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About This Presentation

This presentation is targeted at embedded developers who want to 
learn more about RISC-V 

At the end of this presentation you should have a basic 
understanding of RISC-V fundamentals and know where to find 

more information
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3-Part Webinar Series

May 7th May 15th May 23rd

An Introduction to the 
RISC-V Architecture

SiFive’s 2 Series Core IP From a Custom 2 Series 
Core to Hello World in 
30 Minutes

https://info.sifive.com/risc-v-second-webinar-series

https://info.sifive.com/risc-v-second-webinar-series
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How To Ask Questions



RISC-V Introduction
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RISC-V Origin Story (pronounced: risk five)

• Started as a “3-month project” in 2010 at UC Berkeley
– Required a simple ISA which could be extended
– Commercial ISAs were too complex and presented IP legal 

issues

What is RISC-V?
• A high-quality, license-free, royalty-free RISC ISA
• Standard maintained by the non-profit RISC-V Foundation
• Suitable for all types of computing systems

– From Microcontrollers to Supercomputers
• RISC-V is available freely under a permissive license 
• RISC-V is not…

– A Company
– A CPU implementation

Yunsup Lee Krste Asanovic
Andrew 

Waterman

Inventors of RISC-V
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RISC-V Foundation – riscv.org

• RISC-V Foundation is a non-profit 
organization formed in August 
2015 to publicly govern the ISA 

• Foundation Functions
– Directs future development of ISA
– Compliance tests
– Promotion of the ISA

• >230 members representing a 
wide range of markets
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RISC-V foundation now > 230 members. Free, open, extensible ISA for all computing devices
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• User Mode - version 2.2 Ratified
– Frozen in 2014 at version 2.0
– Updates since 2.0:

• CSR and FENCE.I instructions moved out 
of base extension “I”

• Memory model clarifications

• Privilege Mode - version 1.11  Ratified
– Version 1.11 ratified May 2019

• Debug Spec - version 0.13 Ratified
• Specifications in Progress

– Hypervisor Extension - version 0.3 Draft
– Vector Extension - version 0.7 Draft
– And many more

• Participate - https://riscv.org
– Join the mailing list
– Become a member

Status of the RISC-V Specifications

https://riscv.org


RISC-V Basics
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RISC-V Instruction Set Architectures

• RISC-V uses a standard naming convention to 
describe the ISAs supported in a given 
implementation

• ISA Name format: RV[###][abc…..xyz]
– RV – Indicates a RISC-V architecture
– [###] - {32, 64, 128} indicate the width of the 

integer register file and the size of the user 
address space

– [abc…xyz] – Used to indicate the set of 
extensions supported by an implementation.
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The Standard Extensions

• Extensions define instructions 
– “I” for Integer is the only required extension in a RISC-V 

implementation and defines 40 instructions
• The RISC-V Specification defines a number of “Standard 

Extensions”
– Standard Extensions are defined by the RISC-V Foundation 

and are optional
• RISC-V allows for custom, “Non-Standard”, extensions in 

an implementation
• Putting it all together (examples)

– RV32I – The most basic RISC-V implementation
– RV32IMAC – Integer + Multiply + Atomic + Compressed
– RV64GC – 64bit IMAFDC 
– RV64GCXext – IMAFDC + a non-standard extension

Extension Description

I Integer

M Integer Multiplication and Division

A Atomics

F Single-Precision Floating Point

D Double-Precision Floating Point

G General Purpose = IMAFD

C 16-bit Compressed Instructions

Non-Standard User-Level Extensions

Xext Non-standard extension “ext”

Common RISC-V Standard Extensions
*Not a complete list
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Register File

