

Effective React Development with Nx
A practical guide to full-stack React development in a
monorepo

Jack Hsu

This book is for sale at http://leanpub.com/effective-react-with-nx

This version was published on 2020-04-14

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2019 - 2020 Jack Hsu

http://leanpub.com/effective-react-with-nx
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Preface . 1

Introduction . 2
Monorepos to the rescue! . 2
Why Nx? . 3
Is this book for you? . 3
Common concerns regarding monorepos 4
How this book is laid out . 5

Chapter 1: Getting started . 6
Creating an Nx workspace . 6
Nx commands . 10
Preparing for development . 13

Chapter 2: Libraries . 16
Types of libraries . 16
The generate command . 17
Feature libraries . 17
UI libraries . 22
Using the UI library . 28
Data-access libraries . 31

Chapter 3: Working effectively in a monorepo 38
The dependency graph . 38
Understanding and verifying changes . 39
Adding the API application . 47
Automatic code formatting . 55

Chapter 4: Bringing it all together . 57

CONTENTS

Appendix A: Shallow dive into workspace.json 58

Appendix B: Using npm instead of yarn . 59

Appendix C: Pre-commit git hook to automatically format code 60

Preface
This book is a work in progress.

First-class support for React in Nx is still new, and we will continue to improve
it in order to create the best possible experience for React developers.

As Nx evolves, this book will also be updated to reflect improvements and
changes to Nx. To keep upwith the latest development of this book, please visit
our website at https://connect.nrwl.io (TODO: point this to actual book URL).

Introduction
If you’ve ever worked at a company with more than one team, chances are
you’ve had to deal with some challengeswhen it comes to changemanagement.

In a typical work setting, development teams are divided by domain or technol-
ogy. For example, one team building the UI in React, and another one building
the API in Express. These teams usually have their own code repositories, so
changes to the software as a whole requires juggling multiple repositories.

A few problems that arise from a multi-repository setup include:

• Lack of collaboration because sharing code is hard and expensive.

• Lack of consistency in linting, testing, and release processes.

• Lack of developer mobility between projects because access may be un-
available or the development experience vary too greatly.

• Difficulty in coordinating changes across repositories.

• Late discovery of bugs because they can only occur at the point of integra-
tion rather than when code is changed.

Monorepos to the rescue!

A lot of successful organizations such as Google, Facebook, and Microsoft–and
also large open source projects such as Babel, Jest, and React–are all using the
monorepo approach to software development.

As youwill see in this book, amonorepo approachwhen done correctly can save
developers from a great deal of headache and wasted time.

Introduction 3

Why Nx?

Nx is a set of dev tools designed specifically tohelp teamsworkwithmonorepos.
It provides an opinionated organizational structure, and a set of generation,
linting, and testing tools.

Is this book for you?

Because Nx creates TypeScript source code, it helps to know some of the basics
such as type annotations, and interfaces.

// Here's a number variable
let x: number;

// Here's an interface
interface Foo {

bar: string;
}

// Using the interface
const y: Foo = {
bar: 'Hello'

};

Don’t fret if this is your first introduction to TypeScript. We will not be using
any advanced TypeScript features so a good working knowledge of modern
JavaScript is more than enough.

This book assumes that youhave prior experienceworkingwith React, so it does
not go over any of the basics. We will also make light use of the Hooks API,
however understanding it is not necessary to grasp the concepts in this book.

Consequently, this book might be for you if:

• You just heard about Nx and want to know more about how it applies to
React development.

Introduction 4

• You use React at work and want to learn tools and concepts to help your
team work more effectively.

• Youwant to use great tools that enable you to focus onproduct development
rather than environment setup.

• You use amonorepo but have struggled with its setup. Or perhaps you want
to use a monorepo but are unsure how to set it up.

• You are pragmatic person who learns best by following practical examples
of an application development.

On the other hand, this book might not be for you if:

• You are already proficient at using Nx with React and this book may not
teach you anything new.

• You hatemonorepos so much that you cannot stand looking at them.

Okay, the last bullet point is a bit of a joke, but there are common concerns
regarding monorepos in practice.

Common concerns regarding monorepos

There are a few common concerns that people may have when they consider
using a monorepo.

• Continuous integration (CI) is slow

• “Everyone can changemy code”

• Teams losing their autonomy

All three of these issues will be addressed throughout this book.

Introduction 5

How this book is laid out

This book is split into three parts.

In chapter 1we begin by setting up themonorepoworkspacewithNx and create
our first application–an online bookstore. We will explore a few Nx commands
that work right out of the box.

In chapter 2 we build new libraries to support a book listing feature.

In chapter 3 we examine how Nx deals with code changes in the monorepo by
arming us with intelligent tools to help us understand and verify changes. We
will demonstrate these Nx tools by creating an api backend application.

In chapter 4 we wrap up our application by implementing the shopping-cart
feature, where users can add books to their cart for checkout.

Finally, this book assumes that you are using yarn as your package manager. If
you are using npm then Appendix B shows you how to run the same commands
using npm.

