ALK, p.G1202R

CLINICALLY RELEVANT RESULTS - ALK, p.G1202R

Gene Summary – *ALK*: This gene encodes a receptor tyrosine kinase, which belongs single pass transmembrane region, and an intracellular kinase domain. It plays an impor found to be rearranged, mutated, or amplified in a series of tumours including anaplasti common genetic alterations in this gene, which result in creation of multiple fusion gene

Interpretation: ALK (Anaplastic Lymphoma Kinase) encodes a receptor tyrosine kina Jan 2011, Uniprot.org). An ALK missense substitution, p.G1202R, was identified. Codor of the ALK kinase domain adjoining the crizotinib-binding site and demonstrated to conf adenocarcinoma including non-small cell carcinoma (NSCLC) (COSMIC, Feb 2018). Th in a patient with NSCLC with EML4-ALK fusion, ALK G1202R alteration conferred high-(PMID: 28122866). Moreover, the secondary resistant mutation ALK G1202 is susceptil NSCLC patients (NCT03052608, phase 3; NCT02584634, phase 2).

This patient's tumor also harbors an EML4-ALK fusion which was identified generation ALK inhibitors. Clinical correlation is recommended.

TREATMENT SUMMARY	ALK, p.G1202R	
Therapy	Specificity	/ Mechan
Avelumab + Loria	tinib Gene	Anti-Pl Kinase
Lorlatinib	Gene	ALK/RC
Responsive X Non-ro		
Malignancy	Therapy	Title
Non-small cell lung cancer	Avelumab + Lorlati	A Phase 1b/2, Ope Safety, Efficacy, Ph Avelumab (msb00 Crizotinib Or Pf-0 Metastatic Non-sn
Non-small cell lung cancer	Lorlatinib	A Phase 3, Randon 06463922) Monot The First-line Tre positive Non-sma

Supporting NGS-Based In Vitro Diagnostics

A Knowledge Sharing Approach

Rakesh Nagarajan, MD, PhD

Executive Chairman and Founder PierianDx

Moderated by: Josh Forsythe

Supporting NGS-Based IVD Assays

2

4

6

- First Solving Challenges with LDTs
- 3 Knowledge Sharing and Inferencing
 - Applied Framework
- 5 Knowledgebase Benchmarking

Achieving More Complete, Ready-to-sign-out Reports for IVDs

pieriandx Copyright 2018

Larger Assays, IVDs Are We Prepared?

More Comprehensive Assays Gaining Ground **Drivers Behind Large Assays**

More Genes

From single gene assays and small targeted hotspot panels to large capture-based assays and exome

More Variants and Variant Types

From SNVs and indels to copy number variants and gene fusions using both DNA and RNA samples

More comprehensive detection of clinically relevant features

- Tumor mutation load
- Mutational signature
- Confirm mRNA expression of mutations found at DNA level
- Immunoprofiling
- Inherited cancer risk (identified in 20% of cases)

ieriandx Copyright 2018

(determine candidacy for

Mutational Signature

(identify etiology and predict response to therapy)

HUMAN LEUKOCYTE ANTIGEN (HLA) TYPING

Human leukocyte antigens are cell-surface proteins that play an important part in the body's immune response to foreign substances. HLA typing is also relevant for predicting MHC presentation of specific candidate neoantigens (PMID 24891321, PMID 27563649, PMID 25838375). The subject's MHC class I (A, B, and C) and MHC class II (DR, DQ, and DP) genes, allele groups and subtypes are reported below

The expression status of a subset of genes have been shown to be important for immunotherapy consideration 27433843, PMID 27377892, PMID 25858804, PMID 24457417, PMID 24782321, PMID 26359337).

