New Chalta Trees Growing?	

JUMP DOWN TO CHAPTER OVERVIEW

Lesson 2.1: Lesson 2.2: Lesson 2.3: **Exploring Plant Parts** A Plant Is a System 2.3 Investigating How Roots and Leaves Grow Lesson 2.4: Lesson 2.5: 2.4 Finding a Good Why Aren't New Place to Grow Chalta Trees Growing?

Three dimensions

Three dimensions of NYSSLS reference

3-D learning engages students in using scientific and engineering practices and applying crosscutting concepts as tools to develop understanding of and solve challenging problems related to disciplinary core ideas.

Science and Engineering Practices

Asking Questions and Defining Problems
Asking Questions Models
Planning and Carrying Out Investigations
Analyzing and Interpreting Data

ł	5. Using Mathematics and Computational Thinking
1	6. Constructing Explanations and Designing Solutions
	7. Engaging in Argument from Evidence
1	8. Obtaining, Evaluating, and Communicating Information

Disciplinary Core Ideas

Earth and Space Sciences: ESS1: Earth's Place in the Universe ESS2: Earth's Systems ESS3: Earth and Human Activity	Life Sciences: LSI: From Molecules to Organisms LS2: Ecosystems LS3: Heredity LS4: Biological Evolution	Physical Sciences: PS1: Matter and its Interactions PS2: Motion and Stability PS3: Energy PS4: Waves and their Applications	Engineering, Technology and the Applications of Science: ETSI: Engineering Design ETS2: Links among Engineering Technology, Science and Society
--	--	--	--

Crosscutting Concepts

Patterns
Cause and Effect
Scale, Proportion, and Quantity
Systems and System Models

5. Energy and Matter 6. Structure and Function 7. Stability and Change

Introduce a phenomenon and a related problem Collect evidence from multiple sources

Build an explanation

Apply knowledge to a different context

Multimodal instruction

Do, Talk, Read, Write, Visualize

Questions?

$\frac{Plant}{Plan} \frac{Plant}{Plan} \frac{Plant}{Plan} \frac{Plant}{Plan} \frac{Plant}{Plan} \frac{Plant}{Plan} \frac{Plant}{Plan} \frac{Plant}{Plant} \frac{P$

• Framing the day

- What is Amplify Science?
- Navigating the Digital Guide

Experiencing the unit

- Amplify Science approach
- NYSSLS anticipatory activity
- Instructional sequence with model lesson
- Reflecting on the sequence

• Closing

- Amplify Science in NYC
- Reflection
- Questions

Self-reflection and closing

The purpose of this part of the day is for you to:

• Participants reflect on their ability to navigate the Teacher's Guide and their understanding of the Amplify Science Approach and how it supports three-dimensional learning.
Welcome to Amplify Science

http://bit.ly/AmplifyScienceBTS

New York State P-12 Science Standards Development, Adoption, and Implementation

Planning your year

Overview: Amplify Science K-5 course structure

PRIMARILY LIFE SCIENCE SCIENCE PRIMARILY PHYSICAL SCIENCE PRIMARILY EARTH SCIEN									SCIENCE	
All units have 22 lessons except Grade 5: The Earth System, which has 26 lessons.										
	SEPT OCT I	NOV	DEC	JAN	FEB	MAR	APR	8 MAY	JUN	Minutes per lesson
К	Needs of Plants and Ar	and Animals Pushes			and Pulls			Sunlight and Weather		45
1	Animal and Plant Defe	nd Plant Defenses Light a			1d Sound			Spinning Earth		45
2	Plant and Animal Relation	onships		Properties o	of Materials		Ch	Changing Landforms		60
3	Balancing Forces	Inh	eritance a	nd Traits	Environments and Survival			Weather and Climate		60
4	Energy Conversions	,	Vision and	Light	Earth's Features			Waves, Energy and Information		60
5	Patterns of Earth and Sky	Мос	deling Mat	ter	The Earth System (26 lessons)			Ecosystem Restoration		60

