

Enabling Comprehensive Genomic Profiling with TruSightTM Oncology 500

Clinically-optimized for Rapid Implementation and Evidence-based Reporting

Rakesh Nagarajan, MD, PhD

Executive Chairman and Founder

PierianDx

Moderated by: Josh Forsythe

Our Mission

Keep cancer care in the community

By empowering local pathology and cancer centers to provide the same level of advanced testing and precision insights to their patients as major academic centers.

Wisdom in Every Report

- **Today:** 45+ health systems and laboratories in partner sharing network
- **2019:** PierianDx signs multi-year deal with Illumina to support cancer research and diagnostics
 - **2018:** Moffitt 1st to launch TruSightTM Tumor 170 clinically
- **2014:** PierianDx established; Moffitt Cancer Center 1st to go live
- **2011:** PierianDx technology developed at Washington University in St. Louis

Technology Enabled Services

Clinical Genomics Workspace

All-in-one informatics and reporting software

Validation & Interpretation Services

Experienced team to fast-track growth

Medically Powered Knowledgebase

The largest opt-in content **sharing network**

Laboratory Services

Turnkey, validated assays and informatics

Agenda

- Comprehensive Genomic Profiling (CGP)

 Trends, Value, and Adoption
- Assay Content and Performance

 TruSightTM Oncology 500
- Curation Strategies and Approaches

 Clinical Management Yield
- Classification and Interpretation

 Evidence-based Reporting
- Enabling Rapid Clinical Validation and Deployment

 LDT Support for RUO Assays

Comprehensive Genomic Profiling (CGP) Trends, Value, & Adoption

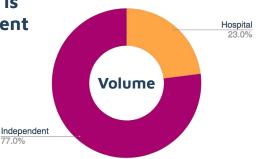
Rapid Rise of Precision Medicine

Numbers and Milestones

284 Total # of FDA approved pharmacogenomic biomarkers; 108 in oncology¹

25 Personalized medicine approvals in 2018 (42% of NMEs)²

10 Cancer-related personalized medicine approvals in 2018²


2nd Approval of a cancer drug (Vitrakvi) indication based on biomarker, not tumor type²

3/16/18 CMS announces national coverage policy for NGS diagnostics

Hospitals billing for comprehensive genomic profiling (CGP)³

Most of the CGP volume is going to a few independent reference labs.³

Sources

^{1.} FDA - Table of Pharmacogenomic Biomarkers in Drug Labeling. Data as of June 2018

^{2.} Personalized Medicine at FDA: A Progress & Outlook Report, Personalized Medicine Coalition, 2018.

^{3.} Boston Healthcare Associates analysis of claims data 2016.

Approved

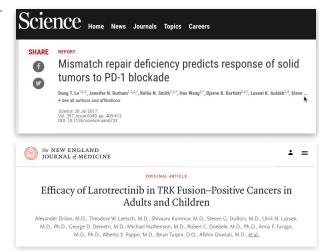
pieriandx

Biomarker and NGS Testing

Biomarker Testing

NGS Testing

Progressive increase in oncology due to tumor agnostic biomarkers developed to inform targeted and immune therapies


Standardized testing algorithms drive biomarker testing for common tumors (NSCLC, CRC, breast) at diagnosis at many healthcare settings

More laboratories performing NGS for common tumor types with approved therapies

Tumor agnostic markers, such as MSI, TMB, and NTRK fusions are significant driver of more NGS testing

Improving payor coverage with recent Medicare coverage for FDA-approved NGS tests

Microsatellite Instability, NTRK Fusions

Emerging Tumor Mutational Burden

Oncology Testing is Evolving

Current > Near-Term > Long-Term

Single Markers and Hotspot Panels

Specific patient populations are tested for specific biomarkers using conventional methods (e.g., EGFR PCR for NSCLC)

Limits on tissue availability make this approach less sustainable long-term

Broad NGS Testing

NGS / CGP increasingly dominates conventional methods (e.g., PCR, FISH)

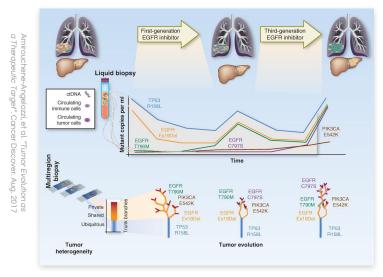
Use of a single test on a single sample to obtain a comprehensive biomarker status of the patient

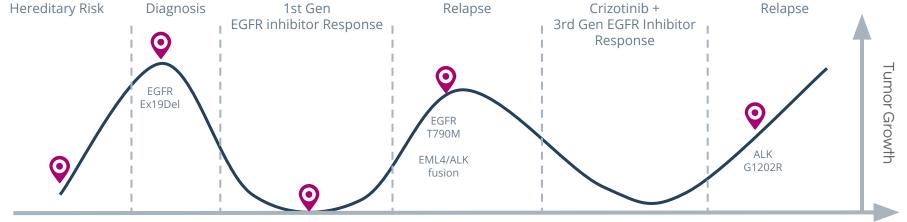
Mix of test methods gives best picture

Possible reflex test patterns with some tests being prioritized because of their ease of use/affordable cost

Some FDA approved; some LDTs

Informatics deployed to create genotypic and phenotypic profile of patient

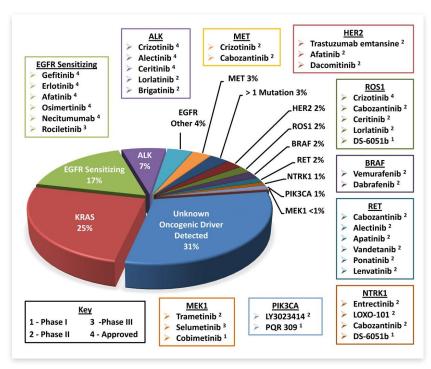

Source: Boston Healthcare Analysis


Monitoring Tumor Clonality

Serial Testing is Vital

Making Cancer a Chronic Disease

Hereditary cancer screening, early stage testing and serial monitoring hold the promise of making cancer a preventable and manageable disease.