Chapter 1: Getting started
Let’s start by going through the terminology that Nx uses.

Workspace
A folder created using Nx that contain applications and libraries, as well as
scaffolding to help with building, linting, and testing.

Project
An application or library within the workspace.

Application
A package that uses multiple libraries to form a runnable program. An
application is usually either run in the browser or by Node.

Library
A set of files that deal with related concerns. For example, a shared com-
ponent UI library.

Now, let’s create our workspace.

Creating an Nx workspace

You can create the workspace as follows:

npx create-nx-workspace

Note: The npx binary comes bundled with NodeJS. It allows you to conve-
niently install then run a Node binary.

Chapter 1: Getting started 7

Nx will ask you for a workspace name. Let’s use myorg as it is the name of
our imaginary organization. The workspace name is used by Nx to scope our
libraries, just like npm scoped packages.

Next, you’ll be prompted to select a preset–choose the react option.

Creating a workspace

Lastly, you’ll be prompted for the application name and the styling format you
want to use. Let’s use bookstore as our applicationname and styled-components
for styling.

https://docs.npmjs.com/misc/scope

Chapter 1: Getting started 8

Choosing a style option

Once Nx finishes creating the workspace, we will end up with something like
this:

myorg
├── apps
│ ├── bookstore
│ │ ├── src
│ │ │ ├── app
│ │ │ ├── assets
│ │ │ ├── environments
│ │ │ ├── favicon.ico
│ │ │ ├── index.html
│ │ │ ├── main.tsx
│ │ │ └── polyfills.ts
│ │ ├── browserslist

Chapter 1: Getting started 9

│ │ ├── jest.config.js
│ │ ├── tsconfig.app.json
│ │ ├── tsconfig.json
│ │ └── tsconfig.spec.json
│ └── bookstore-e2e
├── libs
├── tools
│ ├── schematics
│ └── tsconfig.tools.json
├── README.md
├── nx.json
├── package.json
├── tools
├── tsconfig.json
└── workspace.json

The apps folder contain the code of all applications in our workspace. Nx has
created two applications by default:

• The bookstore application itself; and

• A set of end-to-end (e2e) tests written to test bookstore application.

The libs folder will eventually contain our libraries (more on that in Chapter 2).
It is empty for now.

The tools folder can be used for scripts that are specific to the workspace. The
generated tools/schematics folder is for Nx’s workspace schematics feature
which we cover in Appendix A.

The nx.json file configures Nx (as we’ll see in Chapter 4).

The workspace.json file configures our projects (applications and libraries)
within theworkspace. Here, you can specify what and how commands like lint,
test, and e2e are run.

To serve the application, use this command:

Chapter 1: Getting started 10

nx serve bookstore

The above command will build the bookstore application, then start a develop-
ment server at port 4200.

When we navigate to http://localhost:4200 we are presented with a friendly
welcome page.

The generated welcome page

Nx commands

Nx comes with a set of targets that can be executed on our projects. You run a
target by running commands in the form: nx [target] [project].

http://localhost:4200

Chapter 1: Getting started 11

For example, for our bookstore app we can run the following targets.

Run a linter for the application
npx nx lint bookstore

Run unit tests for the application
npx nx test bookstore

Run e2e tests for the application
npx nx e2e bookstore-e2e

Give these commands a try!

nx e2e bookstore-e2e

Lastly, Nx allows us to examine the dependency graph of our workspace with
the nx dep-graph command.

Chapter 1: Getting started 12

Dependency graph of the workspace

There isn’tmuch in theworkspace tomake this graphuseful just yet, butwewill
see in later chapters how this feature can help us understand the architecture
of our application, and how changes to code affect various projects within the
workspace.

Install Nx globally (optional)

It’s easier to work with Nx when we have it installed globally. You can do this
by running:

npm install -g @nrwl/cli

Check that the install has worked by issuing the command nx --version.

Chapter 1: Getting started 13

Now you will be able to run Nx commands without going through yarn (e.g. nx
serve bookstore).

For the rest of this book, I will assume that you haveNx installed globally. If you
haven’t, simply run all issued commands through yarn.

Preparing for development

Let’s end this chapter by removing the generated content from the bookstore
application and adding some configuration to the workspace.

Open up your favorite editor and modify these three files.

apps/bookstore/src/app/app.tsx

import React from 'react';
import styled from 'styled-components';

const StyledApp = styled.div``;

export const App = () => {
return (

<StyledApp>
<header>

<h1>Bookstore</h1>
</header>

</StyledApp>
);

};

export default App;

apps/bookstore/src/app/app.spec.tsx

Chapter 1: Getting started 14

import React from 'react';
import { render, cleanup } from '@testing-library/react';

import App from './app';

describe('App', () => {
afterEach(cleanup);

it('should render successfully', () => {
const { baseElement } = render(<App />);

expect(baseElement).toBeTruthy();
});

it('should have a header as the title', () => {
const { getByText } = render(<App />);

expect(getByText('Bookstore')).toBeTruthy();
});

});

apps/bookstore-e2e/src/integration/app.spec.ts

import { getGreeting } from '../support/app.po';

describe('bookstore', () => {
beforeEach(() => cy.visit('/'));

it('should display welcome message', () => {
getGreeting().contains('Bookstore');

});
});

Make sure the tests still pass:

• nx test bookstore

• nx e2e bookstore-e2e

Chapter 1: Getting started 15

It’s a good idea to commit our code before making any more changes.

git add .
git commit -m 'end of chapter one'

Key points

An Nx workspace consists of two types of projects: applications and li-
braries.

