
An Introduction to the RISC-V Architecture

Drew Barbier - Sr. Product Marketing Manager

Date May, 2019

222

About This Presentation

This presentation is targeted at embedded developers who want to
learn more about RISC-V

At the end of this presentation you should have a basic
understanding of RISC-V fundamentals and know where to find

more information

333

3-Part Webinar Series

May 7th May 15th May 23rd

An Introduction to the
RISC-V Architecture

SiFive’s 2 Series Core IP From a Custom 2 Series
Core to Hello World in
30 Minutes

https://info.sifive.com/risc-v-second-webinar-series

https://info.sifive.com/risc-v-second-webinar-series

44

How To Ask Questions

RISC-V Introduction

666

RISC-V Origin Story (pronounced: risk five)

• Started as a “3-month project” in 2010 at UC Berkeley
– Required a simple ISA which could be extended
– Commercial ISAs were too complex and presented IP legal

issues

What is RISC-V?
• A high-quality, license-free, royalty-free RISC ISA
• Standard maintained by the non-profit RISC-V Foundation
• Suitable for all types of computing systems

– From Microcontrollers to Supercomputers
• RISC-V is available freely under a permissive license
• RISC-V is not…

– A Company
– A CPU implementation

Yunsup Lee Krste Asanovic
Andrew

Waterman

Inventors of RISC-V

777

RISC-V Foundation – riscv.org

• RISC-V Foundation is a non-profit
organization formed in August
2015 to publicly govern the ISA

• Foundation Functions
– Directs future development of ISA
– Compliance tests
– Promotion of the ISA

• >230 members representing a
wide range of markets

888

RISC-V foundation now > 230 members. Free, open, extensible ISA for all computing devices

999

• User Mode - version 2.2 Ratified
– Frozen in 2014 at version 2.0
– Updates since 2.0:

• CSR and FENCE.I instructions moved out
of base extension “I”

• Memory model clarifications

• Privilege Mode - version 1.11 Ratified
– Version 1.11 ratified May 2019

• Debug Spec - version 0.13 Ratified
• Specifications in Progress

– Hypervisor Extension - version 0.3 Draft
– Vector Extension - version 0.7 Draft
– And many more

• Participate - https://riscv.org
– Join the mailing list
– Become a member

Status of the RISC-V Specifications

https://riscv.org

RISC-V Basics

111111

RISC-V Instruction Set Architectures

• RISC-V uses a standard naming convention to
describe the ISAs supported in a given
implementation

• ISA Name format: RV[###][abc…..xyz]
– RV – Indicates a RISC-V architecture
– [###] - {32, 64, 128} indicate the width of the

integer register file and the size of the user
address space

– [abc…xyz] – Used to indicate the set of
extensions supported by an implementation.

121212

The Standard Extensions

• Extensions define instructions
– “I” for Integer is the only required extension in a RISC-V

implementation and defines 40 instructions
• The RISC-V Specification defines a number of “Standard

Extensions”
– Standard Extensions are defined by the RISC-V Foundation

and are optional
• RISC-V allows for custom, “Non-Standard”, extensions in

an implementation
• Putting it all together (examples)

– RV32I – The most basic RISC-V implementation
– RV32IMAC – Integer + Multiply + Atomic + Compressed
– RV64GC – 64bit IMAFDC
– RV64GCXext – IMAFDC + a non-standard extension

Extension Description

I Integer

M Integer Multiplication and Division

A Atomics

F Single-Precision Floating Point

D Double-Precision Floating Point

G General Purpose = IMAFD

C 16-bit Compressed Instructions

Non-Standard User-Level Extensions

Xext Non-standard extension “ext”

