
Subversive Architecture Overview

Table of contents

Subversive modules ..2
Subversive architecture ...3

Sample of Subversive Core API usage ..4
The Command Framework functionality ...7

Extension points..9
The Subversive Core extension points...9
The Subversive UI extension points ..10

Subversive modules
There are two main plug-ins in the Subversive project: Core and UI. Additionally the Subversive distribution
contains two SVN Client plug-ins: native – JavaHL and pure Java implementation – JavaSVN. As you can
see from the Picture 1 contributors may implement their own SVN Client Library plug-ins and Subversive
will use them automatically after its installation into the Eclipse IDE. Also Subversive provides reuse
abilities to the external plug-ins designed for automated or interactive work.

External Plug-ins

UI extension points/UI API

Subversive Architecture Overview Page 2 of 12

Picture 1 Subversive modules diagram

Subversive Core module provides flexible and easy to use API which allows user to interact with all SVN
functionality in simple and similar way. At the same time interface simplicity does not make performance
impact and user is able to build powerful and high-performance applications on top of the Subversive Core
base. Subversive Core is tested in the headless environment and is a solid ground for creation of automated
applications.
Subversive UI module is stabile and usable. Most significant benefits are:

• Usability optimizations (pop-up menu enablement’s, controls layout etc.)
• Detailed description on each UI form
• “On the fly” data validation in dialogs and wizards
• Eclipse IDE-like style
• Extensibility

Last benefit allows users create their own UI extensions for the Subversive. Such extensions can be tracker
integrations or any other application that require SVN client base. Additionally the Subversive UI has several
extension points which allows contribute into:

• Synchronize View actions
• Checkout action
• Share Project action
• Commit action
• Resources decoration
• History View multi-line comment

SVN Client extension point (JavaHL)

Core API

SVN Team Core Plug-in

SVN Team UI Plug-in

JavaHL Client Plug-in

External Plug-ins

Eclipse
Platform

Team
Services

JavaSVN Client Plug-in

External Client Plug-ins

• Error reporting

This list can be extended. Comments and suggestions from community regarding enhancement of the
Subversive integration abilities, creation new extension points and API’s, are welcome.

Subversive architecture
The Subversive project architecture follows to several important requirements for both – UI and Core
modules:

• Precise separating of UI and Core parts
• Unified error handling
• Failure tolerance
• Conceptual integrity of API
• Strong API levels delimitation
• Easy API extensibility

SVN Team UI Plug-in

Views, Dialogs and Actions

UI Command
Extensions

Subversive Architecture Overview Page 3 of 12

Picture 2 Subversive architecture diagram

Core plug-in has two API levels – user-level and low-level. First is most frequently used API level and it is
based on the low-level API.
User-level API contains following parts:

• Command Framework designed correspondingly to “Command Pattern” concept. It allows user to
perform any complex interactions with Subversion and Eclipse Platform in performance-optimal and
easy way. Command Framework already contains command implementations for all frequently used
cases of interaction with Subversion, checked out projects and Eclipse Platform. The Command
Framework allows reducing “copy-paste”-technique usage and providing fast development with
minimal efforts. All provided commands can be fully reused in external tools without any limitations

• SVN Resource Model allows building of local and repository resource hierarchies and provide
command framework with all required information in one standard way

SVN Client API

Command
Framework

Execution
Framework

Error
Handling

SVN Resource
Model

SVN Resource
Model Impl

SVN Team Core Plug-in

UI Execution
Extensions

Execution
Engine API

<Uses> <Executed By> Legend:

User-level API Low-level API Internal
Implementation

Subversive Architecture Overview Page 4 of 12

• Execution Framework allows running all commands in the similar way. Its background
implementation is responsible for automated resource locking rules calculation and error handling

• Execution Engine API is set of classes and interfaces that hides from user how background
implementation serves a Commands execution

• Error Handling mechanism provided by Subversive Core allows user to build applications with
high failure tolerance: one failed command does not prevent other commands from execution if it is
required. Moreover, commands itself can be recovered from errors, for example: Commit Command
commits resources to all repositories that are available and skip all resources that cannot be
committed; all information about committed and uncommitted resources is provided to the caller
level.