A newly created workspace comes with a set of targets we can run on the
generated application: lint, test, and e2e.

Nx also has a tool for displaying the dependency graph of all the projects
within the workspace.

Chapter 2: Libraries
We have the skeleton of our application from Chapter 1.

So now we can start adding to our application by creating and using libraries.

Types of libraries

In a workspace, libraries are generally divided into four different types:

Feature
Libraries that implement “smart” UI (e.g. is effectful, is connected to data
sources, handles routing, etc.) for specific business use cases.

UI Libraries that contain only presentational components. That is, compo-
nents that render purely fromtheir props, and calls functionhandlerswhen
interaction occurs.

Data-access
Libraries that contain themeans for interactingwith external data services;
external services are typically backend services.

Utility
Libraries that contain common utilities that are shared by many projects.

Why do wemake these distinctions between libraries? Good question! It is good
to set boundaries for what a library should and should not do. This demarcation
makes it easier to understand the capabilities of each library, and how they
interact with each other.

More concretely, we can form rules about what each types of libraries can
depend on. For example, UI libraries cannot use feature or data-access libraries,
because doing so will mean that they are effectful.

Chapter 2: Libraries 17

We’ll see in the next chapter how we can use Nx to strictly enforce these
boundaries.

The generate command

The nx generate or the nx g command, as it is aliased, allows us to use Nx
schematics to create new applications, components, libraries, andmore, to our
workspace.

Feature libraries

Let’s create our first feature library: books.

nx g lib feature \
--directory books \
--appProject bookstore

The --directory option allows us to group our libraries by nesting them under
their parentdirectory. In this case the library is created in the libs/books/feature
folder. It is aliased to -d.

The --appProject option lets Nx know that we want to make our feature library
to be routable inside the specified application. This option is not needed, but it
is useful because Nx will do three things for us. It is aliased to -a.

1. Update apps/bookstore/src/app/app.tsx with the new route.

2. Update apps/bookstore/src/main.tsx to add BrowserRouter if it does not
exist yet.

3. Add react-router-dom and related dependencies to the workspace, if nec-
essary.

Pro-tip: You can pass the --dryRun option to generate to see the effects
of the command before committing to disk.

https://reacttraining.com/react-router/web/guides/quick-start

Chapter 2: Libraries 18

Once the command completes, you should see the new directory.

myorg
├── (...)
├── libs
│ ├── (...)
│ └──books
│ └── feature
│ ├── src
│ │ ├── lib
│ │ └── index.ts
│ ├── .eslintrc
│ ├── jest.config.js
│ ├── README.md
│ ├── tsconfig.app.json
│ ├── tsconfig.json
│ └── tsconfig.spec.json
└── (...)

Nxgenerated our librarywith somedefault code aswell as scaffolding for linting
(ESLint) and testing (Jest). You can run them with:

nx lint books-feature
nx test books-feature

You’ll also see that the App component for bookstore has been updated to
include the new route.

Chapter 2: Libraries 19

import React from 'react';
import styled from 'styled-components';
import { Route, Link } from 'react-router-dom';

import { BooksFeature } from '@myorg/books/feature';

const StyledApp = styled.div``;

export const App = () => {
return (

<StyledApp>
<header>

<h1>Bookstore</h1>
</header>

{/* START: routes */}
{/* These routes and navigation have been generated for you */}
{/* Feel free to move and update them to fit your needs */}

<hr />

<div role="navigation">

<Link to="/">Home</Link>

<Link to="/feature">BooksFeature</Link>

<Link to="/page-2">Page 2</Link>

</div>
<Route

path="/"
exact
render={() => (

<div>

Chapter 2: Libraries 20

This is the generated root route.{' '}
<Link to="/page-2">Click here for page 2.</Link>

</div>
)}

/>
<Route path="/feature" component={BooksFeature} />
<Route

path="/page-2"
exact
render={() => (

<div>
<Link to="/">Click here to go back to root page.</Link>

</div>
)}

/>
{/* END: routes */}

</StyledApp>
);

};

export default App;

Additionally, the main.tsx file for bookstore has also been updated to render
<BrowserRouter />. This render is needed in order for <Route /> components to
work, and Nx will handle the file update for us if necessary.

import React from 'react';
import ReactDOM from 'react-dom';
import App from './app/app';

import { BrowserRouter } from 'react-router-dom';

ReactDOM.render(
<BrowserRouter>

<App />
</BrowserRouter>,
document.getElementById('root')

);

Chapter 2: Libraries 21

Restart the development server again (nx serve bookstore) and you should see
the updated application.