Common RISC-V Standard Extensions
*Not a complete list

131313

Register File

• RV32I/64I have 32 Integer Registers
– Optional 32 FP registers with the F

and D extensions
– RV32E reduces the register file to 16

integer registers for area constrained
embedded devices

• Width of Registers is determined by ISA
• RISC-V Application Binary Interface (ABI)

defines standard functions for registers
– Allows for software interoperability

• Development tools usually use ABI names
for simplicity

Register ABI Name Description Saver

x0 zero Hard-wired zero -

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 gp Global pointer -

x4 tp Thread pointer -

x5-7 t0-2 Temporaries Caller

x8 s0/fp Saved register/Frame pointer Callee

x9 s1 Saved register Callee

x10-11 a0-1 Function Arguments/return
values

Caller

x12-17 a2-7 Function arguments Caller

x18-27 s2-11 Saved registers Callee

x28-31 t3-6 Temporaries Caller

141414

RISC-V Modes

• RISC-V Privileged Specification defines 3 levels of
privilege, called Modes

• Machine mode is the highest privileged mode and the
only required mode
– Flexibility allows for a range of targeted

implementations from simple MCUs to
high-performance Application Processors

• Machine, Hypervisor, Supervisor modes each have Control
and Status Registers (CSRs)
– More on these later

RISC-V Modes

Level Name Abbr.

0 User/Application U

1 Supervisor S

2 Hypervisor HS

3 Machine M

Supported Combinations of Modes

Supported Levels Modes

1 M

2 M, U

3 M, S, U

4 M, HS, S, U

RISC-V Instructions

161616

Base Integer ISA Encoding

• 32-bit fixed-width, naturally aligned instructions
• rd/rs1/rs2 in fixed location, no implicit registers
• Immediate field (instr[31]) always sign-extended
• Instruction Encoding Types

– R-type – Register
– I-type – Immediate
– S-type – Stores
– U-Type – Loads with immediate

• Reserved opcode space for custom instructions
– This opcode space will not be used by future

standard extensions
– instr[6:0] = 0b0001011 and 0b0101011

1717

RISC-V Reference Card

1818

RISC-V Reference Card

191919

Compressed Instructions (C Extension)

• Most base integer instructions “Compress”
to 16-bit equivalents
– 1:1 mapping of compressed instructions to standard

instructions

• Smaller code size can reduce cost in
embedded systems
– Directly resulting in smaller Flash/ROM/RAM

• Smaller code size can increase performance
and reduce power
– Better utilization of Cache RAMs
– Fewer transactions across high power interfaces (DRAM,

Flash, etc…)

• RV64 can also use the C Extension

I’m mostly
embedded flash

A Microcontroller

202020

• RISC-V is smallest ISA for 32- and 64-bit processors in SpecInt2k6
• All results with same GCC compiler and options

Code Size Comparison - SpecInt 2006

212121

Atomics (A Extension)

• Atomic memory operations (AMO) perform
Read-Modify-Write operations in a single
Atomic instruction
– Logical, Arithmetic, Swap
– Acquire (aq) and Release (rl) bits for

release consistency

• Load-Reserved/Store-Conditional pairs
– Guaranteed forward progress for short

sequences

 li t0, 1 # Initialize swap value.
again:
 amoswap.w.aq t0, t0, (a0) # Attempt to acquire
lock.
 bnez t0, again # Retry if held.
 # ...
 # Critical section.
 # ...
 amoswap.w.rl x0, x0, (a0) # Release lock by
storing 0.

Example RISC-V Spinlock

222222

Fence Instructions

• Fences are used to enforce program order
on device I/O and memory accesses

• FENCE instruction format
– FENCE predecessor, successor
– Predecessor/successor can be

• R,W,I,O
– FENCE RWIO, RWIO – full barrier

Predecessor Load/Store

Fence

Successor Load/Store

232323

CSR and ECALL Instructions

• Control and Status Registers (CSRs) have their own dedicated
instructions :
– Read/Write
– Read and Set bit
– Read and Clear bit