• RV32I/64I have 32 Integer Registers
– Optional 32 FP registers with the F 

and D extensions
– RV32E reduces the register file to 16 

integer registers for area constrained 
embedded devices

• Width of Registers is determined by ISA
• RISC-V Application Binary Interface (ABI) 

defines standard functions for registers
– Allows for software interoperability

• Development tools usually use ABI names 
for simplicity

Register ABI Name Description Saver

x0 zero Hard-wired zero -

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 gp Global pointer -

x4 tp Thread pointer -

x5-7 t0-2 Temporaries Caller

x8 s0/fp Saved register/Frame pointer Callee

x9 s1 Saved register Callee

x10-11 a0-1 Function Arguments/return 
values

Caller

x12-17 a2-7 Function arguments Caller

x18-27 s2-11 Saved registers Callee

x28-31 t3-6 Temporaries Caller
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RISC-V Modes

• RISC-V Privileged Specification defines 3 levels of 
privilege, called Modes

• Machine mode is the highest privileged mode and the 
only required mode
– Flexibility allows for a range of targeted 

implementations from simple MCUs to 
high-performance Application Processors

• Machine, Hypervisor, Supervisor modes each have Control 
and Status Registers (CSRs)
– More on these later

RISC-V Modes

Level Name Abbr.

0 User/Application U

1 Supervisor S

2 Hypervisor HS

3 Machine M

Supported Combinations of Modes

Supported Levels Modes

1 M

2 M, U

3 M, S, U

4 M, HS, S, U



RISC-V Instructions
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Base Integer ISA Encoding

• 32-bit fixed-width, naturally aligned instructions
• rd/rs1/rs2 in fixed location, no implicit registers
• Immediate field (instr[31]) always sign-extended
• Instruction Encoding Types

– R-type – Register
– I-type – Immediate
– S-type – Stores
– U-Type – Loads with immediate

• Reserved opcode space for custom instructions
– This opcode space will not be used by future 

standard extensions
– instr[6:0] = 0b0001011 and 0b0101011
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RISC-V Reference Card
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RISC-V Reference Card
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Compressed Instructions (C Extension)

• Most base integer instructions “Compress” 
to 16-bit equivalents
– 1:1 mapping of compressed instructions to standard 

instructions

• Smaller code size can reduce cost in 
embedded systems
– Directly resulting in smaller Flash/ROM/RAM

• Smaller code size can increase performance 
and reduce power
– Better utilization of Cache RAMs
– Fewer transactions across high power interfaces (DRAM, 

Flash, etc…)

• RV64 can also use the C Extension

I’m mostly
embedded flash

A Microcontroller
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• RISC-V is smallest ISA for 32- and 64-bit processors in SpecInt2k6
• All results with same GCC compiler and options

Code Size Comparison - SpecInt 2006
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Atomics (A Extension)

• Atomic memory operations (AMO) perform 
Read-Modify-Write operations in a single 
Atomic instruction
– Logical, Arithmetic, Swap
– Acquire (aq) and Release (rl) bits for 

release consistency

• Load-Reserved/Store-Conditional pairs
– Guaranteed forward progress for short 

sequences

   li t0, 1 # Initialize swap value. 
again: 
   amoswap.w.aq t0, t0, (a0) # Attempt to acquire 
lock. 
   bnez t0, again # Retry if held. 
   # ... 
   # Critical section. 
   # ... 
   amoswap.w.rl x0, x0, (a0) # Release lock by 
storing 0. 

Example RISC-V Spinlock
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Fence Instructions

• Fences are used to enforce program order 
on device I/O and memory accesses

• FENCE instruction format
– FENCE predecessor, successor
– Predecessor/successor can be

• R,W,I,O
– FENCE RWIO, RWIO – full barrier

Predecessor Load/Store

Fence

Successor Load/Store
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CSR and ECALL Instructions

• Control and Status Registers (CSRs) have their own dedicated 
instructions :
– Read/Write
– Read and Set bit
– Read and Clear bit

• Environment Call instruction used to transfer control to the 
execution environment and a higher privileged mode
– Triggers a synchronous Interrupt (discussed later)
– Example: User mode program can use an ECALL to transfer control to 

a Machine mode OS kernel, aka System Call



RISC-V Control and Status Registers (CSR)
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What are Control and Status Registers (CSRs)