Be aware that when you add a new project to the workspace, you
must restart your development server. This restart is necessary in or-
der for the TypeScript compiler to pick up new library paths, such as
@myorg/books/feature.

By using a monorepo, we’ve skipped a few steps that are usually required when
creating a new library.

• Setting up the repo

• Setting up the CI

• Setting up the publishing pipeline–such as artifactory

And nowwe have our library!Wasn’t that easy? Something thatmay have taken
minutes or hours–sometimes even days–now takes only takes a few seconds.

But to our despair, when we navigate to http://localhost:4200 again, we see a
poorly styled application.

http://localhost:4200

Chapter 2: Libraries 22

Let’s remedy this situation by adding a component library that will provide
better styling.

UI libraries

Let’s create the UI library.

nx g lib ui --no-interactive

The --no-interactive tells Nx to not prompt us with options, but instead use
the default values.

Chapter 2: Libraries 23

Please note that we will make heavy use of styled-components in this compo-
nent library. Don’t fret if you’re not familiar with styled-components. If you
know CSS then you should not have a problem understanding this section. To
learn more about styled-components you can check our their documentation.

Back to the example. You should have a new folder: libs/ui.

myorg
├── (...)
├── libs
│ ├── (...)
│ ├── ui
│ │ ├── src
│ │ │ ├── lib
│ │ │ └── index.ts
│ │ ├── .eslintrc
│ │ ├── jest.config.js
│ │ ├── README.md
│ │ ├── tsconfig.app.json
│ │ ├── tsconfig.json
│ │ └── tsconfig.spec.json
└── (...)

This library isn’t quite useful yet, so let’s add in some components.

nx g component GlobalStyles --project ui --export
nx g component Button --project ui --export
nx g component Header --project ui --export
nx g component Main --project ui --export
nx g component NavigationList --project ui --export
nx g component NavigationItem --project ui --export

The --project option specifies which project (as found in the projects section
of workspace.json) to add the new component to. It is aliased to -p.

The --export option tells Nx to export the new component in the index.ts file
of the project so that it can be imported elsewhere in the workspace. You may

https://www.styled-components.com/
https://www.styled-components.com/docs/basics

Chapter 2: Libraries 24

leave this option off if you are generating private/internal components. It is
aliased to -e.

If you do forget the --export option you can always manually add the export to
index.ts.

Pro-tip: There are additional options and aliases available to the nx g
component command. To see a list of options run nx g component --help.
Also check out nx g lib --help and nx g app --help!

Next, let’s go over the implementation of each of the components and what
their purposes are.

GlobalStyles

This component injects a global stylesheet into our application when used.

This component is useful for overriding global style rules such as body { margin:
0 }.

libs/ui/src/lib/global-styles/global-styles.tsx

import React from 'react';
import { createGlobalStyle } from 'styled-components';

export const GlobalStyles = createGlobalStyle`
body {

margin: 0;
font-size: 16px;
font-family: sans-serif;

}

* {
box-sizing: border-box;

}
`;

export default GlobalStyles;

Chapter 2: Libraries 25

Button

This component is pretty self-explanatory. It renders a styledbuttonandpasses
through other props to the actual <button>.

libs/ui/src/lib/button/button.tsx

import React, { ButtonHTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledButton = styled.button`
font-size: 0.8rem;
padding: 0.5rem;
border: 1px solid #ccc;
background-color: #fafafa;
border-radius: 4px;

&:hover {
background-color: #80a8e2;
border-color: #0e2147;

}
`;

export const Button = ({
children,
...rest

}: ButtonHTMLAttributes<HTMLButtonElement>) => {
return <StyledButton {...rest}>{children}</StyledButton>;

};

export default Button;

Header and Main

These two components are used for layout. The header component forms the
top header bar, while the main component takes up the rest of the page.

libs/ui/src/lib/header/header.tsx

Chapter 2: Libraries 26

import React, { HTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledHeader = styled.header`
padding: 1rem;
background-color: #2657ba;
color: white;
display: flex;
align-items: center;

a {
color: white;
text-decoration: none;

&:hover {
text-decoration: underline;

}
}

> h1 {
margin: 0 1rem 0 0;
padding-right: 1rem;
border-right: 1px solid white;

}
`;

export const Header = (props: HTMLAttributes<HTMLElement>) => (
<StyledHeader>{props.children}</StyledHeader>

);

export default Header;

libs/ui/src/lib/main/main.tsx

Chapter 2: Libraries 27

import React, { HTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledMain = styled.main`
padding: 0 1rem;
width: 100%;
max-width: 960px;

`;

export const Main = (props: HTMLAttributes<HTMLElement>) => (
<StyledMain>{props.children}</StyledMain>

);

export default Main;

NavigationList and NavigationItem

And finally, the NavigationList and NavigationItem componentswill render the
navigation bar inside our top Header component.