Gene	Allele	
HLA-A	A*26:01	
HLA-A	A*32:01	
HLA-B	B*08:01	
HLA-B	B*51:01	
HLA-C	C*07:02	
HLA-C	C*07:29	
HLA-DPB1	DPB1*02:01	

HLA Typing

(used for clinical trial enrollment)

Larger, More Comprehensive Tests Becoming Available IVDs Will be Game-changing

pieriandx Copyright 2018

Evidence Collection and Evaluation Challenges of Time and Accuracy

Tier	Classification (Therapeutic, Prognostic, Diagnostic)	Evidence Level	Evidence
I.	Variants of Strong Clinical Significance	A B	FDA-approved therapy; Included in professional guidelines Well-powered studies with consensus from field experts
11	Variants of Potential Clinical Significance	C D	FDA-approved therapies for different tumor types or investigational therapies; Multiple small studies w/ consensus Preclinical trials or a few case reports without consensus
	Variants of Unknown Clinical Significance		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or tumor-specific variant databases No convincing published evidence of cancer association
IV	Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases No existing published evidence of cancer association

Li et al. "Standards and Guidelines for the Interpretation and Reporting of Somatic Variants in Cancer", 2017

Evidence Collection and Evaluation Challenges of Time and Accuracy

Tier	Classification (Therapeutic, Prognostic, Diagnostic)	Evidence Level	Evidence
1	Variants of Strong Clinical Significance	A	FDA-approved therapy; Included in professional guidelines Well-powered studies with consensus from field experts
Ш	Clinical Significance	Ex. TSC	Preclinical trials or a few case reports without consensus
	1 Variants of Unknown Clinical Significance	00s of V >4 Ho	
IV	Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases No existing published evidence of cancer association

Li et al. "Standards and Guidelines for the Interpretation and Reporting of Somatic Variants in Cancer", 2017

First Solving Challenges with LDTs PierianDx Background

Pioneers in Precision Medicine Leaders in Clinical Genomics

Today	Full suite of software and services
	Independent CLIA/CAP "dry lab"
	40+ medical center, cancer center, health system, and reference lab clients
	200+ yrs of clinical genomics experience
2014	PierianDx est. after ~50 labs visit WashU to learn how clinical NGS is operationalized.
2011	WashU among first to validate and clinically report on somatic cancer NGS panels.
2003	WashU plays critical role in Human Genome Project.

pieriandx Copyright 2018

CLINICAL GENOMICS

Washington Medicine Washington Medicine

> Edited by SHASHIKANT KULKARNI M.S. (MEDICINE)., PH.D, FACMG Wahagan Universi Solval (FMadrice, S. Luar, MO, 15A JOHN PEPERE M.D, PH.D Wahagan Universi Solval (FMadrice, S. Luar, MO, USA

AMERICANA + BOSTON + HERELEBERG + LONE NEW YORK + COJORD + PARS + SAN DERCO SAN FRANCESCO - SINCAPORE + SIDNEY + TO Audemic Press is an imprint of Electer AP

Technology-enabled Services **Complete LDT/IVD Support**

Clinical Next Generation Sequencing Workflow

Fast Facts PierianDx Knowledgebase

Genes

By the Numbers

- 100% clinically focused interpretations
- 1,100+ somatic genes curated
- ~6Mb of sequence coverage
- 18 million published articles

Experience

- 40+ PierianDx annotators
- 100 years of combined curation effort
- Led by board certified molecular genetic pathologist
- 80+ contributing molecular pathologist customers

Knowledge Sharing and Inferencing **Key Components**

Largest Clinical Interpretation Sharing Network **Knowledgebase Sources**

Public Sources-Versioned

- Human genome builds
- Gene RNA protein models
- Pop. frequency databases

Public Sources - Cleaned

- COSMIC, TCGA, ClinVar
- Emory and Invitae
- PubMed literature

Highly Curated

- FDA approved labels
- NCCN, ASCO Guidelines
- Active, recruiting clinical trials