• CSRs are Registers which contain the working 
state of a RISC-V machine

• CSRs are specific to a Mode
– Machine Mode has ~17 CSRs (not including performance 

monitor CSRs)
– Supervisor Mode has a similar number, though most are 

subsets of their equivalent Machine Mode CSRs
• Machine Mode can also access Supervisor CSRs

• CSRs are defined in the RISC-V privileged 
specification
– We will cover a few key CSRs here 
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Identification CSRs

• misa – Machine ISA Register
– Reports the ISA supported by the hart (i.e. 

RV32IMAC)
–

• mhartid – Machine hart ID
– Integer ID of the Hardware Thread
–

• mvendorid – Machine Vendor ID
– JEDEC Vendor ID
–

• marchid – Machine Architecture ID
– Used along with mvendorid to identify a 

implementation. No format specified
–

• mimpid - Machine Implementation ID
– Implementation defined format
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Machine Status (mstatus) - The Most Important CSR

Control and track the hart’s current operating state

Bits Field Name Description

0 UIE User Interrupt Enable

1 SIE Supervisor Interrupt Enable

2 Reserved

3 MIE Machine Interrupt Enable

4 UPIE User Previous Interrupt Enable

5 SPIE Supervisor Previous Interrupt Enable

6 Reserved

7 MPIE Machine Previous Interrupt Enabler

8 SPP Supervisor Previous Privilege

[10:9] Reserved

[12:11] MPP Machine Previous Privilege

Bits Field Name Description

[14:13] FS Floating Point State

[16:15] XS User Mode Extension State

17 MPRIV Modify Privilege (access memory as MPP)

18 SUM Permit Supervisor User Memory Access

19 MXR Make Executable Readable

20 TVM Trap Virtual memory

21 TW Timeout Wait (traps S-Mode wfi)

22 TSR Trap SRET

[23:30] Reserved

[31] SD State Dirty (FS and XS summary bit)

RV32 mstatus CSR
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Timer CSRs

• mtime
– RISC-V defines a requirement 

for a counter exposed as a 
memory mapped register

– There is no frequency 
requirement on the timer, but
• It must run at a constant 

frequency
• The platform must expose 

frequency

Bits Field Name Description

[63:0] mtime Machine Time Register

Bits Field Name Description

[63:0] mtimecmp Machine Time Compare Register

mtime CSR mtimecmp CSR

• mtimecmp
– RISC-V defines a memory 

mapped timer compare 
register

– Triggers an interrupt when 
mtime is greater than or 
equal to mtimecmp
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Supervisor CSRs

• Most of the Machine mode CSRs have 
Supervisor mode equivalents
– Supervisor mode CSRs can be used to control the 

state of Supervisor and User Modes.
– Most equivalent Supervisor CSRs have the same 

mapping as Machine mode without Machine 
mode control bits

– sstatus, stvec, sip, sie, sepc, scause, satp, and 
more

• satp - Supervisor Address Translation and 
Protection Register
– Used to control Supervisor mode address 

translation and protection

Bits Field Name Description

[21:0] PPN Physical Page Number of the root page table

[30:22] ASID Address Space Identifier

31 MODE MODE=1 uses Sv32 Address Translation

RV32 satp CSR

Bits Field Name Description

[43:0] PPN Physical Page Number of the root page table

[59:44] ASID Address Space Identifier

[63:60] MODE Encodings for Sv32, Sv39, Sv48

RV64 satp CSR
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Virtual Memory

• RISC-V has support for Virtual Memory 
allowing for sophisticated memory 
management and OS support (Linux)

• Requires an S-Mode implementation
• Sv32 

– 32bit Virtual Address
– 4KiB, 4MiB page tables (2 Levels)