Too Many Questions for a Small Amount of Tissue

What if, instead of multiple tests, you could perform a single test that looked at all relevant biomarkers simultaneously?

Frequency of molecular aberrations in various driver oncogenes in lung adenocarcinomas and current available drugs against these oncogenic proteins.

Source: Tsao AS, et al. J Thorac Oncol. 2016;11:613-638.

+ TMB, MSI

Slide courtesy of Illumina

CGP Can Identify Actionable Alterations

Slide courtesy of Illumina

Of patients who undergo Genomic Profiling may have actionable alterations

2 Studies with pediatric solid tumors^{4,5}

Prospective Clinical Trials—843 patients with advanced cancers³

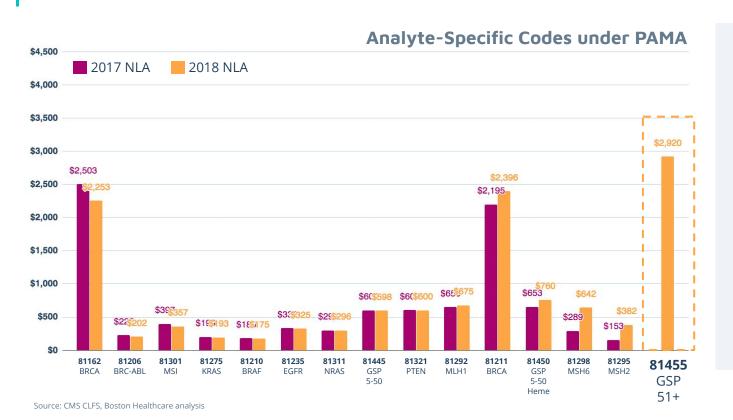
500 patients with advanced cancer, multiple tumor types²

96 patients with multiple tumor types⁶

% of patients found to have an ACTIONABLE genetic alteration, after genomic profiling

^{1.} Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846. doi:10.1038/ncomms5846. 2. Boland GM, Piha-Paul SA, Subbiah V, et al. Clinical next generation sequencing to identify actionable aberrations in a phase I program. Oncotarget. 2015;6(24):20099-20110. 3. Massard C, Michiels S, Ferte C, et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 2017;7(6):586-595. 4. Harris MH, DuBois SG, Glade Bender JL, et al. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized cancer therapy (iCat) study. JAMA Oncol. 2016;2(5):608-615. 5. Parsons DW, Roy A, Yang Y, et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2016;2(5):616-624.; 6. Reitsma et al., 2019. Effect of a Collaboration Between a Health Plan, Oncology Practice, and Comprehensive Genomic Profiling Company from the Payer Perspective Journal of Managed Care & Specialty Pharmacy.

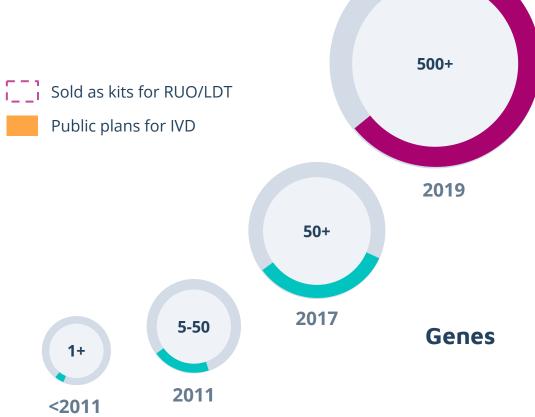
CGP Has Value in Patient Management


Slide courtesy of Illumina

Reitsma et al., 2019. Effect of a Collaboration Between a Health Plan, Oncology Practice, and Comprehensive Genomic Profiling Company from the Payer Perspective *Journal of Managed Care & Specialty Pharmacy.*

Precedent for Reimbursement

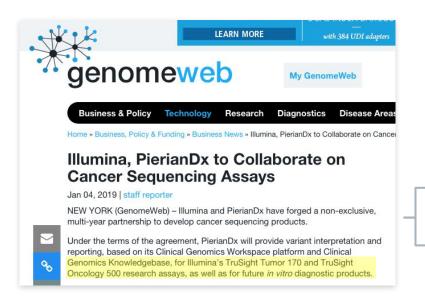
National Coverage Determination


March 2018

CMS finalized a National Coverage Determination that covers diagnostic laboratory tests using Next Generation Sequencing (NGS) for patients with advanced cancer.

In vitro Diagnostics is a Game Changer

Provider	Assay	Genes
PGDx	PGDx	500+
Illumina	TruSight™ Oncology	500
Memorial Sloan	MSK-Impact	468
Foundation Medicine	F1CDx	324
Illumina	TruSight™ Tumor	170
ThermoFisher	Oncomine	162