Shared Medical Content

 Clinical interpretations and classifications from partners and PierianDx

More Coverage than a Simple Variant Lookup **Rules Engine and Predicate Model**

~0.1 MB

Genomic Coverage

Variant lookup knowledgebases

riandx Copyright 2018

6 MB

PierianDx Knowledgebase

Inferences Based On

- HGVS syntax (g-, c-, or p-syntax)
- Genomic, coding, protein coordinates (codon ranges or exon ranges)
- Functional characteristics (frameshift, in frame, truncating)
- Matching known and novel partners for gene fusions (e.g. EML4-ALK vs MLL)
- Limiting CNVs based on a range of CNV gain or loss
- When one or more variants are required to be present within or across genes (e.g. co-occurring EGFR and KRAS mutations in lung cancer)

Rules Engine and Predicate Model Explained Annotation and Curation Source Rules

Predicates

Rules Engine and Predicate Model Explained Biomarker Processing

and Interpreted by Medical Directors and PierianDx Interpretation Team

Manually Ranked, Asserted, Classified, and Interpreted by Medical Directors and PierianDx Interpretation Team

Manually Ranked, Asserted, Classified, and Interpreted by Medical Directors and PierianDx Interpretation Team

Data Science + Human Acumen Applied Framework

AMP/CAP/ASCO Consensus Guidelines Somatic Variant Classification Scheme

Tier	Classification (Therapeutic, Prognostic, Diagnostic)	Evidence Level	Evidence
I	Variants of Strong Clinical Significance	A B	FDA-approved therapy; Included in professional guidelines Well-powered studies with consensus from field experts
II	Variants of Potential Clinical Significance	C D	FDA-approved therapies for different tumor types or investigational therapies; Multiple small studies w/ consensus Preclinical trials or a few case reports without consensus
	Variants of Unknown Clinical Significance		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or tumor-specific variant databases No convincing published evidence of cancer association
IV	Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases No existing published evidence of cancer association

Li et al. "Standards and Guidelines for the Interpretation and Reporting of Somatic Variants in Cancer", 2017

Tier III and Tier IV Classifications Driven (largely) by Population Frequency Databases

pieriandx Copyright 2018

Tier IA and Tier IIC Classifications Driven by FDA and Professional Guidelines

pieriandx Copyright 2018

FDA and Professional Guideline-based Automated Inference Example

Tier I Classification Today Combination of Automated and Manual Processes

Tier	Classification (Therapeutic, Prognostic, Diagnostic)	Evidence Level	Evidence
I	Variants of Strong	А Ф́	FDA-approved therapy; Included in professional guidelines
	Clinical Significance	В 	Well-powered studies with consensus from field experts

Literature Search Tool

Search by: Gene, variant syntax, disease drug

Filter by: Clinical relevance, study type, variant type, consequence, amino acid range

Shared Medical Content

Classifications and Interpretations from molecular pathologists and clinical geneticists within the PierianDx network

Tier II Classification Today Combination of Automated and Manual Processes

Tier	Classification (Therapeutic, Prognostic, Diagnostic)	Evidence Level	Evidence
I.	Variants of Strong Clinical Significance	А Ф В 👤	FDA-approved therapy; Included in professional guidelines Well-powered studies with consensus from field experts
п	Variants of Potential Clinical Significance	□ C 尊 D 1	FDA-approved therapies for different tumor types or investigational therapies; Multiple small studies w/ consensus Preclinical trials or a few case reports without consensus
Literature Search Tool Search by: Gene, variant syntax, disease drug Filter by: Clinical relevance, study type, variant type, consequence, amino acid range Clinical Trials		sype, acid range	Shared Medical Content Classifications and Interpretations from molecular pathologists and clinical geneticists within the PierianDx network

Software and human curation to identify the latest detail on recruiting trials.