• Environment Call instruction used to transfer control to the
execution environment and a higher privileged mode
– Triggers a synchronous Interrupt (discussed later)
– Example: User mode program can use an ECALL to transfer control to

a Machine mode OS kernel, aka System Call

RISC-V Control and Status Registers (CSR)

252525

What are Control and Status Registers (CSRs)

• CSRs are Registers which contain the working
state of a RISC-V machine

• CSRs are specific to a Mode
– Machine Mode has ~17 CSRs (not including performance

monitor CSRs)
– Supervisor Mode has a similar number, though most are

subsets of their equivalent Machine Mode CSRs
• Machine Mode can also access Supervisor CSRs

• CSRs are defined in the RISC-V privileged
specification
– We will cover a few key CSRs here

262626

Identification CSRs

• misa – Machine ISA Register
– Reports the ISA supported by the hart (i.e.

RV32IMAC)
–

• mhartid – Machine hart ID
– Integer ID of the Hardware Thread
–

• mvendorid – Machine Vendor ID
– JEDEC Vendor ID
–

• marchid – Machine Architecture ID
– Used along with mvendorid to identify a

implementation. No format specified
–

• mimpid - Machine Implementation ID
– Implementation defined format

272727

Machine Status (mstatus) - The Most Important CSR

Control and track the hart’s current operating state

Bits Field Name Description

0 UIE User Interrupt Enable

1 SIE Supervisor Interrupt Enable

2 Reserved

3 MIE Machine Interrupt Enable

4 UPIE User Previous Interrupt Enable

5 SPIE Supervisor Previous Interrupt Enable

6 Reserved

7 MPIE Machine Previous Interrupt Enabler

8 SPP Supervisor Previous Privilege

[10:9] Reserved

[12:11] MPP Machine Previous Privilege

Bits Field Name Description

[14:13] FS Floating Point State

[16:15] XS User Mode Extension State

17 MPRIV Modify Privilege (access memory as MPP)

18 SUM Permit Supervisor User Memory Access

19 MXR Make Executable Readable

20 TVM Trap Virtual memory

21 TW Timeout Wait (traps S-Mode wfi)

22 TSR Trap SRET

[23:30] Reserved

[31] SD State Dirty (FS and XS summary bit)

RV32 mstatus CSR

282828

Timer CSRs

• mtime
– RISC-V defines a requirement

for a counter exposed as a
memory mapped register

– There is no frequency
requirement on the timer, but
• It must run at a constant

frequency
• The platform must expose

frequency

Bits Field Name Description

[63:0] mtime Machine Time Register

Bits Field Name Description

[63:0] mtimecmp Machine Time Compare Register

mtime CSR mtimecmp CSR

• mtimecmp
– RISC-V defines a memory

mapped timer compare
register

– Triggers an interrupt when
mtime is greater than or
equal to mtimecmp

292929

Supervisor CSRs

• Most of the Machine mode CSRs have
Supervisor mode equivalents
– Supervisor mode CSRs can be used to control the

state of Supervisor and User Modes.
– Most equivalent Supervisor CSRs have the same

mapping as Machine mode without Machine
mode control bits

– sstatus, stvec, sip, sie, sepc, scause, satp, and
more

• satp - Supervisor Address Translation and
Protection Register
– Used to control Supervisor mode address

translation and protection

Bits Field Name Description

[21:0] PPN Physical Page Number of the root page table

[30:22] ASID Address Space Identifier

31 MODE MODE=1 uses Sv32 Address Translation

RV32 satp CSR

Bits Field Name Description

[43:0] PPN Physical Page Number of the root page table

[59:44] ASID Address Space Identifier

[63:60] MODE Encodings for Sv32, Sv39, Sv48

RV64 satp CSR

303030

Virtual Memory

• RISC-V has support for Virtual Memory
allowing for sophisticated memory
management and OS support (Linux)

• Requires an S-Mode implementation
• Sv32

– 32bit Virtual Address
– 4KiB, 4MiB page tables (2 Levels)