pieriandx

Assay Content and Performance TruSightTM Oncology 500

PierianDx Implemented Assays

All Bases Covered

PierianDx Enabling TruSight[™] Oncology 500 and TruSight[™] Tumor 170

	Assay	Vendor	Variant Types	Input Files
	Variant/Fusion Plex	Archer	SNVs, indels, fusions	VCF, BAM
	VariantPlex BRCA1/BRCA2	Archer	SNVs and indels	VCF, BAM, BAI
	TruSight Myeloid	Illumina	SNVs and indels	FASTQ, BAM, VCF
				FASTQ, BAM, VCF
Amplicon				FASTQ, BAM, VCF
				FASTQ, BAM, VCF
	BRCA1/BRCA2 (AFP2 assay)			FASTQ, BAM, VCF
	Oncomine (OCA) v2/3	Thermo Fisher	SNVs, indels, CNVs, fusions	BAM, VCF, BAI
	lon AmpliSeq™ Cancer HotSpot	Thermo Fisher	SNVs and indels	BAM, VCF, BAI
	Agilent probes	Agilent	SNVs, indels, fusions	FASTQ, BAM, VCV
	Agilent/IDT probes	Agilent/IDT	SNVs, indels, fusions	FASTQ, BAM, VCF
Hybridization				BAM, VCFs, CSV
Capture	TruSight [™] Oncology 500		SNVs, indels, CNVs, fusions, TMB, MSI	FASTQ, BAM, VCF
	TruSight [™] Cancer			FASTQ, BAM, VCF
	lon AmpliSeq™ Inherited Cancer	Thermo Fisher	SNVs and indels	VCF, BAM, BAI
Haloplex Molecular				
barcodes/UMIs	Agilent Haloplex Technology	Agilent	SNVs and indels	FASTQ, BAM, VCF
	FusionPlex ALK/RET/ROS	Archer	Fusions	FASTQ, BAM
Somatic Fusions	TruSight™ RNA fusion	Illumina	Fusions	FASTQ, BAM, VCF
Whole Exome	Agilent SureSelect	Agilent	SNVs and indels	FASTQ, BAM
Clinical Exome	TruSight [™] One			FASTQ, BAM, VCF

Enabling Quality Comprehensive Genomic Profiling

pieriandx

TruSight™ Oncology 500 Content

Some key biomarkers included

Single assay: 523 Genes

DNA

Hybrid capture-based NGS assay

Panel size of 1.94 (Mb)

Accurate detection of multiple classes of mutations/biomarkers: SNVs, Indels, MSI, TMB

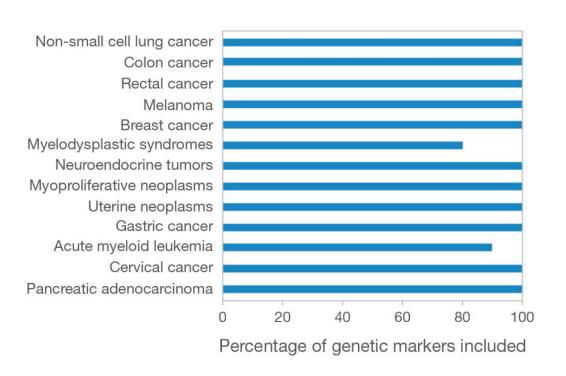
Unique Molecular Identifiers (UMIs) enable detection of variants present at low VAFs and liquid sample analysis (under development)

RNA*

55 Genes

Ability to detect fusions (known and novel), splice variants

	Pan-Cancer Biomarkers NTRK1, NTRK2, NTRK3, MSI (Approved) TMB (Emerging)							
Lung	Melanoma	Colon	Ovarian	Breast	Gastric	Bladder	Myeloid	Sarcoma
AKT1 ALK BRAF DDR2 EGFR ERBB2 FGFR1 FGFR3 KRAS MAP2K1 MET NRAS PIKSCA PTEN RET TPS3 TMB	BRAF CTNNB1 GNA11 GNA10 KIT MAP2K1 NF1 NRAS PDGFRA PIK3CA PTEN TP53	AKT1 BRAF HRAS KRAS MET MLH1 MSH2 MSH6 NRAS PIK3CA PMS2 PTEN SMAD4 TP53	BRAF BRCA1 BRCA2 KRAS PDGFRA FOXL2 TP53	AKT1 AR BRCA1 BRCA2 ERB82 FGFR1 FGFR2 PIK3CA PTEN	BRAF KIT KRAS MET MLH1 PDGFRA TP53	MSH6 PMS2 TSC1	ABL1 ASXL1 CALR CEBPA ETV6 EZH2 FLT3 GATA2 IDH1 IDH2 JAK2 KIT MPL NPM1 RUNX1 SF3B1 SRSF2 TP53	ALK APC BRAF CDK4 CTNNB1 ETV6 EWSR1 FOXO1 GLI1 KIT MDM2 MYOD1 NAB2 NF1 PAX3 PAX7 PDGFRA PDGFRB SDHB SDHC SMARCB1 TFE3 WT1


https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/trusight-oncology-500-data-sheet-1170 2018-010.pdf

For Research Use Only. Not for use in diagnostic procedures.

^{*} The products to evaluate DNA + RNA variants are the TruSight™ Oncology 500 DNA + TruSight™ Oncology 170 RNA bundles (PN: 20028215 / 20028216 / 20032626 / 20032627)

Content Aligned to Guidelines and Clinical Trials

100% coverage of guidelines for 11 tumor types

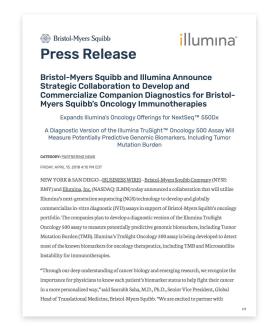
For each cancer type, the percentage of genetic markers in current guidelines that are included in the gene panel is indicated.

1233 Clinical trials (US-based)

https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/trusight-oncology-500-data-sheet-1170-2018-010.pdf

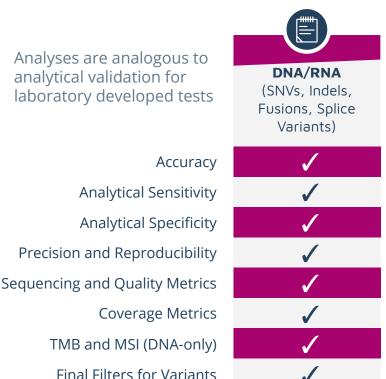
For Research Use Only. Not for use in diagnostic procedures.