Low-level API allows user to build Command Framework extensions in order to handle some rarely used or
application-specific cases.
The Subversive UI extends Command and Execution Frameworks with UI specific features most of which
can be reused by depended projects. Additionally Subversive UI provides powerful and flexible Data
Validation Framework for dialogs and wizards. Provided extension points allow reorganizing the Subversive
UI functionality in some critical cases. For example “Error Reporting” extension point allows redirect bug
reporting into application specific mailing list.
UI plug-in extends Core functionality with several UI-specific features:

• UI Execution Extensions: enhance error handling in order to distinguish errors by severity, show
errors to user and propose sending of bug reports to plug-in developers, connect progress monitoring
to Eclipse Platform UI

• UI Command Extensions include commands that required interaction with Eclipse Platform UI.

The Subversive architecture overview shows how the project structure corresponds to requirements. First of
all both modules – Core and UI – are strongly separated and Core module is fully functional and allows user
to build automated applications. Unified error handling mechanisms provided by Execution Framework
allows improving of the Subversive project failure tolerance. API concept allows easy extending without
mixing of different API levels in the same code.

Sample of Subversive Core API usage
On the Picture 3 you can see flow of calls that is required from user in order to update resources to latest
revision in background execution thread. And next – Code Sample 1, Code Sample 2 – are samples how it
looks in the code.

Background Update Operation Flow

CompositeOperation Client ProgressMonitorUtility IOptionProvider ILoggedFactory IActionOperation

Subversive Architecture Overview Page 5 of 12

Picture 3 Update flow sequence diagram

Add(UpdateOperation)

Add(ClearUpdateStatusesOperation)

Add(RefreshResourcesOperation)

doTaskScheduled(CompositeOperation)

getSchedulingRule()

calculateSchedulingRule()

<Return calculated rule> [from call delegation]

getLoggedOperationFactory()

getLogged(operation)

getSchedulingRule() [call delegation]

<Return calculated rule>

run()

run() [call delegation]

Run all children

Handle
errors

Legend:

Internal services User-required
actions

Subversive Architecture Overview Page 6 of 12

Code Sample 1 Subversive UpdateAction class implementation
public class UpdateAction extends AbstractRecursiveTeamAction {

 public UpdateAction() {
 super();
 }

 public void run(IAction action) {
 IResource []resources = UnacceptableOperationNotificator.
 shrinkResourcesWithNotOnRespositoryParents(
 this.getShell(), this.getSelectedResources(IStateFilter.SF_ONREPOSITORY));
 if (resources == null || resources.length == 0) {
 return;
 }

 this.runScheduled(UpdateAction.getUpdateOperation(this.getShell(), resources));
 }

 protected boolean isEnabled() throws TeamException {
 return this.getSelectedResources(IStateFilter.SF_ONREPOSITORY).length > 0;
 }

 public static CompositeOperation getUpdateOperation(Shell shell, IResource []updateSet) {
 final DetectDeletedProjectsOperation detectOp = new DetectDeletedProjectsOperation(updateSet);
 final UpdateOperation mainOp = new UpdateOperation(detectOp, true);

 IResourceProvider refreshProvider = new IResourceProvider() {
 public IResource []getResources() {
 HashSet fullSet = new HashSet(Arrays.asList(mainOp.getResources()));
 fullSet.addAll(Arrays.asList(detectOp.getDeleted()));
 return (IResource [])fullSet.toArray(new IResource[fullSet.size()]);
 }
 };

 CompositeOperation op = new CompositeOperation(mainOp.getOperationName());

 op.add(detectOp);
 SaveProjectMetaOperation saveOp = new SaveProjectMetaOperation(detectOp);
 op.add(saveOp);
 op.add(mainOp);
 op.add(new RestoreProjectMetaOperation(saveOp));
 op.add(new ProcessDeletedProjectsOperation(detectOp));
 op.add(new ClearUpdateStatusesOperation(refreshProvider));
 op.add(new RefreshResourcesOperation(refreshProvider));
 op.add(new NotifyUnresolvedConflictOperation(shell, mainOp));

 return op;
 }

}

As you can see the UpdateAction class implementation is more complex in compare with the sequence
diagram because it supports more functionality — detecting projects, that is deleted on repository, saving
Eclipse IDE meta-information in order to prevent problems when something like “.project” is deleted on
repository.
In general case it is not required for programmer to implement his own commands and work with SVN
Client Library API. Nevertheless programmer can create own commands using SVN Client Library API – it
also easy. The command implementation does not requires from programmer any additional actions (like
integral resource locking policies calculation for all commands, interfaces that allows data transmitting
between commands, error handling and crash recovery support) except of freeing of allocated resources in
finally section.