libs/ui/src/lib/navigation-list/navigation-list.tsx

import React, { HTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledNavigationList = styled.div`
ul {

display: flex;
margin: 0;
padding: 0;
list-style: none;

}
`;

export const NavigationList = (props: HTMLAttributes<HTMLElement>) => {
return (

<StyledNavigationList role="navigation">

Chapter 2: Libraries 28

{props.children}
</StyledNavigationList>

);
};

export default NavigationList;

libs/ui/src/lib/navigation-item/navigation-item.tsx

import React, { LiHTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledNavigationItem = styled.li`
margin-right: 1rem;

`;

export const NavigationItem = (props: LiHTMLAttributes<HTMLLIElement>) => {
return <StyledNavigationItem>{props.children}</StyledNavigationItem>;

};

export default NavigationItem;

Using the UI library

Now we can use the new library in our bookstore’s app component.

apps/bookstore/src/app/app.tsx

Chapter 2: Libraries 29

import React from 'react';
import { Link, Redirect, Route } from 'react-router-dom';

import { BooksFeature } from '@myorg/books/feature';
import {

GlobalStyles,
Header,
Main,
NavigationItem,
NavigationList

} from '@myorg/ui';

export const App = () => {
return (

<>
<GlobalStyles />
<Header>

<h1>Bookstore</h1>
<NavigationList>

<NavigationItem>
<Link to="/books">Books</Link>

</NavigationItem>
</NavigationList>

</Header>
<Main>

<Route path="/books" component={BooksFeature} />
<Route exact path="/" render={() => <Redirect to="/books" />} />

</Main>
</>

);
};

export default App;

Finally, let’s restart our server (nx serve bookstore) and we will see a much
improved UI.

Chapter 2: Libraries 30

We’ll save our progress with a new commit.

git add .
git commit -m 'Add books feature and ui libraries'

That’s great, but we are still not seeing any books, so let’s do something about
this.

Chapter 2: Libraries 31

Data-access libraries

What we want to do is fetch data from somewhere and display that in our books
feature. Since we will be calling a backend service we should create a new data-
access library.

nx g @nrwl/web:lib data-access --directory books

You may have noticed that we are using a prefix @nrwl/web:lib instead of
just lib like in our previous examples. This @nrwl/web:lib syntax means that
we want Nx to run the lib (or library) schematic provided by the @nrwl/web
collection.

We were able to go without this prefix previously because the workspace.json
configuration has set @nrwl/react as the default option.

{
// ...
"cli": {

"defaultCollection": "@nrwl/react"
},
// ...

}

In this case, the @nrwl/web:lib schematic will create a library to be used in a
web (i.e. browser) context without assuming the framework used. In contrast,
when using @nrwl/react:lib, it assumes that you want to generate a default
component as well as potentially setting up routes.

Back to the example. Let’s modify the library to export a getBooks function to
load our list of books.

libs/books/data-access/src/lib/books-data-access.ts

Chapter 2: Libraries 32

export async function getBooks() {
// TODO: We'll wire this up to an actual API later.
// For now we are just returning some fixtures.
return [

{
id: 1,
title: 'The Picture of Dorian Gray',
author: 'Oscar Wilde',
rating: 3,
price: 9.99

},
{
id: 2,
title: 'Frankenstein',
author: 'Mary Wollstonecraft Shelley',
rating: 5,
price: 7.95

},
{
id: 3,
title: 'Jane Eyre',
author: 'Charlotte Brontë',
rating: 4,
price: 10.95

},
{
id: 4,
title: 'Dracula',
author: 'Bram Stoker',
rating: 5,
price: 14.99

},
{
id: 5,
title: 'Pride and Prejudice',
rating: 4,
author: 'Jane Austen',
price: 12.85

}

Chapter 2: Libraries 33

];
}

Using the data-access library

The next step is to use the getBooks function within our books feature. We can
do this with React’s useEffect and useState hooks.

libs/books/feature/src/lib/books-feature.tsx

import React, { useEffect, useState } from 'react';
import styled from 'styled-components';
import { getBooks } from '@myorg/books/data-access';
import { Books, Book } from '@myorg/books/ui';

export const BooksFeature = () => {
const [books, setBooks] = useState([]);

useEffect(() => {
getBooks().then(setBooks);

}, [
// This effect runs only once on first component render
// so we declare it as having no dependent state.

]);

return (
<>
<h2>Books</h2>
<Books books={books} />

</>
);

};

export default BooksFeature;

You’ll notice that we’re using two new components: Books and Book. They can
be created as follows.

Chapter 2: Libraries 34

nx g lib ui --directory books
nx g component Books --project books-ui --export
nx g component Book --project books-ui --export

We generally want to put presentational components into their own UI library.
This will prevent effects from bleeding into them, thus making them easier to
understand and test.