Expanding Utility



Addressing Needs of Today and Tomorrow

Illumina partners with NCI to assess TruSightTM Oncology 500 in liquid biopsy samples.



Illumina partnering on companion diagnostic development for *in vitro* diagnostic use.

PierianDx In Silico Analytical Validation

Analyses are analogous to analytical validation for laboratory developed tests

Goal

Determine analytical performance of the assay and optimize for clinical use in PierianDx's Clinical Genomics Workspace

Samples

Multiple reference standards and FFPE clinical samples were included

Results

Demonstrated excellent performance using the Illumina provided secondary analysis pipeline deployed within PierianDx's Clinical Genomics Workspace, providing the foundation for any clinical laboratory to perform analytical and diagnostic validation using appropriate methods-based and diagnostic samples.

Accuracy (DNA)

1. Sensitivity with Reference Standard

Objective: Establish sensitivity for a reference standard across the entire TruSightTM Oncology 500 coding region (+2 bp) by using whole exome sequencing data (100x coverage)

Reference Sample: HD301 from Horizon Discovery

Results:

SNVs: 99.8% 1/3 false-negative present at low frequency in BAM though it was embedded between homopolymer regions

Indels: 100.0%

2. Sensitivity w/ Known Variants in Ref. Standards and Clinical Samples

Objective: Concordance for "evaluate-able" targets between TruSightTM Oncology 500 and orthogonal methodology.

Reference standard samples: HD300, HD301, HD753, SeraCare AF10

Clinical samples: 12 FFPE samples across colon, lung, uterine, endometrial, brain, thyroid tumors

Results:

- SNVs: **100.0%** on reference standards (Reagent Lots 3B and 5); **100%** on clinical samples
- Indels: 100% on reference samples; 100% on clinical samples

Analytical Sensitivity and Specificity (DNA)

Sensitivity

Objective: Define the lower limit of detection (LLOD), defined as the lowest concentration of analyte that the TruSight[™] Oncology 500 DNA assay can consistently detect with acceptable precision. For this assay, the LLOD will be expressed in terms of variant allele frequency (VAF) for a particular depth of sequencing coverage (100x).

Samples: 7 FFPE clinical samples; 3 reference samples

Results:

- SNVs: Sensitivity 100% >= 3% VAF at 100x coverage
- Indels: Sensitivity 100% >= 3% VAF at 100x coverage

Specificity

Objective: Determine the probability that the assay will not detect a sequence variation when none are present (according to a gold standard comparison composed of verified variants).

Samples: 12 DNA samples across ovary, lung, liver, uterus, prostate, colon, and liver tumors

Results:

SNVs: Specificity of 100%

■ Indels: Specificity of 100%

All variants detected in the experimental sample set were detected in the 50-100.0% VAF bin, indicating that no somatic variants were present in these samples as was expected based on the benign nature of the selected samples.

Accuracy (RNA)

Sensitivity with Known Verified Variants in Ref Standards and Clinical Samples

Objective: Determine concordance for evaluate-able targets between the TruSightTM Tumor 170 RNA assay and orthogonal methodology

Clinical samples: 11 FFPE clinical samples.

Reference standard samples: 8 cell lines, 3 FFPE-ized cell lines

Results:

- Reference Standards: Sensitivity of 100.0% for fusions and 100.0% for splice variants
- FFPE-ized Cell Line Samples: Sensitivity of 100.0% for fusions and 100.0% for splice variants
- FFPE Clinical Samples: Sensitivity of 100.0% for fusions and 100.0% for splice variants

Analytical Sensitivity and Specificity (RNA)

Sensitivity

Objective: Define the lower limit of detection (LLOD), defined as the lowest concentration of analyte that the TruSightTM Tumor 170 assay can consistently detect with acceptable precision.

Samples: 8 cell lines (and 31 mixtures of these samples), 3 FFPE-ized cell lines (11 mixtures of these samples)

Results:

- Fusions: Sensitivity of **100.0%** in reference standards and clinical FFPE samples at > 5 copies per ng RNA input
- Splice Variants: Sensitivity of **100.0%** in reference standards and clinical FFPE samples at > 5 copies per ng RNA input

Specificity

Objective: Determine the probability that the assay will not detect a sequence variation when none are present (according to a gold standard comparison composed of verified variants).

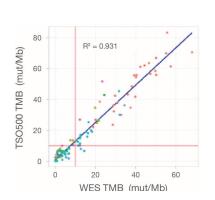
Samples: 29 RNA Samples (including 4 cell lines, 2 FFPE-ized cell lines, and 23 FFPE tissue samples)

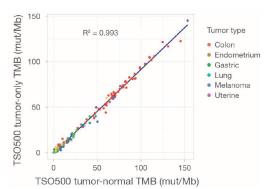
Results:

- Fusions: Specificity of **96.49%**
- Splice Variants: Specificity of **100%**

2/55 false-positive fusions detected were a PDGFRB/FIP1L1 fusion and a FLI1/SPATA32 fusion

TMB and MSI (DNA)

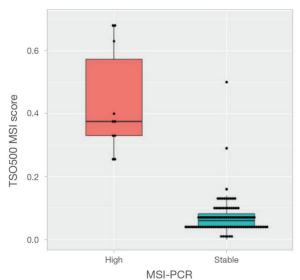

Tumor Mutational Burden


At low value range (10 mut/Mb threshold):

■ Positive percent agreement: **94.7%**

■ Negative percent agreement: **96.1%**

https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/trusight-oncology-500-data-sheet-1170-2018-010.pdf