• Sv39 (requires an RV64 implementation) 
– 39bit Virtual Address
– 4KiB, 2MiB, 1GiB page tables (3 Levels)

• Sv48 (requires an RV64 implementation)
– 48bit Virtual Address
– 4KiB, 2MiB, 1 GiB, 512GB page tables (4 Levels)

• Page Tables also contain access permission 
attributes

0xFFFF_FFFF

0x0000_0000

Virtual 
Address

Virtual Address Map

0xFFFF_FFFF

0x0000_0000

Physical 
Address

Physical Address Map
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Physical Memory Protection (PMP)

• Can be used to enforce access 
restrictions on less privileged modes
– Prevent Supervisor and User 

Mode software from accessing 
unwanted memory

• Up to 16 regions with a minimum 
region size of 4 bytes

• Ability to Lock a region
– A locked region enforces 

permissions on all accesses, 
including M-Mode

– Only way to unlock a region is a 
Reset

Locked Region

User Mode 
Context

User Mode Data

0xFFFF_FFFF

0x0000_0000

4 Byte Region Locked.
Only accessible after a 
reset

User Mode has full 
RWX Privileges 

User Mode has Read 
only Privileges

Shared Library 
Code

User Mode has 
Execute only Privileges

Example PMP Memory Map

Can define
entire address 
map as not 
accessible
to U-Mode in 1 
register



RISC-V Interrupts
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• RISC-V defines the following interrupts per Hart 
– Software – architecturally defined software interrupt
– Timer – architecturally defined timer interrupt
– External – Peripheral Interrupts
– Local - Hart specific Peripheral Interrupts

• Optionally per privilege level
– Can have Supervisor Software/Timer/Machine 

Interrupts
– Can have User Software/Timer/Machine

• Local interrupts are optional and implementation 
specific
– Can be used for hart-specific peripheral interrupts
– Useful for latency-sensitive embedded systems or 

small embedded systems with a small number of 
interrupts

RISC-V Interrupts
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Machine Status (mstatus) – As it relates to Interrupts

Bits Field Name Description

0 UIE User Interrupt Enable

1 SIE Supervisor Interrupt Enable

2 Reserved

3 MIE Machine Interrupt Enable

4 UPIE User Previous Interrupt Enable

5 SPIE Supervisor Previous Interrupt Enable

6 Reserved

7 MPIE Machine Previous Interrupt Enabler

8 SPP Supervisor Previous Privilege

[10:9] Reserved

[12:11] MPP Machine Previous Privilege

Bits Field Name Description

[14:13] FS Floating Point State

[16:15] XS User Mode Extension State

17 MPRIV Modify Privilege (access memory as MPP)

18 SUM Permit Supervisor User Memory Access

19 MXR Make Executable Readable

20 TVM Trap Virtual memory

21 TW Timeout Wait (traps S-Mode wfi)

22 TSR Trap SRET

[23:30] Reserved

[31] SD State Dirty (FS and XS summary bit)

RV32 mstatus CSR

• M/S/U IE – Global Interrupt Enables for Modes which supports interrupts

• M/S/U PIE – Encodes the state of interrupt enables prior to an interrupt.
– These bits can also be written to in order to enable interrupts when returning to lower privilege modes

• M/S PP – Encodes the privilege level prior to the previous interrupt
– These bits can also be written to in order to enter a lower privilege mode when executing MRET or SRET instructions
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Machine Interrupt Cause CSR (mcause)

• Interrupts are identified by reading the 
mcause CSR

• The interrupt field determines if a trap 
was caused by an interrupt or an 
exception

Interrupt = 1 (interrupt)

Exception 
Code

Description

0 User Software Interrupt

1 Supervisor Software Interrupt

2 Reserved

3 Machine Software Interrupt

4 User Timer Interrupt

5 Supervisor Timer Interrupt

6 Reserved

7 Machine Timer Interrupt

8 User External Interrupt

9 Supervisor External Interrupt

10 Reserved

11 Machine External Interrupt

12 - 15 Reserved

≥16 Local Interrupt  X

Interrupt = 0 (exception)