Again, we will see in Chapter 3 how Nx enforces module boundaries.

libs/books/ui/src/lib/books/books.tsx

import React from 'react';
import styled from 'styled-components';
import { Book } from '../book/book';

export interface BooksProps {
books: any[];

}

const StyledBooks = styled.div`
border: 1px solid #ccc;
border-radius: 4px;

`;

export const Books = ({ books }: BooksProps) => {
return (

<StyledBooks>
{books.map(book => (

<Book key={book.id} book={book} />
))}

</StyledBooks>
);

};

export default Books;

libs/books/ui/src/lib/book/book.tsx

Chapter 2: Libraries 35

import React from 'react';
import styled from 'styled-components';
import { Button } from '@myorg/ui';

export interface BookProps {
book: any;

}

const StyledBook = styled.div`
display: flex;
align-items: center;
border-bottom: 1px solid #ccc;
&:last-child {

border-bottom: none;
}
> span {

padding: 1rem 0.5rem;
margin-right: 0.5rem;

}
.title {

flex: 1;
}
.price {

color: #478d3c;
}

`;

export const Book = ({ book }: BookProps) => {
return (

<StyledBook>

{book.title} by {book.author}

${book.price}

</StyledBook>
);

};

export default Book;

Chapter 2: Libraries 36

Restart the server to check out our feature in action.

That’s great and all, but you may have observed a couple of problems.

1. The getBooks data-access function is a stub and doesn’t actually call out to
a backend service.

2. We’ve been using any typeswhen dealingwith books data. For example, the
return type of getBooks is any[] andour BookProp takes specifies { book: any
}. This makes our code unsafe and can lead to production bugs.

We’ll address both problems in the next chapter.

Chapter 2: Libraries 37

Key points

Libraries are separated into four types: feature, UI, data-access, and util.

Nx provides us with the nx generate or nx g command to quickly create
new libraries from scratch.

When running nx g we can optionally provide a collection such as
@nrwl/web:lib as opposed to lib. This will tell Nx to use the schematic
from that specific collection rather than taking the workspace’s
defaultCollection.

Chapter 3: Working effectively in a
monorepo
In the previous two chapters we set up a bookstore application that renders a
list of books for users to purchase.

In this chapter we explore how Nx enables us to work more effectively.

The dependency graph

As we’ve seen in Chapter 1, Nx automatically generates the dependency graph
for us. So why don’t we see how it looks now?

nx dep-graph

Chapter 3: Working effectively in a monorepo 39

Dependency graph of the workspace

Nx knows the dependency graph of the workspace without us having to config-
ure anything. Because of this ability, Nx also understandswhich projects within
the workspace are affected by any given changeset. Moreover, it can help us
verify the correctness of the affected projects.

Understanding and verifying changes

Let’s say we want to add a checkout button to each of the books in the list.

We can update our Book, Books, and BooksFeature components to pass along a
new onAdd callback prop.

libs/books/ui/src/lib/book/book.tsx

Chapter 3: Working effectively in a monorepo 40

import React from 'react';
import styled from 'styled-components';
import { Button } from '@myorg/ui';

export interface BookProps {
book: any;
// New prop
onAdd: (book: any) => void;

}

const StyledBook = styled.div`
display: flex;
align-items: center;
border-bottom: 1px solid #ccc;
&:last-child {

border-bottom: none;
}
> span {

padding: 1rem 0.5rem;
margin-right: 0.5rem;

}
.title {

flex: 1;
}
.rating {

color: #999;
}
.price {

color: #478d3c;
}

`;

export const Book = ({ book, onAdd }: BookProps) => {
return (

<StyledBook>

{book.title} by {book.author}

{book.rating}

Chapter 3: Working effectively in a monorepo 41

${book.price}
{/* Add button to UI */}

<Button onClick={() => onAdd(book)}>Add to Cart</Button>

</StyledBook>
);

};

export default Book;

libs/books/ui/src/lib/books/books.tsx

import React from 'react';
import styled from 'styled-components';
import { Book } from '../book/book';

export interface BooksProps {
books: any[];

// New prop
onAdd: (book: any) => void;

}

const StyledBooks = styled.div`
border: 1px solid #ccc;
border-radius: 4px;

`;

export const Books = ({ books, onAdd }: BooksProps) => {
return (

<StyledBooks>
{books.map(book => (

// Pass down new callback prop
<Book key={book.id} book={book} onAdd={onAdd} />

))}
</StyledBooks>

);
};

Chapter 3: Working effectively in a monorepo 42

export default Books;

libs/books/feature/src/lib/books-feature.tsx

import React, { useEffect, useState } from 'react';
import styled from 'styled-components';
import { getBooks } from '@myorg/books/data-access';
import { Books, Book } from '@myorg/books/ui';

export const BooksFeature = () => {
const [books, setBooks] = useState([]);

useEffect(() => {
getBooks().then(setBooks);

}, [
// This effect runs only once on first component render
// so we declare it as having no dependent state.

]);

return (
<>
<h2>Books</h2>
{/* Pass a stub callback for now */}
{/* We'll implement this properly in Chapter 4 */}
<Books books={books} onAdd={book => alert(`Added ${book.title}`)} />

</>
);

};

export default BooksFeature;

We can ask Nx to show us how this change affects the projects within our
workspace.

nx affected:dep-graph

Chapter 3: Working effectively in a monorepo 43

Affected dependencies

As we can see, Nx knows that the books-ui library has changed from the master
branch; it has indicates the dependent projects affected by this change in red.
Furthermore, Nx also allows us to retest only the affected projects.