Microsatellite Instability

Threshold of >=40 marker sites to ensure 95% detection of MSI samples

Specificity: 100%

Detection rate: 100%

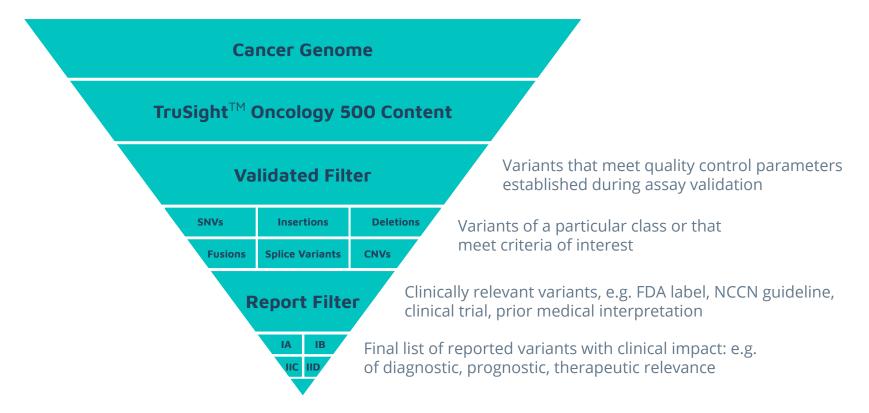
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/trusight-oncology-500-data-sheet-1170-2018-010.pdf

Curation Strategies and Approaches Clinical Management Yield

AMP/CAP/ASCO Variant Classification

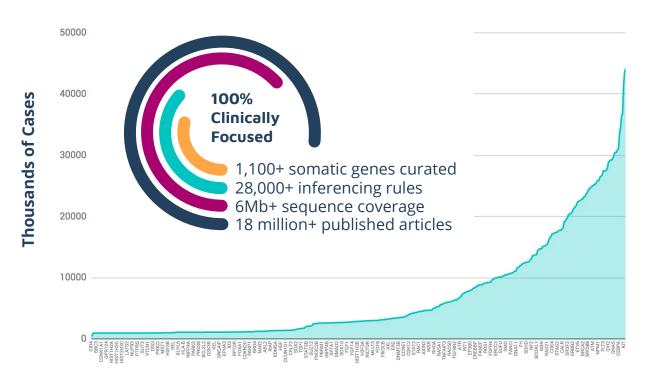
Tier	Classification (Therapeutic, Prognostic, Diagnostic)	Evidence Level	Evidence
1	Variants of Strong Clinical Significance	A B	FDA-approved therapy; Included in professional guidelines Well-powered studies with consensus from field experts
Ш	Variants of Potential Clinical Significance	C D	FDA-approved therapies for different tumor types or investigational therapies; Multiple small studies w/ consensus Preclinical trials or a few case reports without consensus
III	Variants of Unknown Clinical Significance		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or tumor-specific variant databases No convincing published evidence of cancer association
IV	Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases No existing published evidence of cancer association

Li et al. "Standards and Guidelines for the Interpretation and Reporting of Somatic Variants in Cancer", 2017


AMP/CAP/ASCO Variant Classification

Tier	Classification (Therapeutic, Prognostic, Diagnostic)	Evidence Level	Evidence
1	Variants of Strong Clinical Significance	A	FDA-approved therapy; Included in professional guidelines Well-powered studies with consensus from field experts
П	Variants of Poten How to Mo	aintain rap	challenge pid turnaround lest accuracy? ferent tumor types or ole small studies w/ consensus ports without consensus
III	Variants of Unknown Clinical Significar	₹ €	Not observed at a significant all ele frequency in the general or
IV	Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases No existing published evidence of cancer association

Li et al. "Standards and Guidelines for the Interpretation and Reporting of Somatic Variants in Cancer", 2017



Rapidly Identify Clinically Relevant Variants

PierianDx Knowledgebase

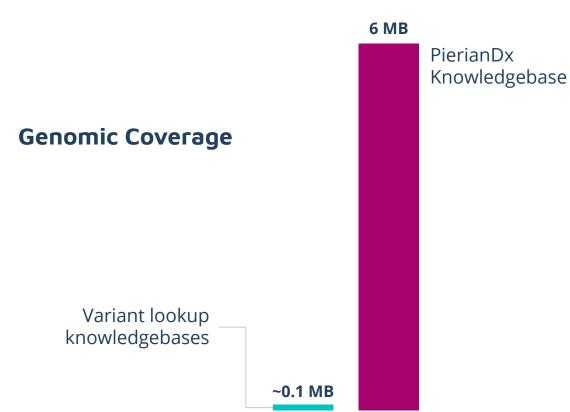
Thousands of Genes

Knowledge Sources

Expertly Curated Assertions

- FDA approved labels
- NCCN, ASCO guidelines
- Active, recruiting trials
- 2H/2019: ESMO guidelines, EMA drug labels, EU clinical trials

Shared Medical Content

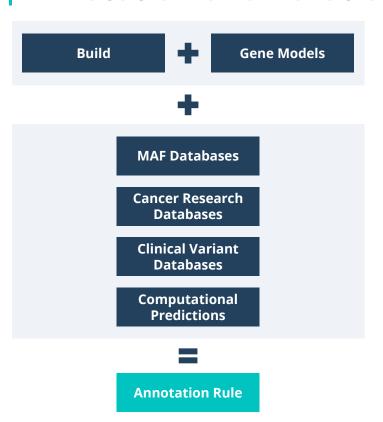

- Medically signed-out interpretations
- 10s of thousands of cases

Public Data Sources

- PubMed literature
- Population frequencies
- TCGA
- ClinVar
- COSMIC
- Emory
- Invitae
- dbNSFP
- SNOMED-CT