Code Sample 2 Command implementation
public class ExportOperation extends AbstractRepositoryOperation {
 protected String path;

 public ExportOperation(IRepositoryResource resource, String path) {
 super("Export", new IRepositoryResource[] {resource});
 this.path = path;
 }

 protected void runImpl(IProgressMonitor monitor) throws Exception {
 IRepositoryResource resource = this.operableData()[0];
 IRepositoryLocation location = resource.getRepositoryLocation();
 ISVNClientWrapper proxy = location.acquireSVNProxy();
 try {
 String path = this.path + "/" + resource.getName();
 proxy.doExport(SVNUtility.encodeURL(resource.getUrl()),
 path,
 resource.getSelectedRevision(),
 resource.getPegRevision(),
 true, // force
 false, // ignore externals
 true, // recurse
 null, // native EOL
 new SVNProgressMonitor(this, monitor, null));
 }
 finally {
 location.releaseSVNProxy(proxy);
 }
 }

 protected String getShortErrorMessage(Throwable t) {
 return "Export operation for '" + this.operableData()[0].getUrl() + "' failed.";
 }

}

Subversive Architecture Overview Page 7 of 12

The Command Framework functionality
The Command Framework totally contains 89 commands which are presents in three subsets:

• Execution Framework Part (2)
• Core Command Framework (60)
• UI Command Extensions (17)

The Core Commands cover all SVN functionality used in Subversive and it can be fully reused without any
restrictions. Most UI Commands are designed for interactive cases. So, they cannot be used in automated
processing. Execution Framework Commands, like LoggedOperation and CompositeOperation, are
responsible for error handling and resource locking rules calculation.

Command Description

Execution Framework Part (2)
LoggedOperation Allows safely write errors to log
CompositeOperation Provides the way to combine different operations

Core Command Framework (60)
SaveProjectMetaOperation Saves project meta (.project and .classpath) in order to

prevent project refresh problem when meta is deleted
RestoreProjectMetaOperation Restores project meta (.project and .classpath) in order to

prevent project refresh problem when meta is deleted
ShareProjectOperation Shares the project from scratch
ReconnectProjectOperation Reconnects the projects with existing SVN meta-

information
DisconnectOperation Disconnects the projects with or without deletion of SVN

meta-information
CheckoutOperation Checkout set of projects into workspace
CheckoutAsOperation Checkout project into specified location with specified set

of options
ObtainProjectNameOperation Request real project name for the project in SVN repository
CommitOperation Commit resources
JavaHLMergeOperation Merge resources in standard way
MergeOperation (experimental) Interactive merge implementation
MergeStatusOperation (experimental) Interactive merge implementation
UpdateOperation Update resources
AddToSVNIgnoreOperation Add resources to svn:ignore
AddToSVNOperation Add resources to source control
LockOperation Lock resources
UnlockOperation Unlock resources
RevertOperation Revert modifications
MarkAsMergedOperation Mark conflicts as resolved
RemoveNonVersionedResourcesOperation Remove any non-versioned resources starting from the level

specified
SwitchOperation Switch project to new URL
GetPropertiesOperation Get all resource properties
SetPropertyOperation Set resource property
RemovePropertyOperation Remove resource property
GetAllResourcesOperation Get all resources for the specified local folder including

deleted, missing etc.
DetectDeletedProjectsOperation Detect which projects are deleted on repository (the deleted

projects cannot be processed in normal way)
SaveRepositoryLocationsOperation Save Subversive meta-information changes
DiscardRepositoryLocationsOperation Remove specified repository locations from the Subversive

meta-information
AddRepositoryLocationOperation Add repository location to the Subversive meta-information
AddRevisionLinkOperation Create revision links in the Subversive meta-information
RemoteStatusOperation Update status for the specified resources
InfoOperation Retrieve Info2 structure for the specified resource
RelocateWorkingCopyOperation Relocate working copy