Elementary school course curriculum structure

Grade K

- Needs of Plants and Animals
- Pushes and Pulls
- · Sunlight and Weather

Grade 1

- Animal and Plant Defenses
- Light and Sound
- Spinning Earth

Grade 2

- Plant and Animal Relationships
- Properties of Materials
- Changing Landforms

Grade 3

- Balancing Forces
- Inheritance and Traits
- Environments and Survival
- Weather and Climate

Grade 4

- Energy Conversions
- Vision and Light
- Earth's Features
- Waves, Energy, and Information

Grade 5

- Patterns of Earth and Sky
- Modeling Matter
- The Earth System
- Ecosystem Restoration

AmplifyScience

All curriculum materials ©2016 The Regents of the University of California. © 2018 Amplify Education, Inc. All trademarks and copyrights are the property of Amplify or its licensors.

Middle school course curriculum structure

Middle School Curriculum New York City Edition

Grade	6

- Launch: Harnessing Human Energy
- Thermal Energy
- Populations and Resources
- Matter and Energy in Ecosystems
- Weather Patterns
- Ocean, Atmosphere, and Climate
- Earth's Changing Climate

Grade 7

- Launch: Microbiome
- Metabolism
- Phase Change
- Chemical Reactions
- Plate Motion
- Engineering Internship: Plate Motion
- Rock Transformations
- Engineering Internship: Earth's Changing Climate

Grade 8

- Launch: Geology on Mars
- Earth, Moon, and Sun
- Force and Motion
- Engineering Internship: Force and Motion
- Magnetic Fields
- Light Waves
- Traits and Reproduction
- Natural Selection
- Evolutionary History

Questions?

Day 1 Objectives

By the end of today, you will be able to:

- Explain what students learn in the unit, and how they learn it.
- Navigate the Amplify Science Curriculum.
- Recognize how lessons engage students in the three dimensions of NYSSLS/NGSS (as appropriate).
- Articulate how lesson activities support students with building complex explanations.

Overarching goals

By the end of this institute, you will be able to:

- Navigate program resources and describe how Amplify Science addresses 3-D Learning and NYSSLS/NGSS.
- Use Plant and Animal Relationships unit resources to plan lessons that support ALL learners.

Amplify Science

New York City Department of Education

Grade 2: Plant and Animal Relationships Summer Institute: Day 2

Overarching goals

By the end of this institute, you will be able to:

- Navigate program resources and describe how Amplify Science addresses 3-D Learning and NYSSLS/NGSS.
- Use Plant and Animal Relationships unit resources to plan lessons that support ALL learners.

Day 1 Objectives

After yesterday, you should be able to:

- Explain what students learn in the unit, and how they learn it.
- Navigate the Amplify Science Curriculum.
- Recognize how lessons engage students in the three dimensions of NYSSLS/NGSS (as appropriate).
- Articulate how lesson activities support students with building complex explanations.

Supporting all learners Day 2

© 2018 The Regents of the University of California

Day 2 Objectives

By the end of today, you will be able to:

- Understand strategies and resources for supporting all learners. Articulate how lesson activities support ALL students in building complex explanations.
- Identify the multiple types of assessments embedded within the Amplify Science curriculum.
- Apply program resources to plan to teach.

Norms: Establishing a culture of learners

Take risks: Ask any questions, provide any answers.

Participate: Share your thinking, participate in discussion and reflection.

Be fully present: Unplug and immerse yourself in the moment.

Physical needs: Stand up, get water, take breaks.

- Opening the day
 - Culture building
- Story of the unit
 - Unit Guide navigation
 - Build of conceptual understanding using Unit Guide resources
 - Progress Build
 - Coherence

- Embedded supports for all learners
 - Analyzing 3-D learning
 - Assessment System
 - Formative assessment
- Considerations for an Amplify
 Science classroom
- Closing and reflection
 - Reflection
 - Survey

- Opening the day
 - Culture building
- Story of the unit
 - Unit Guide navigation
 - Build of conceptual understanding using Unit Guide resources
 - Progress Build
 - Coherence

- Embedded supports for all learners
 - Analyzing 3-D learning
 - Assessment System
 - Formative assessment
- Considerations for an Amplify Science classroom
- Closing and reflection
 - Reflection
 - Survey

- Opening the day
 - Culture building
- Story of the unit
 - Unit Guide navigation
 - Build of conceptual understanding using Unit Guide resources
 - Progress Build
 - Coherence

- Embedded supports for all learners
 - Analyzing 3-D learning
 - Assessment System
 - Formative assessment
- Considerations for an Amplify
 Science classroom
- Closing and reflection
 - Reflection
 - Survey

Story of the unit

The purpose of this part of the day is for you to:

- Navigate the Amplify Science Curriculum.
- Articulate how lesson activities support students with building complex explanations.