More Comprehensive than a Variant Lookup

Rules-based Engine


Inferences Based On

- HGVS syntax (g-, c-, or p-syntax)
- Genomic, coding, protein coordinates (codon ranges or exon ranges)
- Functional characteristics (frameshift, in frame, truncating)
- Matching known and novel partners for gene fusions (e.g., EML4-ALK vs MLL)
- Limiting CNVs based on a range of CNV gain or loss
- When one or more variants are required to be present within or across genes (e.g., co-occurring EGFR and KRAS mutations in lung cancer)



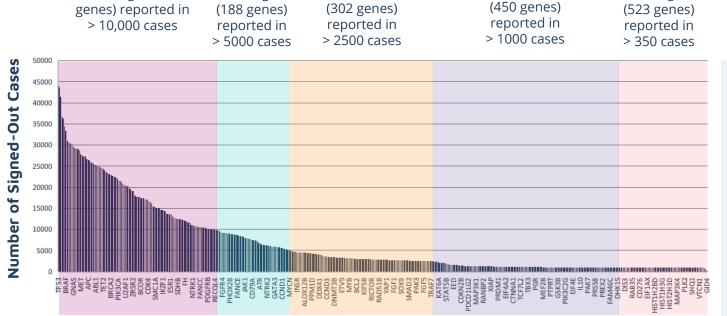
Annotation and Curation Source Rules

Curated Rule

Evidence Reviewing, Ranking, Asserting

pieriandx

Manually ranked, asserted, classified, and interpreted <u>proactively</u> by PierianDx


57.7% of genes

24.1% of genes (126 35.9% of genes

PierianDx Customer Reported Genes and Curated Content

86% of genes

100% of genes (523 genes)

> **PierianDx Curated** Information for 523 Gene Set

47 drug labels

38 guidelines

223 clinical trials

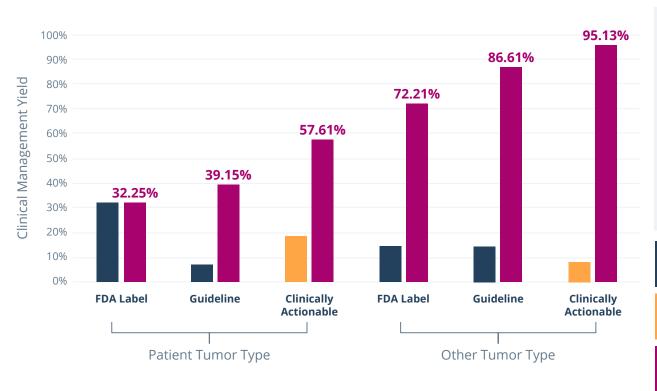
TruSight[™] Oncology 500 Genes

Classification Accuracy

Statistical Measure	Percentage
Specificity	99.99%
Sensitivity	93.77%
Positive Predictive Value	98.79%
Accuracy	99.95%

Draft vs. Signed-out Classification

True Positive: Draft **Tier I** or **Tier II** classifications remained within **Tier I** or **Tier II** after sign-out


True Negative: Draft **Tier III** or **Tier IV** classification remained within **Tier III** or **Tier IV** after sign-out

False Positive: Draft **Tier I** or **Tier II** classification changed to **Tier III** or **Tier IV** after sign-out

False Negative: Draft **Tier III** or **Tier IV** classification changed to **Tier I** or **Tier II** after sign-out

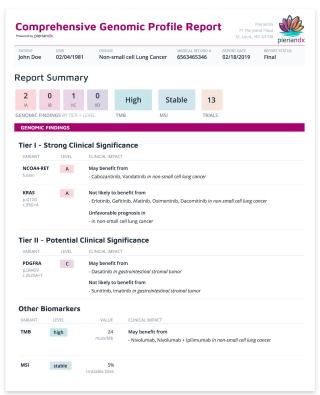
Clinical Management Yield

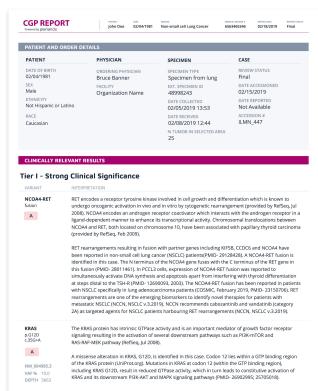
Summary

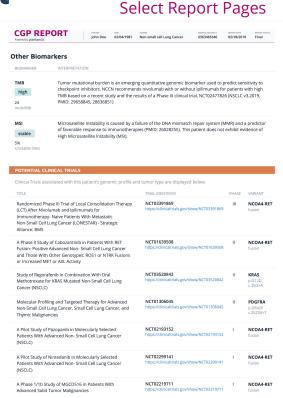
Substantially greater yield than FDA labels and guideline content alone (68.15% vs. 95.13%)

26.98% of cases had clinically relevant variants that could not be inferred by FDA or guideline content alone.

Management Yield


Variant Classification and Interpretation **Evidence-based Reporting**


Evidence-based Reporting



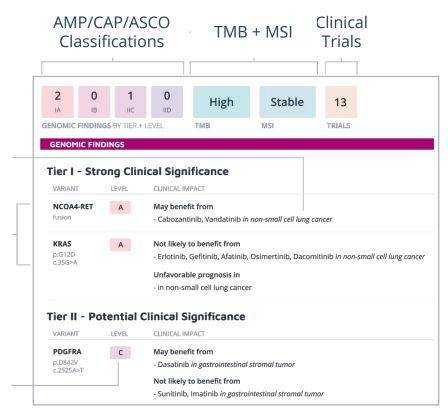
PierianDx Clinical Reporting and Sign-out

premarian

Clinically Critical Front Page

In-depth Interpretations

Relevant Clinical Trials



PierianDx Clinical Reporting and Sign-out

Editable interpretation and clinical impact statements

Supports all variant types and biomarkers across multiple tumor types: SNVs, indels, splice variants, CNVs, and fusions