Shared Classifications and Interpretations Review Evidence from Prior Cases

Clinical Interpretations

CLASSIFICATION	INTERPRETATION	1
Predictive or prognostic in other tumor type(s)	A PICC2 PANTRA variant was detected. This variant that shee described in breast, colorectal, endometrial and surian casest, among others (COMIC databaset). In long advocancement, this caracteristic tested to concervation tested ones (<i>TRE</i> , <i>XL</i> and <i>XRE</i>). DUISIZITI, The Herbit matchin accurate the highly conserved lawase domain. Matter PIC proteins here increased catalytic activity resulting in enhanced downstream signaling and encogenic transformation in vitro (PMID StaTP). Procincel and clinical indexide support that this specific multistic orden streaments of the PIC activity of the PICLATP). The PICLE activity of the PICLATP (PICLE) activity of the PICLATP). Procincel and clinical indexide sectors are transformed and the PICLE activity of the PICLATP. THE PICLE acti	
Predictive or nograpsitic in temor type		ith s i- int d an nt s in
	FIELD 4. Set 101.4 CTUDE AND LARCENCE AND	
Predictive or prognostic in tumor type	Lung Cancer	

In Review of Evidence from Prior Cases Conflicting Classifications/Interpretations

Comprehensive and Accurate **KB Performance**

Knowledgebase Performance Benchmarking **Breadth of Content**

Illumina TruSight Tumor 170 Evaluation

Knowledgebase Performance Benchmarking Classification Accuracy

Statistical Measure	Percentage
Specificity	99.99%
Sensitivity	93.77%
Positive Predictive Value	98.79%
Accuracy	99.95%

Draft vs. Signed-out Classification

True Positive: Draft **Tier I** or **Tier II** classifications <u>remained</u> within **Tier I** or **Tier II** after sign-out

True Negative: Draft **Tier III** or **Tier IV** classification remained within **Tier III** or **Tier IV** after sign-out

False Positive: Draft **Tier I** or **Tier II** classification <u>changed</u> to **Tier III** or **Tier IV** after sign-out

False Negative: Draft **Tier III** or **Tier IV** classification <u>changed</u> to **Tier I** or **Tier II** after sign-out

Knowledgebase Performance Benchmarking Clinical Management Yield

Illumina TruSight Tumor 170 Evaluation

Summary

68.15%

95.13%

Substantially greater yield than FDA labels and guideline content alone (68.15% vs. 95.13%)

26.98% of cases had clinically relevant variants that could not be inferred by FDA or guideline content alone.z

Management Yield

More Complete, Ready-to-sign-out Reports Support for IVDs

Genome, Public, Clinical Leverage and Extend Sources

pieriandx Copyright 2018

Genome, Public, Clinical **Leverage and Extend Sources**

Identification of Biomarkers to Review Proactively **KIT Mutations Example**

riandx Copyright 2018

- **A.** 44% of KIT mutations from COSMIC maintain reading frame
- **B.** Deletions and insertions account for mutations maintaining reading frame; deletions 80%
- **C.** In frame mutations are clustered in exons 8-11
- **D.** Mutation hotspots outside these regions are present as missense substitutions

Rules at an exon level using consequence predicates and rules targeting hotspots may be used to capture the clinical intent driving FDA labels, guidelines, and other levels of evidence.

37

Genome, Public, Clinical Leverage and Extend Sources

Manually, ranked, asserted, classified, and interpreted <u>proactively</u> by PierianDx

Consensus Building Proactively Assess and Resolve Conflicts

Variant p.XXXX

Conflicting Classifications/Interpretations from Medical Directors

Consensus Building Proactively Assess and Resolve Conflicts

Consensus Building Proactively Draft Consensus Interpretations

Conclusion Leadership in LDT/IVD Support

- PierianDx is taking a leadership position in the cancer community
- Key differentiators in sharing network and inferencing concepts
- Facilitating consensus-based knowledgebase for IVD
- Knowledgebase will continually be informed, trained by community
- Reports will continually become more comprehensive, automated, and ready-to-sign-out

pieriandx Copyright 2018