
Integration 
Testing Pipeline

Using SWIM to test SWIM
By Shovik Guha



What I set out to do initially

● Build a general pipeline for testing SWIM applications over time

● What is a test? (short term vs. long term)

● Goals: Autonomous, Configurable, Transportable

● Wanted an objective process for testing



Tools I used

● Swimshd, made modifications to fit my use case, exit after didSync()

● JMX buoy, made modification to generalize for Canary buoy

● Python, parse data and generate graph

● Shell script, used as wrapper



Test Structure

● Repo contains general outlines for ways to write the tests

● Main and Simulator Separation, internal vs. external

● Functional, unit like tests, vs long running metric collection

● Shell / Python scripts also are expandable



Running the Example Tests

● Install jmx via swimshd

● Confirm with “ss -l”

● Include jmx args in VM arguments of program you want to inspect

● Specify duration of the test as a program argument

● Run the getData scripts, use nohup and &

● Parse data with python after you are done collecting



Running an Actual Test on the Dev Site

● Separate Main class from Simulator

● Follow exact same process as in the previous slide



Analyzing the Results

● Run the Python parser to produce the graphs

● Graphs and runtime context stored in directory, can scp directory to view

● This makes is to tests can be run on remote servers, docker containers, raspberry pis, etc.

● Test Server produces an example of a “good” app

● Running the test on the dev site shows that there is a memory leak present



Canary (Work in Progress)

● Realtime component of the testing pipeline

● Does basic forecasting with EWMA on CPU usage, alerts when CPU is tending high

● Generalized the Canary by modifying cast / mold patterns

● Added Heap Usage observer, alerts when heap usage is high relative to the amount 

committed

● Can expand to any of the fields viewable through JMX



Next Steps

● Running multiple tests in parallel (RPI’s / docker)

● Jenkins integration

● UI



Thanks!