Evidence levels determined by expertly curated and up-to-date drug labels, practice guidelines, clinical trials, cancer research databases, millions of publications, shared medical interpretations, and more

In-depth Variant Interpretations

Tier I - Strong Clinical Significance

VARIANT

INTERPRETATION

NCOA4-RET fusion

RET encodes a receptor tyrosine kinase involved in cell growth and differentiation which is known to undergo oncogenic activation in vivo and in vitro by cytogenetic rearrangement (provided by RefSeq, Jul 2008). NCOA4 encodes an androgen receptor coactivator which interacts with the androgen receptor in a ligand-dependent manner to enhance its transcriptional activity. Chromosomal translocations between NCOA4 and RET, both located on chromosome 10, have been associated with papillary thyroid carcinoma (provided by RefSeq, Feb 2009).

RET rearrangements resulting in fusion with partner genes including KIF5B, CCDC6 and NCOA4 have been reported in non-small cell lung cancer (NSCLC) patients(PMID- 29128428). A NCOA4-RET fusion is identified in this case. The N terminus of the NCOA4 gene fuses with the C terminus of the RET gene in this fusion (PMID- 28011461). In PCCL3 cells, expression of NCOA4-RET fusion was reported to simultaneously activate DNA synthesis and apoptosis apart from interfering with thyroid differentiation at steps distal to the TSH-R (PMID- 12690093, 2003). The NCOA4-RET fusion has been reported in patients with NSCLC specifically in lung adenocarcinoma patients (COSMIC, February 2019, PMID- 23150706). RET rearrangements are one of the emerging biomarkers to identify novel therapies for patients with metastatic NSCLC (NCCN, NSCLC v.3.2019). NCCN recommends cabozantinib and vandatinib (category 2A) as targeted agents for NSCLC patients harbouring RET rearrangements (NCCN, NSCLC v.3.2019).

HGVS nomenclature: p. and c. notation

Transcript, variant allele fraction, depth

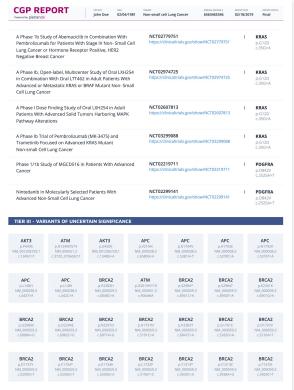
p.G12D c.35G>A

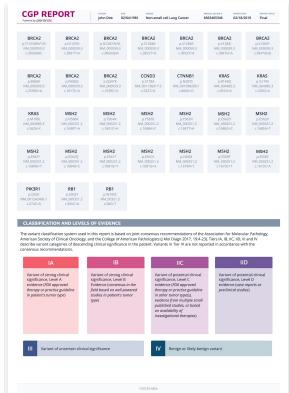
NM_004985.3 VAF % 10.0 DEPTH 5663 The KRAS protein has intrinsic GTPase activity and is an important mediator of growth factor receptor signaling resulting in the activation of several downstream pathways such as PI3K-mTOR and RAS-RAF-MEK pathway (RefSeq. Jul 2008).

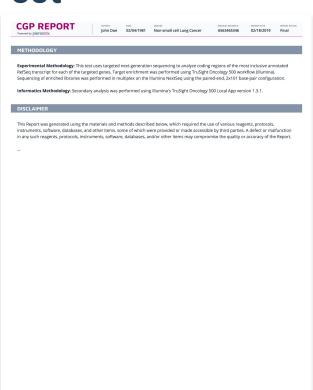
A missense alteration in KRAS, G12D, is identified in this case. Codon 12 lies within a GTP binding region of the KRAS protein (UniProt.org). Mutations in KRAS at codon 12 (within the GTP binding region), including KRAS G12D, result in reduced GTPase activity, which in turn leads to constitutive activation of KRAS and its downstream PI3K-AKT and MAPK signaling pathways (PMID- 26902995; 25705018).

Gene Level Info

Variant Level Info


Supporting Evidence


Therapy, Guideline Info

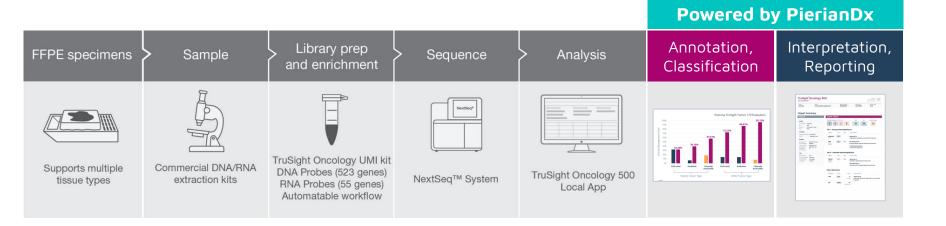

Evidence-based Reporting

PierianDx Clinical Reporting and Sign-out

Variants of Unknown Significance

Classification and Evidence Legend

Methodology, Disclaimer


Enabling Rapid Validation and Deployment LDT Support of RUO Assays

Enabling TruSight[™] Oncology 500

Enabling Sample-to-Answer

The combination of **TruSight**TM **Oncology 500** with **PierianDx** variant interpretation and reporting solutions will provide customers with a **seamless**, **high-quality experience**.