Exception 
Code

Description

0 Instruction Address Misaligned

1 Instruction Access Fault

2 Illegal Instruction

3 Breakpoint

4 Load Address Misaligned

5 Load Access Fault

6 Store/AMO Address Misaligned

7 Store/AMO Access Fault

8 Environment Call from U-mode

9 Environment Call from S-mode

10 Reserved

11 Environment Call from M-mode

12 Instruction Page Fault

13 Load Page Fault

14 Reserved

15 Store/AMO Page Fault

≥16 Reserved

Bits Field Name Description

XLEN-1 Interrupt Identifies if an interrupt was 
synchronous or asynchronous

[XLEN-2:0] Exception Code Identifies the exception 

mcause CSR
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• mie used to enable/disable a given 
interrupt

• mip indicates which interrupts are 
currently pending
– Can be used for polling

• Lesser-privilege bits in mip are writeable
– i.e. Machine-mode software can be used to 

generate a supervisor interrupt by setting the 
STIP bit

• mip has the same mapping as mie

Machine Interrupt-Enable and Pending CSRs (mie, mip)

Bits Field Name Description

0 USIE User Software Interrupt Enable

1 SSIE Supervisor Software Interrupt Enable

2 Reserved

3 MSIE Machine Software Interrupt Enable

4 UTIE User Timer Interrupt Enable

5 STIE Supervisor Timer Interrupt Enable

6 Reserved

7 MTIE Machine Timer Interrupt Enable

8 UEIE User External Interrupt Enable

9 SEIE Supervisor External Interrupt Enable

10 Reserved

11 MEIE Machine External Interrupt Enable

12-15 Reserved

≥16 LIE Local Interrupt Enable

mie CSR
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mtvec sets the Base interrupt vector and the interrupt Mode 

• mtvec.Mode = Direct
– All Interrupts trap to the address mtvec.Base
– Software must read the mcause CSR and react accordingly

• mtvec.Vectored
– Interrupts trap to the address mtvec.Base + (4*mcause.ExCode)
– Eliminates the need to read mcause for asynchronous exceptions

Machine Trap Vector CSR (mtvec)

Bits Field Name Description

[XLEN-1:6] Base Machine Trap Vector Base Address.
64-byte Alignment

[1:0] Mode MODE Sets the interrupt processing 
mode. 

mtvec CSR

mtvec Modes

Value Name Description

0x0 Direct All Exceptions set PC to mtvec.BASE
Requires 4-Byte alignment

0x1 Vectored Asynchronous interrupts set pc to 
mtvec.BASE + (4×mcause.EXCCODE)
Requires 4-Byte alignment

> 0x01 Reserved
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• On entry, the RISC-V hart will
– Save the current state

– Then set PC = mtvec, mstatus.MIE = 0

• MRET instruction restores state

Trap Handler – Entry and Exit

• Typical trap handler software will

PC
Priv
MIE

MEPC
mstatus.MPP

mstatus.MPIE

   Push Registers
   …
   interrupt = mcause.msb
   if interrupt
     branch isr_handler[mcause.code]
   else
     branch exception_handler[mcause.code]
   …
   Pop Registers
   MRET

Interrupt handler pseudo code

mtevc.MODE = Direct

PC
Priv
MIE

MEPC
mstatus.MPP

mstatus.MPIE
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  .align 2
  .global trap_entry
trap_entry:
  addi sp, sp, -16*REGBYTES

  //store ABI Caller Registers
  STORE x1,  0*REGBYTES(sp)
  STORE x5,  2*REGBYTES(sp)

…
  STORE x30, 14*REGBYTES(sp)
  STORE x31, 15*REGBYTES(sp)

  //call C Code Handler
  call handle_trap

  //restore ABI Caller Registers
  LOAD x1,  0*REGBYTES(sp)
  LOAD x5,  2*REGBYTES(sp)