We can lint the projects affected by the changeset.

nx affected:lint --parallel

Or run unit tests for the affected projects.

nx affected:test --parallel

Or even run e2e tests for the affected projects.

Chapter 3: Working effectively in a monorepo 44

nx affected:e2e

Nx topologically sorts the projects so they are run from bottom to top. That is,
projects at the bottom of the dependency chain are run first. We’re also using
the --parallel option to enable Nx to run our projects in parallel.

And just as with the affected:dep-graph command, the default base is the
master branch. This default branch should be correct most of the time, but can
be changed with the --base=[branch] option. For example, if your team uses
git-flow then you may want to use --base=develop when doing work on the
development branch.

Note that in these projects, Nx is using Jest and Cypress to run unit and e2e
tests respectively. They make writing and running tests are fast and simple as
possible. If you’re not familiar with them, please read their documentation to
learn more.

It is possible to use different runners by specifying them in workspace.json. See
Appendix A for more information.

So far we haven’t been diligent about verifying that our changes are okay, so
unsurprisingly our tests are failing.

https://jestjs.io/
https://www.cypress.io/

Chapter 3: Working effectively in a monorepo 45

nx affected:test failed

Chapter 3: Working effectively in a monorepo 46

nx affected:e2e failed

I’ll leave it to you as an exercise to fix the broken unit and e2e tests. Tip: Run
the tests in watch mode by passing the --watch option so that tests are rerun
whenever the source or test code change.

There are three additional affected commands in Nx.

1. nx affected:build - Builds only the affected apps. We’ll go over build and
deployment in Chapter 5.

2. nx affected:apps - Lists out all applications affected by the changeset.

3. nx affected:libs - Lists out all libraries affected by the changeset.

The listing of affected applications and libraries can be useful in CI to trigger
downstream jobs based on the output.

Chapter 3: Working effectively in a monorepo 47

Adding the API application

By the way, now is a good time to commit your changes if you haven’t done so
already.

So far our bookstore application does not communicate with a real backend
service. Let’s create one using the Express framework.

We’ll need to install the @nrwl/express collection first.

yarn add --dev @nrwl/express

Then we can do a dry run of the generate command.

nx g @nrwl/express:app api \
--no-interactive \
--frontend-project=bookstore \
--dryRun

https://expressjs.com/

Chapter 3: Working effectively in a monorepo 48

Preview of the file changes

Everything looks good so let’s run it for real.

nx g @nrwl/express:app api \
--no-interactive \
--frontend-project=bookstore

The --frontend-project option will add proxy configuration to the bookstore
application such that requests going to /api/* will be forwarded to the API

And just like our frontend application, we can use Nx to serve the API.

nx serve api

When we open up http://localhost:3333/api we’ll be greeted by a nice mes-
sage.

Chapter 3: Working effectively in a monorepo 49

{ "message": "Welcome to api!" }

Next, let’s implement the /api/books endpoint so that we can use it in our
books-data-access library.

apps/api/src/main.ts

import * as express from 'express';

const app = express();

app.get('/api', (req, res) => {
res.send({ message: 'Welcome to api!' });

});

app.get('/api/books', (req, res) => {
const books: any[] = [
{
id: 1,
title: 'The Picture of Dorian Gray ',
author: 'Oscar Wilde',
rating: 5,
price: 9.99

},
{
id: 2,
title: 'Frankenstein',
author: 'Mary Wollstonecraft Shelley',
rating: 4,
price: 7.95

},
{
id: 3,
title: 'Jane Eyre',
author: 'Charlotte Brontë',
rating: 4.5,
price: 10.95

},
{

Chapter 3: Working effectively in a monorepo 50

id: 4,
title: 'Dracula',
author: 'Bram Stoker',
rating: 4,
price: 14.99

},
{
id: 5,
title: 'Pride and Prejudice',
author: 'Jane Austen',
rating: 4.5,
price: 12.85

}
];
res.send(books);

});

const port = process.env.port || 3333;
const server = app.listen(port, () => {

console.log(`Listening at http://localhost:${port}/api`);
});
server.on('error', console.error);

Finally, let’s update our data-access library to call the proxied endpoint.

libs/books/data-access/src/lib/books-data-access.ts

export async function getBooks() {
const data = await fetch('/api/books', {

headers: {
'Content-Type': 'application/json'

}
});
return data.json();

}

If we restart both applications (nx serve api and nx serve bookstore) we’ll see
that our bookstore is still working in the browser. Moreover, we can verify that
our /api/books endpoint is indeed being called.

http://localhost:4200/

Chapter 3: Working effectively in a monorepo 51

Sharing models between frontend and backend

Recall that we previously used the any type when working with books data. This
is bad practice as it may lead to uncaught type errors in production.