PierianDx Clinical Genomics Workspace

Complete Molecular Testing Solution

- Complete HL7 integration: LIMS EHR
- Fully HIPAA-compliant cloud-based Application
- Secure site-to-site Virtual Private Network (VPN)
- API (Application Programming Interface) for workflow automation
 and data retrieval
- Support for next generation sequencing and clinical microarray

Clinical Sharing Network

- Access to ~20K prior medical interpretations of genomic variants
- Aggregation of de-identified patients data across disease populations

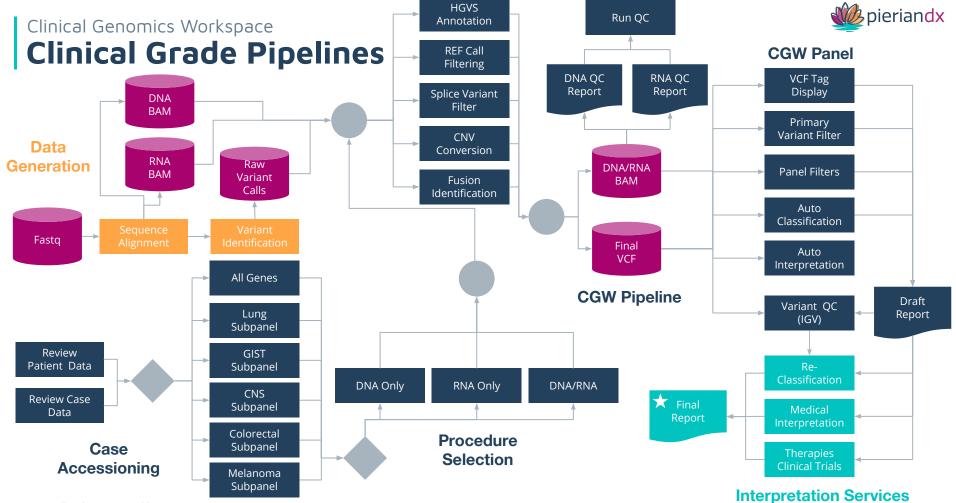
Variant Analysis and Classification

- FASTQ to VCF
- Variant annotation
- Intuitive variant classification
- Phenolyzer scoring
- Inheritance model filtering

Quality Assurance/Control

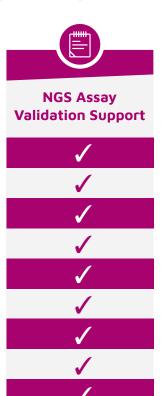
- Run-to-run variability and reproducibility versus validated reference averages
- Complete provenance tracking
- Role-based access privileges

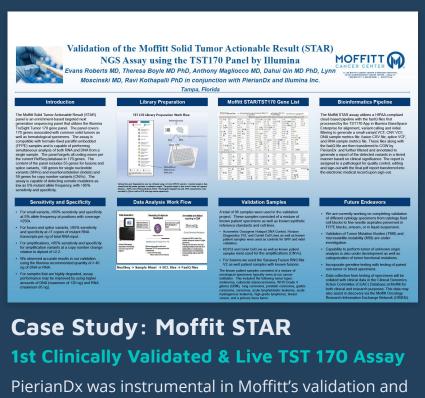
Clinical Reporting

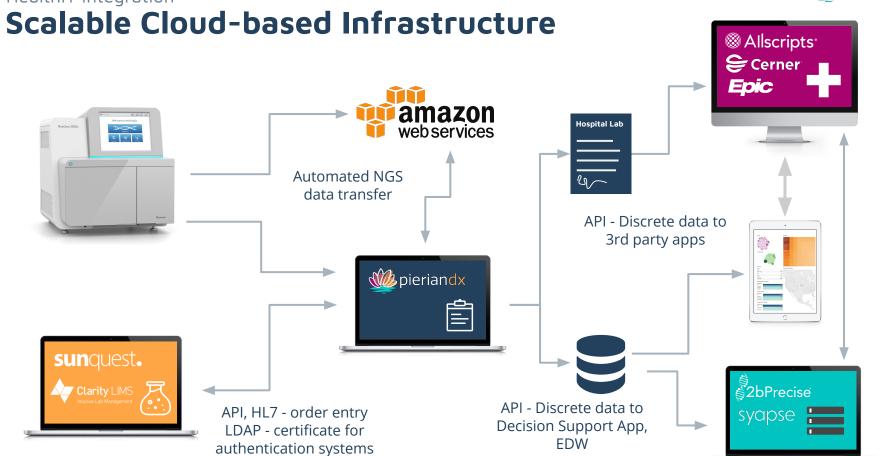

- Somatic cancer and constitutional disorders
- Branded and customized clinical report creation
- Clinical trial matching
- Intuitive genome browser

Optimal Mix of Technology + Human Expertise

	Software Automated	Variant Scientist & Medical Review
Classifications	Auto classification and interpretation of variants based on sophisticated rules engine	Assess existing variant classification/interpretation and update based on newest literature
Interpretations	Wide range of suggested therapeutic options and risk information	Evaluate pathways, variant co-occurrence, and patient data to create cohesive interpretations
Clinical Trials	Clinical trial matching based on molecular findings	Refine trial matching based on pathway information and client-specific SOP


pieriandx


Accelerate Your Go-Live


Development of draft validation plan
Assay familiarization and optimization
Validation analyses and data review
Analytical sensitivity and specificity
Precision concordance, reproducibility
QC references, exon/hotspot coverage
Sample procurement
Report, requisition & consent forms
CAP/CLIA compliant documentation

PierianDx was instrumental in Moffitt's validation and implementation of Illumina's TruSight Tumor 170.

That's a Wrap

Summary

- Comprehensive genomic profiling provides
 high value for patients and laboratories
- TruSightTM Oncology 500 enables in-house comprehensive genomic profiling with excellent content and performance
- PierianDx interpretation and evidencebased reporting solutions enable a streamlined sample-to-answer experience
- PierianDx software and expert services support rapid clinical validation and deployment of research use only assays as laboratory developed tests