…
  LOAD x30, 14*REGBYTES(sp)
  LOAD x31, 15*REGBYTES(sp)

  addi sp, sp, 16*REGBYTES
  mret

Interrupt Handler Code

   void handle_trap()
   {

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler

isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

//branch to handler

exception_handler[mcause]();

}

   }

   //write trap_entry address to mtvec       

   write_csr(mtvec, ((unsigned long)&trap_entry));

RISC-V Assembly interrupt handler 
to Push and Pop register file

C Code Handler determines interrupt cause and branches to the appropriate 
function 
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• Pushing and Popping Registers in Assembly 
is a pain

• The interrupt attribute was added to GCC 
to facilitate interrupt handlers written 
entirely in C
– Interrupt functions only saves/restores 

necessary registers onto the stack

– Align function on an 8-byte boundary

– Calles MRET after popping register file back 
off the stack

Compiler Interrupt Attribute

  void handle_trap(void) __attribute((interrupt));
   void handle_trap()

   {

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler

isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

//synchronous exception, branch to handler

exception_handler[mcause & MCAUSE_CAUSE]();

}

   }

   //write handle_trap address to mtvec       

   write_csr(mtvec, ((unsigned long)&handle_trap));

Interrupt handler with interrupt attribute. 
No assembly Code necessary
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• RISC-V defines Global Interrupts as a 
Interrupt which can be routed to any 
hart in a system

• Global Interrupts are prioritized and 
distributed by the Platform Level 
Interrupt Controller (PLIC)

• The PLIC is connected to the External 
Interrupt signal for 1 or more harts in 
an implementation

RISC-V Global Interrupts
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• In this example an interrupt is presented to the PLIC
• The PLIC signals an interrupt to a hart using the Machine External Interrupt (interrupt 11)
• The interrupt handler (handle_trap) branches to the defined function to handle the Machine External Interrupt

– C Code placed the address of machine_external_interrupt function in location 11 of the async_handler vector table

• The machine_external_interrupt handler does the following:
– Reads the PLIC’s claim/complete register to determine highest priority pending interrupt
– Uses another vector table to branch to the interrupt’s specific handler
– Completes the interrupt by writing the interrupt number back to the PLIC’s claim/complete

PLIC Interrupt Code Example

   void handle_trap(void) __attribute((interrupt));
   void handle_trap()

   {

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

   //mask interrupt bit and branch to handler          
    isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

   //synchronous exception, branch to    handler
   exception_handler[mcause & MCAUSE_CAUSE]();

}
   }

   //install PLIC handler at MEIP Location
   isr_handler[11] = machine_external_interrupt;

   //write trap_entry address to mtvec       

   write_csr(mtvec, ((unsigned long)&handle_trap));

   void machine_external_interrupt()

   {
//get the highest priority pending PLIC interrupt
uint32_t int_num = plic.claim_comlete;
//branch to handler
plic_handler[int_num]();
//complete interrupt by writing interrupt number 
back to PLIC

plic.claim_complete = int_num;
   }
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RISC-V Interrupt System Architecture (M-mode only example)



More Information
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• https://riscv.org/ 
– RISC-V Specifications
– Links to the RISC-V mailing lists
– Workshop proceedings

• GitHub
– https://github.com/sifive/
– https://github.com/riscv

• https://www.sifive.com/
– RISC-V IP and Development Boards
– RISC-V Tools
– Forums

Resources

https://github.com/sifive/
https://github.com/riscv
https://www.sifive.com/
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3-Part Webinar Series

May 7th May 15th May 23rd

An Introduction to the 
RISC-V Architecture

SiFive’s 2 Series Core IP From a Custom 2 Series 
Core to Hello World in 
30 Minutes

https://info.sifive.com/risc-v-second-webinar-series

https://info.sifive.com/risc-v-second-webinar-series
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