Subversive Architecture Overview Page 8 of 12

CreatePatchOperation Create patch based on working copy changes
RefreshResourcesOperation Refresh workspace tree and send internal Subversive

resource modification events
NotifyProjectStatesChangedOperation Send internal Subversive notification when project state is

changed (shared, disconnected, opened, closed etc.)
GetRemoteContentsOperation Get remote file or folder contents into specified folder

overriding existing files
GetFileContentOperation Fetch remote file content from SVN
GetLocalFileContentOperation Fetch local file content from SVN (BASE or WORKING

revisions)
CleanupOperation Cleanup working copy after power loss or other failure
ClearLocalStatusesOperation Refresh status cache for the specified resources
MoveResourceOperation Move resources between folders in one/different working

copy/copies saving the history
CopyResourceWithHistoryOperation Copy resources between folders in one/different working

copy/copies saving the history
CopyResourceOperation Copy resources without saving history
DeleteResourceOperation Delete versioned resources
RenameResourceOperation Move resource from one URL to another
LocateProjectsOperation Find Eclipse projects on repository
ImportOperation Import specified folder into repository
GetResourceAnnotationOperation Get annotation for the specified resource
GetRemotePropertiesOperation Get properties for the resource on repository
GetLogMessagesOperation Get resource modification history
ExportOperation Export repository resource into specified local folder
DeleteResourcesOperation Delete resources directly from repository
CreatePatchOperation (remote) Create patch bases on difference between revisions
CreateFolderOperation Create set of folders at any depth on the repository
CreateFileOperation Create file directly on the repository with specified initial

content
BreakLockOperation Unlock resource directly on the repository
BranchTagOperation Create branch or tag
CopyResourcesOperation (remote) Copy resources to specified URL
MoveResourcesOperation (remote) Move resources to specified URL

UI Command Extensions (17)
UILoggedOperation UI extension of LoggedOperation, show errors to user and

propose to send bug report in case of internal failures
ShowUpdateViewOperation Show synchronize view
ShowConflictEditorOperation Show conflicted files editor (for resources update by

external tools)
ProcessDeletedProjectsOperation Notify user about deleted projects and request his decision
ClearUpdateStatusesOperation Clear update statuses cached in Synchronize View
ClearMergeStatusesOperation (experimental) Clear merge statuses cached in interactive Merge View
ShowPropertiesOperation Show property editor
RefreshRepositoryLocationsOperation Refresh repository browsing view
PrepareRemoteResourcesTransferrableOperation Insert references to repository resources into clipboard
PasteRemoteResourcesOperation Paste repository resources from clipboard into selected

location
OpenRemoteFileOperation Open remote file in its default viewer
NotifyUnresolvedConflictOperation Notify user about unresolved conflicts in time of

updating/committing resources
ShowMergeViewOperation (experimental) Show interactive Merge View
FileToClipboardOperation Copy file content into clipboard
CompareResourcesOperation Three-way compare of working copy resources with the

selected revision and show the result in compare viewer
CompareRepositoryResourcesOperation Two-way compare of the repository resources with

specified revisions and show the result in compare viewer
RefreshRemoteResourcesOperation Refresh repository resources in the repository browsing

view

Subversive Architecture Overview Page 9 of 12

Extension points
The Subversive project provides several extension points:

• SVN Client Library
• Mail Settings Provider
• Synchronize View Actions Contribution
• Share Project Wizard
• Multi-line Comments in History
• Checkout
• Commit

An interface of the first two extension points is full-featured and enough flexible from our point of view. It
covers most possible integration aspects and can be treated as stable. Please note that we plan to move “Mail
Settings Provider” to Core plug-in in order to allow mail reporting for the automated applications.
Extensions are subjects of further discussions and we will very appreciate to community for any ideas on
how to improve them.

The Subversive Core extension points
Core plug-in provides extension point that allows contributors to implement alternative SVN Client Library
support. The extension should implement following interface:

Interface 1 “SVN Client Library” extension point
public interface ISVNClientWrapperFactory {
 public static final String DEFAULT_ID = "org.polarion.team.client.javahl.core";

 /**
 * Makes new SVN Client Library instance
 * @return SVN Client Library instance
 */
 public ISVNClientWrapper newInstance();

 /**
 * Returns unique SVN Client library plug-in id
 * @return SVN Client library plug-in id
 */
 public String getId();
 /**
 * Returns user-friendly SVN Client library plug-in name
 * @return SVN Client library plug-in name
 */
 public String getName();