• Sv39 (requires an RV64 implementation)
– 39bit Virtual Address
– 4KiB, 2MiB, 1GiB page tables (3 Levels)

• Sv48 (requires an RV64 implementation)
– 48bit Virtual Address
– 4KiB, 2MiB, 1 GiB, 512GB page tables (4 Levels)

• Page Tables also contain access permission
attributes

0xFFFF_FFFF

0x0000_0000

Virtual
Address

Virtual Address Map

0xFFFF_FFFF

0x0000_0000

Physical
Address

Physical Address Map

313131

Physical Memory Protection (PMP)

• Can be used to enforce access
restrictions on less privileged modes
– Prevent Supervisor and User

Mode software from accessing
unwanted memory

• Up to 16 regions with a minimum
region size of 4 bytes

• Ability to Lock a region
– A locked region enforces

permissions on all accesses,
including M-Mode

– Only way to unlock a region is a
Reset

Locked Region

User Mode
Context

User Mode Data

0xFFFF_FFFF

0x0000_0000

4 Byte Region Locked.
Only accessible after a
reset

User Mode has full
RWX Privileges

User Mode has Read
only Privileges

Shared Library
Code

User Mode has
Execute only Privileges

Example PMP Memory Map

Can define
entire address
map as not
accessible
to U-Mode in 1
register

RISC-V Interrupts

333333

• RISC-V defines the following interrupts per Hart
– Software – architecturally defined software interrupt
– Timer – architecturally defined timer interrupt
– External – Peripheral Interrupts
– Local - Hart specific Peripheral Interrupts

• Optionally per privilege level
– Can have Supervisor Software/Timer/Machine

Interrupts
– Can have User Software/Timer/Machine

• Local interrupts are optional and implementation
specific
– Can be used for hart-specific peripheral interrupts
– Useful for latency-sensitive embedded systems or

small embedded systems with a small number of
interrupts

RISC-V Interrupts

343434

Machine Status (mstatus) – As it relates to Interrupts

Bits Field Name Description

0 UIE User Interrupt Enable

1 SIE Supervisor Interrupt Enable

2 Reserved

3 MIE Machine Interrupt Enable

4 UPIE User Previous Interrupt Enable

5 SPIE Supervisor Previous Interrupt Enable

6 Reserved

7 MPIE Machine Previous Interrupt Enabler

8 SPP Supervisor Previous Privilege

[10:9] Reserved

[12:11] MPP Machine Previous Privilege

Bits Field Name Description

[14:13] FS Floating Point State

[16:15] XS User Mode Extension State

17 MPRIV Modify Privilege (access memory as MPP)

18 SUM Permit Supervisor User Memory Access

19 MXR Make Executable Readable

20 TVM Trap Virtual memory

21 TW Timeout Wait (traps S-Mode wfi)

22 TSR Trap SRET

[23:30] Reserved

[31] SD State Dirty (FS and XS summary bit)

RV32 mstatus CSR

• M/S/U IE – Global Interrupt Enables for Modes which supports interrupts

• M/S/U PIE – Encodes the state of interrupt enables prior to an interrupt.
– These bits can also be written to in order to enable interrupts when returning to lower privilege modes

• M/S PP – Encodes the privilege level prior to the previous interrupt
– These bits can also be written to in order to enter a lower privilege mode when executing MRET or SRET instructions

353535

Machine Interrupt Cause CSR (mcause)

• Interrupts are identified by reading the
mcause CSR

• The interrupt field determines if a trap
was caused by an interrupt or an
exception

Interrupt = 1 (interrupt)

Exception
Code

Description

0 User Software Interrupt

1 Supervisor Software Interrupt

2 Reserved

3 Machine Software Interrupt

4 User Timer Interrupt

5 Supervisor Timer Interrupt

6 Reserved

7 Machine Timer Interrupt

8 User External Interrupt

9 Supervisor External Interrupt

10 Reserved

11 Machine External Interrupt

12 - 15 Reserved

≥16 Local Interrupt X

Interrupt = 0 (exception)