A better idea would be to create a utility library containing some sharedmodels
to be used by both the frontend and backend.

nx g @nrwl/node:lib shared-models --no-interactive

libs/shared-models/src/lib/shared-models.ts

Chapter 3: Working effectively in a monorepo 52

export interface IBook {
id: number;
title: string;
author: string;
rating: number;
price: number;

}

And now we can update the following five files to use the newmodel:

apps/api/src/main.ts

import { IBook } from '@myorg/shared-models';
// ...

app.get('/api/books', (req, res) => {
const books: IBook[] = [

// ...
];
res.send(books);

});

// ...

libs/books/data-access/src/lib/books-data-access.ts

import { IBook } from '@myorg/shared-models';

// Add correct type for the return value
export async function getBooks(): Promise<IBook[]> {

const data = await fetch('http://localhost:3333/api/books');
return data.json();

}

libs/books/feature/src/lib/books-feature.tsx

Chapter 3: Working effectively in a monorepo 53

...
import { IBook } from '@myorg/shared-models';

export const BooksFeature = () => {
// Replace any with IBook
const [books, setBooks] = useState([] as IBook[]);

// ...

return (
<>
<h2>Books</h2>
<Books books={books} onAdd={book => alert(`Added ${book.title}`)} />

</>
);

};

export default BooksFeature;

libs/books/ui/src/lib/books/books.tsx

// ...
import { IBook } from '@myorg/shared-models';

// Replace any with IBook
export interface BooksProps {

books: IBook[];
onAdd: (book: IBook) => void;

}

// ...

export default Books;

libs/books/ui/src/lib/book/book.tsx

Chapter 3: Working effectively in a monorepo 54

// ...
import { IBook } from '@myorg/shared-models';

// Replace any with IBook
export interface BookProps {

book: IBook;
onAdd: (book: IBook) => void;

}

// ...

export default Book;

dependency graph with api and shared-models

By using Nx, we have created a shared model library and refactored both
frontend and backend code in about a minute.

Chapter 3: Working effectively in a monorepo 55

Another major benefit of working within a monorepo is that we can check
in these changes as a single commit. This means that the corresponding pull-
request contains the full story, rather than being fragmented amongstmultiple
pull-requests and repositories.

Automatic code formatting

One of the easiest ways to waste time as a developer is on code style. We
can spend time hours debating with one another on whether we should use
semicolons or not–you should; or whether we should use a comma-first style
or not–you shouldn’t.

Prettier was created to stop these endless debates over code style. It is highly
opinionated and providesminimal configuration options. And best of all, it can
format our code automatically! This means that we no longer need to manually
fix code to conform to the code style.

Nx comes prepackaged with Prettier. With it, we can check the formatting of
the workspace, and format workspace code automatically.

Checks for format conformance with Prettier.
Exits with error code when the check fails.
nx format:check

Formats files with Prettier.
nx format:write

Lastly, youmaywant to set up a pre-commit git hook to run nx format:write so
we can ensure 100% conformancewhenever code is checked in. Formore details
please refer to Appendix C.

https://prettier.io/

Chapter 3: Working effectively in a monorepo 56

Key points

Nx understands the dependency graph of projects within our workspace.

We can ask Nx to generate the dependency graph automatically, as well
as highlight the parts of the graph that are affected by a given changeset.

Nx can retest and rebuild only the affected projectswithin ourworkspace.

By using a monorepo, related changes in different projects can be in the
same changeset (i.e. pull-request), which gives us the full picture of the
changes.

Nx automatically formats our code for us in an opinionated way using
Prettier.

Chapter 4: Bringing it all together
(TODO: Add content)

Appendix A: Shallow dive into
workspace.json
(TODO: Add content)

Appendix B: Using npm instead of yarn
We make light use of yarn so most of this book should remain the same if you
follow along using npm.

There are four places where you will need to run different commands.

1. yarn create ... becomes npm init

2. yarn add ... becomes npm install --save

3. yarn global add ... becomes npm install -g

4. nx ... becomes npm run nx …‘.

InChapter 1whenyou create theworkspace, you should run npm init nx-workspace.

The examples in this book assume you have nx installed globally. So go ahead
and run npm install -g @nrwl/cli.

Appendix C: Pre-commit git hook to
automatically format code
(TODO: Add content)

	Table of Contents
	Preface
	Introduction
	Monorepos to the rescue!
	Why Nx?
	Is this book for you?
	Common concerns regarding monorepos
	How this book is laid out

	Chapter 1: Getting started
	Creating an Nx workspace
	Nx commands
	Preparing for development

	Chapter 2: Libraries
	Types of libraries
	The generate command
	Feature libraries
	UI libraries
	Using the UI library
	Data-access libraries

	Chapter 3: Working effectively in a monorepo
	The dependency graph
	Understanding and verifying changes
	Adding the API application
	Automatic code formatting

	Chapter 4: Bringing it all together
	Appendix A: Shallow dive into workspace.json
	Appendix B: Using npm instead of yarn
	Appendix C: Pre-commit git hook to automatically format code