Plant and Animal Relationships solution

- The chalta trees depend on elephants to disperse their seeds.
- Elephants depend on chalta fruit for food. They eat the fruit, move to new places, and leave droppings with chalta seeds inside.
- A fence is blocking the elephants from entering the Reserve, so elephants cannot disperse the chalta seeds.

Amplify.

Turn and talk:

What do students still need to know in order to construct this explanation?

Amplify Science approach Discussions and writing Books Hands-on activities Introduce a phenomenon Collect evidence from **Build increasingly** Apply knowledge complex explanations to a different context and a related problem multiple sources

Amplify.

Progress Build: A unit-specific learning progression

Plant and Animal Relationships Progress Build

Amplify Science approach

Collect evidence from multiple sources Build increasingly complex explanations

Apply knowledge to a different context

Coherence Flowchart

© 2018 The Regents of the University of California

Coherence

Plant and Animal Relationships: Investigating Systems in a Bengali Forest The problem students work to solve What is happening to the chalta trees in the Bengal Tiger Reserve? Chapter 2 Question Why aren't the chalta seeds getting what they need to grow? Why can't plants always get the sunlight and water they need to How do plants get the water and sunlight that they Investigation Questions grow? (2.3, 2.4, 2.5) need to grow? (2.1, 2.2) Write about roots and leaves (2.3) • Play Growing Roots game (2.3) . Observe and measure roots and leaves (2.1) . Observe Sunlight and Leaves model (2.3) . Read A Plant is a System (2.2) **Evidence Sources and** ٠ Participate in Plant Growth Body Model (2.3) • **Reflection Opportunities** Discuss and record relationships between science Test predictions of which seeds will grow with digital modeling tool (2.4) . • words (2.2)Write about a good place for a seed to grow (2.4)• Discuss and test predictions with modeling tools (2.4) . Without enough space, plants can't get sunlight and water . they need to grow. (2.4)Plants have leaves that get sunlight. Plants have **Key Concepts** Leaves need space to get sunlight. Roots need space in the . roots that get water from the soil. (2.2) soil to get water. (2.4) Application of Key Concepts Compose a scientific explanation about why the chalta seeds are not getting the sunlight and water they need to grow (2.5) to the problem The explanation that The chalta trees in the Bengal Tiger Reserve use their roots to get water from the soil and their leaves to get sunlight. The chalta tree students can make to seeds need to move away from other plants and get to a place where they can spread their roots and leaves to get what they need to answer the grow. The chalta seeds must not be getting to a new place where they can grow. Chapter 2 Question

Questions?

- Opening the day
 - Culture building
- Story of the unit
 - Unit Guide navigation
 - Build of conceptual understanding using Unit Guide resources
 - Progress Build
 - Coherence

- Embedded supports for all learners
 - Analyzing 3-D learning
 - Assessment System
 - Formative assessment
- Considerations for an Amplify Science classroom
- Closing and reflection
 - Reflection
 - Survey

Embedded supports for ALL learners The purpose of this part of the day is for you to

- Understand strategies to support all learners.
- Articulate how lesson activities support ALL students with building complex explanations.
- Identify the multiple types of assessments embedded within the Amplify Science curriculum.

Turn and talk: Thinking three dimensionally

Disciplinary Core Ideas Science and Engineering Practices Crosscutting Concepts

From unit landing page, select "JUMP DOWN TO UNIT GUIDE" to access unit-level resources

Plant and Animal Relationships

Chapter 1: Why aren't new chalta

Chapter 2: Why aren't the chalta

Chapter 3: Why aren't the chalta

GENERATE PRINTABLE TEACHER'S GUIDE

Ŧ

Questions?