Exception
Code

Description

0 Instruction Address Misaligned

1 Instruction Access Fault

2 Illegal Instruction

3 Breakpoint

4 Load Address Misaligned

5 Load Access Fault

6 Store/AMO Address Misaligned

7 Store/AMO Access Fault

8 Environment Call from U-mode

9 Environment Call from S-mode

10 Reserved

11 Environment Call from M-mode

12 Instruction Page Fault

13 Load Page Fault

14 Reserved

15 Store/AMO Page Fault

≥16 Reserved

Bits Field Name Description

XLEN-1 Interrupt Identifies if an interrupt was
synchronous or asynchronous

[XLEN-2:0] Exception Code Identifies the exception

mcause CSR

363636

• mie used to enable/disable a given
interrupt

• mip indicates which interrupts are
currently pending
– Can be used for polling

• Lesser-privilege bits in mip are writeable
– i.e. Machine-mode software can be used to

generate a supervisor interrupt by setting the
STIP bit

• mip has the same mapping as mie

Machine Interrupt-Enable and Pending CSRs (mie, mip)

Bits Field Name Description

0 USIE User Software Interrupt Enable

1 SSIE Supervisor Software Interrupt Enable

2 Reserved

3 MSIE Machine Software Interrupt Enable

4 UTIE User Timer Interrupt Enable

5 STIE Supervisor Timer Interrupt Enable

6 Reserved

7 MTIE Machine Timer Interrupt Enable

8 UEIE User External Interrupt Enable

9 SEIE Supervisor External Interrupt Enable

10 Reserved

11 MEIE Machine External Interrupt Enable

12-15 Reserved

≥16 LIE Local Interrupt Enable

mie CSR

373737

mtvec sets the Base interrupt vector and the interrupt Mode

• mtvec.Mode = Direct
– All Interrupts trap to the address mtvec.Base
– Software must read the mcause CSR and react accordingly

• mtvec.Vectored
– Interrupts trap to the address mtvec.Base + (4*mcause.ExCode)
– Eliminates the need to read mcause for asynchronous exceptions

Machine Trap Vector CSR (mtvec)

Bits Field Name Description

[XLEN-1:6] Base Machine Trap Vector Base Address.
64-byte Alignment

[1:0] Mode MODE Sets the interrupt processing
mode.

mtvec CSR

mtvec Modes

Value Name Description

0x0 Direct All Exceptions set PC to mtvec.BASE
Requires 4-Byte alignment

0x1 Vectored Asynchronous interrupts set pc to
mtvec.BASE + (4×mcause.EXCCODE)
Requires 4-Byte alignment

> 0x01 Reserved

383838

• On entry, the RISC-V hart will
– Save the current state

– Then set PC = mtvec, mstatus.MIE = 0

• MRET instruction restores state

Trap Handler – Entry and Exit

• Typical trap handler software will

PC
Priv
MIE

MEPC
mstatus.MPP

mstatus.MPIE

 Push Registers
 …
 interrupt = mcause.msb
 if interrupt
 branch isr_handler[mcause.code]
 else
 branch exception_handler[mcause.code]
 …
 Pop Registers
 MRET

Interrupt handler pseudo code

mtevc.MODE = Direct

PC
Priv
MIE

MEPC
mstatus.MPP

mstatus.MPIE

393939

 .align 2
 .global trap_entry
trap_entry:
 addi sp, sp, -16*REGBYTES

 //store ABI Caller Registers
 STORE x1, 0*REGBYTES(sp)
 STORE x5, 2*REGBYTES(sp)

…
 STORE x30, 14*REGBYTES(sp)
 STORE x31, 15*REGBYTES(sp)

 //call C Code Handler
 call handle_trap

 //restore ABI Caller Registers
 LOAD x1, 0*REGBYTES(sp)
 LOAD x5, 2*REGBYTES(sp)