 /**
 * Tell revision change reporting for folders is allowed or not
 * @return true if allowed false otherwise
 */
 public boolean isReportRevisionChangeAllowed();
 /**
 * Tell compare folders is allowed or not
 * @return true if allowed false otherwise
 */
 public boolean isCompareFoldersAllowed();
 /**
 * Tell interactive merge is allowed or not
 * @return true if allowed false otherwise
 */
 public boolean isInteractiveMergeAllowed();
 /**
 * Tell atomic commit is allowed or not
 * @return true if allowed false otherwise
 */
 public boolean isAtomicCommitAllowed();
 /**
 * Tell fetch locks is allowed or not
 * @return true if allowed false otherwise
 */
 public boolean isFetchLocksAllowed();
 /**
 * Tell SSH settings is allowed or not
 * @return true if allowed false otherwise
 */
 public boolean isSSHOptionsAllowed();
 /**
 * Tell proxy settings is allowed or not
 * @return true if allowed false otherwise
 */
 public boolean isProxyOptionsAllowed();

}

ISVNClientWrapper interface, which instances is returned by ISVNClientWrapperFactory .newInstace()
method, is constructed very similar to the JavaHL interface and allows to hide specific of the SVN Client
Library interface from the Subversive Core module.

Subversive Architecture Overview Page 10 of 12

The Subversive project uses some specific features provided by JavaSVN library, at the same time the
features are unsupported by current implementation of the native JavaHL library. In general case an arbitrary
SVN Client Library plug-in may provide partial support of extended features. So, we have the compatibility
problem with the Subversive-specific features. Subversive architecture allows solving the problem in simple
way. All compatibility settings are provided by each SVN Client Library plug-in through
ISVNClientWrapperFactory interface.
If a SVN Client Library plug-in does not support extended features it reflects on the Subversive functionality
like described below:

• The “Cross WC atomic commit” feature implementation is completely transparent for end users who
are used the Subversive and for programmers who are used the Subversive API. One little difference
is non-atomic revision numbers in case when feature is inaccessible

• Compare folders is inaccessible
• SSH and Proxy settings is inaccessible
• Locks decoration for repository resources is inaccessible
• Interactive merge is inaccessible
• “Report revision change for folders” option is inaccessible.

The Subversive UI extension points
The Subversive UI plug-in provides a set of different extension points:

• “Mail Settings Provider” extension point allows customizing and redirecting of “Automated Bug-
Reporter” Subversive project service.

Interface 2 “Mail Settings Provider” extension point
public interface IMailSettingsProvider {
 /**
 * Returns report addressee
 * @return report addressee
 */
 public String getEmailTo();
 /**
 * Returns report sender
 * @return report sender
 */
 public String getEmailFrom();
 /**
 * Returns plug-in name
 * @return plug-in name
 */
 public String getPluginName();
 /**
 * Returns plug-in version
 * @return plug-in version
 */
 public String getProductVersion();
 /**
 * Returns mail server host
 * @return mail server host
 */
 public String getHost();
 /**
 * Returns mail server port
 * @return mail server port
 */
 public String getPort();
}

• “Synchronize View Action Contributions” extension point allows adding of custom actions into

the Subversive project Synchronize View

Interface 3 “Synchronize View Action Contributions” extension point
public interface ISynchronizeViewActionContributor {
 /**
 * This method returns synchronize view action contributions for update mode
 * @return collection of AbstractSynchronizeActionGroup
 */
 public Collection getUpdateContributions();
 /**
 * This method returns synchronize view action contributions for merge mode
 * @return collection of AbstractSynchronizeActionGroup
 */
 public Collection getMergeContributions();
}

• “Share Project Wizard” extension point allows overriding of the default Subversive project

behavior while sharing the project.

