

©NuCypher 2017 For more information about NuCypher solutions, please visit www.nucypher.com

NuCypher Kafka: Delegated Access
Control and Encryption Management
System

HIGH-PERFORMANCE ACCESS MANAGEMENT AND DATA PROTECTION FOR
KAFKA MESSAGE STREAMS

Here we describe a delegated access scheme for encrypted message queues and streaming. For
simplicity, we assume one broker and one channel. It is trivial to expand to multiple brokers and
channels.

The scheme relies on proxy re-encryption which is a method of transforming data encrypted under
one key to another key without an intermediate decryption step.

Public/private key pairs denoted here are the following:

• privm/pubm: key pair under which data is encrypted most of the time on the broker side. If
messages are stored for a prolonged time, they are encrypted under this key pair;

• priva/puba .. privc/pubc: key pairs under which producers encrypt the data. The producers
don’t have to know current value of pubm;

• priv1/pub1 .. priv3/pub3: key pairs of consumers. Their own private keys can decrypt data
they’re receiving;

• Administrator knows all private keys of producers, privm, and private keys of consumers (or
just public key of consumers, depending on the variant of proxy re-encryption used).

When a producer a connects to the broker, it generates a random AES key per session (DEKa). It
includes an encrypted version of it, EDEKa = enc(puba, DEKa), as a part of every message. The
content of the message is encrypted with DEKa while the topic is public.

©NuCypher 2017 For more information about NuCypher solutions, please visit www.nucypher.com

On the broker side, there are re-encryption keys kxm to transform data from key x to key m. The
system administrator responsible for granting permissions knows all the private keys and
generates the re-encryption keys.

Each consumer has an individual public/private key pair, let’s take priv1/pub1 as an example. The
broker layer holds a re-encryption key km1, so it transforms EDEKm -> EDEK1 to be readable by
consumer 1 if EDEKm wasn’t yet re-encrypted for 1. If that EDEK was already re-encrypted for
consumer 1, the cached version is used.

After that, the consumer can decrypt EDEK1 with his own key priv1. For performance, cached DEKa
can be used if it was already decrypted for this EDEK1. The bulk of the message data, encrypted
with DEKa, can be decrypted with DEKa.

We leave out the details of message/producer authentication because these questions are solved
elsewhere. But it’s worth noting that if producers produce message signatures, the broker can
convert them to “per channel” signatures if desired.