…
 LOAD x30, 14*REGBYTES(sp)
 LOAD x31, 15*REGBYTES(sp)

 addi sp, sp, 16*REGBYTES
 mret

Interrupt Handler Code

 void handle_trap()
 {

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler

isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

//branch to handler

exception_handler[mcause]();

}

 }

 //write trap_entry address to mtvec

 write_csr(mtvec, ((unsigned long)&trap_entry));

RISC-V Assembly interrupt handler
to Push and Pop register file

C Code Handler determines interrupt cause and branches to the appropriate
function

404040

• Pushing and Popping Registers in Assembly
is a pain

• The interrupt attribute was added to GCC
to facilitate interrupt handlers written
entirely in C
– Interrupt functions only saves/restores

necessary registers onto the stack

– Align function on an 8-byte boundary

– Calles MRET after popping register file back
off the stack

Compiler Interrupt Attribute

 void handle_trap(void) __attribute((interrupt));
 void handle_trap()

 {

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler

isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

//synchronous exception, branch to handler

exception_handler[mcause & MCAUSE_CAUSE]();

}

 }

 //write handle_trap address to mtvec

 write_csr(mtvec, ((unsigned long)&handle_trap));

Interrupt handler with interrupt attribute.
No assembly Code necessary

414141

• RISC-V defines Global Interrupts as a
Interrupt which can be routed to any
hart in a system

• Global Interrupts are prioritized and
distributed by the Platform Level
Interrupt Controller (PLIC)

• The PLIC is connected to the External
Interrupt signal for 1 or more harts in
an implementation

RISC-V Global Interrupts

424242

• In this example an interrupt is presented to the PLIC
• The PLIC signals an interrupt to a hart using the Machine External Interrupt (interrupt 11)
• The interrupt handler (handle_trap) branches to the defined function to handle the Machine External Interrupt

– C Code placed the address of machine_external_interrupt function in location 11 of the async_handler vector table

• The machine_external_interrupt handler does the following:
– Reads the PLIC’s claim/complete register to determine highest priority pending interrupt
– Uses another vector table to branch to the interrupt’s specific handler
– Completes the interrupt by writing the interrupt number back to the PLIC’s claim/complete

PLIC Interrupt Code Example

 void handle_trap(void) __attribute((interrupt));
 void handle_trap()

 {

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

 //mask interrupt bit and branch to handler
 isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

 //synchronous exception, branch to handler
 exception_handler[mcause & MCAUSE_CAUSE]();

}
 }

 //install PLIC handler at MEIP Location
 isr_handler[11] = machine_external_interrupt;

 //write trap_entry address to mtvec

 write_csr(mtvec, ((unsigned long)&handle_trap));

 void machine_external_interrupt()

 {
//get the highest priority pending PLIC interrupt
uint32_t int_num = plic.claim_comlete;
//branch to handler
plic_handler[int_num]();
//complete interrupt by writing interrupt number
back to PLIC

plic.claim_complete = int_num;
 }

434343

RISC-V Interrupt System Architecture (M-mode only example)

More Information

454545

• https://riscv.org/
– RISC-V Specifications
– Links to the RISC-V mailing lists
– Workshop proceedings

• GitHub
– https://github.com/sifive/
– https://github.com/riscv

• https://www.sifive.com/
– RISC-V IP and Development Boards
– RISC-V Tools
– Forums

Resources

https://github.com/sifive/
https://github.com/riscv
https://www.sifive.com/

464646

3-Part Webinar Series

May 7th May 15th May 23rd

An Introduction to the
RISC-V Architecture

SiFive’s 2 Series Core IP From a Custom 2 Series
Core to Hello World in
30 Minutes

https://info.sifive.com/risc-v-second-webinar-series

https://info.sifive.com/risc-v-second-webinar-series

Questions?