Amplify Science Assessment System

© 2018 The Regents of the University of California

Turn and talk

- Why do you assess your students?
- How and when do you assess your students? What are students doing?
- How do you collect data? How do you use data collected during assessment?

Pre- and End-of-Unit Assessments

Critical Juncture Assessments

On-the-Fly Assessments

Student Self-Assessments

Portfolio Assessment

Amplify.

Investigation Assessment

Amplify Assessment System

- Credible
- Actionable
- Timely

Formative assessment

Formative assessment

Planning to inform instruction

On-the-Fly Assessment 5: Parts of the Plant System

ON THE FLY ASSESSMENT

Plant and Animal Relationships

Chapter 2: Why aren't the chalta Chapter 3: Why aren't the chalta

GENERATE PRINTABLE TEACHER'S GUIDE

Amplify.

From unit landing page, select "JUMP DOWN TO UNIT GUIDE" to access unit-level resources

> Chapter 1: Why aren't new chalta

> > © 2018 by the Regents of the University of California

Questions?

Plant and Animal Relationships Plan for the day – Day 2

- Framing the day
 - Coherence
- Embedded supports for ALL learners
 - 3-D learning
 - Unit essentials and instructional builds
- Supports for instructional decisions
 - Amplify Science assessment System

- Formative assessment
- Summative assessment
- Considerations for an Amplify Science classroom
- Closing and reflection
 - Reflection
 - Questions
 - Survey

Considerations for an Amplify Science classroom The purpose of this part of the day is for you to:

• Apply program resources to plan to teach.

Considerations for an Amplify Science classroom

Reflection

- What Unit Guide resources will you rely on as you continue to internalize this new curriculum and prepare for managing classroom kit materials and technology in your classroom?
- What questions do you still have?

Questions?

Plant and Animal Relationships Plan for the day – Day 2

- Opening the day
 - Culture building
- Story of the unit
 - Unit Guide navigation
 - Build of conceptual understanding using Unit Guide resources
 - Progress Build
 - Coherence

- Embedded supports for all learners
 - Analyzing 3-D learning
 - Assessment System
 - Formative assessment
- Considerations for an Amplify
 Science classroom
- Closing and reflection
 - Reflection
 - Survey

Closing and reflection

The purpose of this part of the day is for you to:

• Reflect on the learning for the day.

Overarching goals

By the end of this institute, you will be able to:

- Navigate program resources and describe how Amplify Science addresses 3-D Learning and NYSSLS/NGSS.
- Use Plant and Animal Relationships unit resources to plan lessons that support ALL learners.

Questions?

Top Tips

- 1. Find your kit! Open it up ASAP and look through materials
 - a. Note how they are labeled with the lesson number they correspond to
 - b. Plan where to house your "unit wall" in the classroom
- 2. Bookmark apps.learning.amplify.com/elementary on student computers
- 3. Set aside time to practice navigation with your students
- 4. Become comfortable with managing projections
 - a. Download PDF of projections or keep Teacher's Guide open
- 5. Practice unit Simulations and digital apps (2-5) yourself before using with students
 - a. Use Unit Guide doc: Apps in this Unit
- 6. Engage in self-study: Practice locating assessments using cards; Explore Unit Guide

Logging on tips and tricks

Student Digital Access (2-5)

- Bookmark student apps page on all student devices.
- Establish a log-on routine.
- Inquire about accessing student logins and distribution of those logins.

Additional Amplify resources

Program Guide

Glean additional insight into the program's structure, intent, philosophies, supports, and flexibility.

my.amplify.com/programguide

Amplify Help

Find lots of advice and answers from the Amplify team.

my.amplify.com/help

Additional Amplify support

Customer Care

Seek information specific to enrollment and rosters, technical support, materials and kits, and teaching support, weekdays 7AM-7PM EST.

scihelp@amplify.com

800-823-1969

Amplify Chat

When contacting the customer care team:

- Identify yourself as an Amplify Science user.
- Note the unit you are teaching.
- Note the type of device you are using (Chromebook, iPad, Windows, laptop).
- Note the web browser you are using (Chrome or Safari).
- Include a screenshot of the problem, if possible.
- Copy your district or site IT contact on emails.