Subversive Architecture Overview Page 11 of 12

Interface 4 “Share Project Wizard” extension point
public interface IShareProjectFactory {
 /**
 * The method provides ShareProjectWizard page with some extended options in compare to default Subversive implementation
 * @param project the project which will be shared
 * @return wizard page
 */
 public SelectProjectNamePage getProjectLayoutPage(IProject project);
 /**
 * Allows to override default Subversive behavior while sharing the project
 * @param project the project which will be shared
 * @param location the repository location which will be used in order to share the project
 * @param page advanced share project configuration page
 * @return share project operation implementation which overrides default Subversive behavior
 */
 public ShareProjectOperation getShareProjectOperation(IProject project, IRepositoryLocation location, SelectProjectNamePage
page);

 /**
 * Force disablement of the finish button on the "Already Connected" page
 * @return true if should be disallowed
 */
 public boolean disallowFinishOnAlreadyConnected();
 /**
 * Force disablement of the finish button on the "Add Repository Location" page
 * @return true if should be disallowed
 */
 public boolean disallowFinishOnAddRepositoryLocation();
 /**
 * Force disablement of the finish button on the "Select Repository Location" page
 * @return true if should be disallowed
 */
 public boolean disallowFinishOnSelectRepositoryLocation();
}

• “Multi-line Comments in History” extension point allows replacement of the default Subversive

multi-line viewer implementation to more powerful which, for example, provides hyperlinks in
comments etc.

Interface 5 “Multi-line Comments in History” extension point
public interface IHistoryViewFactory {
 /**
 * Returns project-specific multi-line comment view implementation
 * @return project-specific multi-line comment view implementation
 */
 public ICommentView getCommentView();
}

• “Checkout” extension point allows performing of some non-standard actions with projects which

will be checked out by the product that contributes the Subversive project.

Interface 6 “Multi-line Comments in History” extension point
public interface ICheckoutFactory {
 /**
 * The method allows specific decorations for the projects in Checkout As wizard
 * @param name2resources mapping between proposed project names and repository resources that is referenced
 * to corresponding projects on repository
 * @return table decorator
 */
 public ITableLabelProvider getLabelProvider(Map name2resources);
 /**
 * The method provides specific filter allowing automated detection of the projects on repository
 * @return repository resource filter
 */
 public LocateProjectsOperation.ILocateFilter getLocateFilter();
 /**
 * The method allows override the default Subversive project Checkout Operation behavior with specific one
 * @param shell the Shell instance that will be used to interact with user
 * @param remote resources that will be checked out
 * @param checkoutMap project names mapping
 * @param respectHierarchy create locally folder structure that corresponds to repository projects layout
 * @param location destination folder
 * @param checkoutRecursively true if recursive checkout is required, false otherwise
 * @return alternative Checkout Operation instance
 */
 public IActionOperation getCheckoutOperation(Shell shell, IRepositoryResource []remote,
 Map checkoutMap, boolean respectHierarchy, String location, boolean checkoutRecursively);
 /**
 * The method allows correction of the automatically proposed project name mapping
 * @param name2resources automatically proposed project name mapping
 * @return corrected project name mapping
 */
 public Map prepareName2resources(Map name2resources);
 /**
 * The method allows providing of some additional processing for the projects found on repository
 * @param op default locate projects operation
 * @param provider found repository resource provider
 * @return additional resources provider
 */
 public IRepositoryResourceProvider additionalProcessing(CompositeOperation op, IRepositoryResourceProvider provider);
}

• “Commit” extension point allows overriding the standard Subversive Commit Dialog with more

powerful and performing additional tasks for the committed resources.

Subversive Architecture Overview Page 12 of 12

Interface 7 “Commit” extension point
public interface ICommitActionFactory {

 /**
 * The method provide abilities in extending of the standard Subversive Commit Dialog to more powerful
 * @param shell Shell instance which will be used to interact with user
 * @param allFilesToCommit full set of files which will be committed
 * @param panel the default Subversive Commit Panel implementation
 * @return enahanced Commit Dialog
 */
 public ICommitDialog getCommitDialog(Shell shell, Collection allFilesToCommit, ICommentDialogPanel panel);

 /**
 * The method allows customizing of the Commit Operation
 * @param operation prepared Commit operation
 * @param revisionProvider committed revision provider
 * @param dependsOn dependencies which can prevent commit operation execution in case of failure
 * @param part workbench part which will be used to interact with user
 */
 public void performAfterCommitTasks(CompositeOperation operation, IRevisionProvider revisionProvider,
 IActionOperation[] dependsOn, IWorkbenchPart part);

}

	Subversive modules
	Subversive architecture
	Sample of Subversive Core API usage
	The Command Framework functionality

	Extension points
	The Subversive Core extension points
	The Subversive UI extension points

