@ SiFive

RISC-V 101

An Introduction to RISC-V Architecture
for Embedded Developers

Drew Barbier - September 2017
drew@sifive.com

© 2017 SiFive. All Rights Reserved.

RISC-V 101

* This presentation is targeted at embedded developers who
want to learn more about RISC-V

* At the end of this presentation you should have a basic
understanding of RISC-V fundamentals and know where to
look for more information

3 Part Webinar Series

« RISC-V 101 O =

« The Fundamentals of RISC-V architecture

» Introduction to SiFive Coreplex IP
 October 17t, 2017

NE
» Getting Started with SiFive Coreplex IP 6 Eb
« November 2017 sy

How to ask questions

@ Recording. mnm =

@ SiFive

RISC-V 101

An Introduction to RISC-V Architecture for
Embedded Developers

Drew Barbier — September 2017
drew(@sifive.com

8 ~ v .
x
ute i

M Start Video

&) siFive 3

RISC-V Introduction

Krste Asanovic

© 2017 SiFive. All Rights Reserved.

RISC-V Origin Story (pronounced: risk five)

- Started as a research project in 2010 at UC Berkeley

- Commercial ISAs were too complex and presented IP legal
issues

« RISC-V defines an ISA specification

2 Main specifications: User Level, and Privileged Level Spec

 User Level is currently frozen at version 2.0; released in May
2014

* Privileged Level Architecture is currently at version 1.10
« RISC-V is available freely under a permissive license

« RISC-V is not...
« A Company
« A CPU implementation @ ®

b RISC

RISC-V Foundation - riscv.org

A non-profit RISC-V foundation
was formed in August 2015 to
publicly govern the ISA

e Similar to the Linux Foundation

* >65 member companies

representing a wide range of
markets

* The Foundation creates
Working Groups to guide
future development of the
Architecture

< Foundation Mission Statement

RISC

The RISC-V Foundation is a non-profit consortium
chartered to standardize, protect, and promote the free
and open RISC-V instruction set architecture together
with its hardware and software ecosystem for use in all

computing devices.

9 November2016
- RISC-V Foundation
|

@ SiFive

RISC-V Basics

© 2017 SiFive. All Rights Reserved.

RISC-V Instruction Set Architectures

« RISC-V uses a standard naming
convention to describe the ISAs Hello
supported in a given implementation my Architecture is

« ISA Name format: RV[###][abc.....xyz]

« RV - Indicates a RISC-V architecture RV6L’&C

o [###] - {32, 64, 128} indicate the width of
the integer register file and the size of the
user address space

* [abc...xyz] - Used to indicate the set of
extensions supported by an e |
implementation. 1 @

The Standard Extensions

I Integer

Extensions add instructions

“I" for Integer
* The only required Extension in a RISC-V
implementation

RISC-V allows for custom, “Non-Standard”,
extensions in an implementation

Integer Multiplication and Division

Atomics

Single-Precision Floating Point

Double-Precision Floating Point

General Purpose = IMAFD

o|lolo|ln[>]|Z

16-bit Compressed Instructions

Non-Standard User-Level Extensions

- Putting it all together (examples) red Toneencardedenson o
« RV32I - The most basic RISC-V implementation *Not a complete st
« RV32IMAC - Integer + Multiply + Atomic + Compressed
« RV64GC - 64bit IMAFDC
» RV64GCXext - IMAFDC + a non-standard extension @ |

Register File

Register ABI Name Description Saver
x0 zero Hard-wired zero
x1 ra Return address Caller
° 32 Integer Reg|5ter5, x2 sp Stack pointer Callee
« Optional 32 FP registers - 8P Global pointer :
. . .) x4 tp Thread pointer -
« Width of Registers is determined 7 w02 Temporaries Caller
by ISA X8 sO/fp Saved register/Frame pointer Callee
. . . x9 sl Saved register Callee
* RISC-V Appllcatlon BI nary Inte rface x10-11 a0-1 Function Arguments/return values Caller
(ABI) deflnes Standard funCtIOnS x12-17 a2-7 Function arguments Caller
fOr I’egISte I'S x18-27 s2-11 Saved registers Callee
» Allows for software interoperability 2831 136 Temporaries Caller

« GCC assembler accepts X## names
or ABI names ® @

RISC-V Modes

Level Name Abbr.
 RISC-V Privileged Specification defines 3 | 0 User/Application U
levels of privilege, called Modes ! Supervisor >
. . . o Reserved
« Machine mode is the highest privileged 3 Machine M
mode and the only required mode —
* A lows for a range of targeted Supported Levels Y
implementations " M
* Machine and Supervisor modes each 2 M, U
have Control and Status Registers (CSRs) > M, 3, U

- More on these later @ ®

Physical Memory Protection (PMP)

OXFFFF_FFFF

4 Byte Region Locked.
» Can be used to enforce access Onlyaccessibl fer

restrictions on less privileged
m O d es User Mode has full o
* Prevent User Mode software from RWX Privileges
accessing unwanted memory Condefine
* Ability to Lock a region map as rot
 Alocked region enforces o prioge e o et
permissions on all accesses,
iIncluding M-Mode
« Only way to unlock a region is a User Mode has
Reset xecute only Privileges —
» Up to 16 regions with a X000 0000 ® ®
minimum region size of 4 bytes Example PMP Memory Map ()
S =
> >~

<

<)

Virtual Memory

 RISC-V has support for Virtual Memory
allowing for sophisticated memory
management and OS support (Linux).

* Requires an S-Mode implementation

e Sv32
« 32bit Virtual Address
 4KiB, 4MiB page tables (2 Levels)

 Sv39 (requires an RV64 implementation)
« 39bit Virtual Address
« 4KiB, 2MiB, 1GiB page tables (3 Levels)

- Page Tables also contain access
permission attributes

OXFFFF_FFFF

0x0000_0000

Virtual Address Map

OXFFFF_FFFF

Pl Physical
Address

0x0000_0000

Physical Address Map

Terms

« Hart - HARdware Thread
e For the context of this webinar, hart = core

&) siFive 3

RISC-V Instructions

© 2017 SiFive. All Rights Reserved.

Base Integer ISA Encoding

» 32-bit fixed-width, naturally aligned

instructions
¢ .rd/ ' ./rSZ i.r] fixe d | O Cati O n e n O | - funct7 25| = 152 20| - sl l5| 1f411110‘(?>12| - rd 7| : opcode 0| R-type
I m p | I Clt reg I Ste rS | imm][11:0] | sl | funct3 | rd | opcode | I-type
° Im m ed iate fi e | d (i n Str[3 1]) a |WayS | imm[11:5) | rs2 | wsl | funct3 | imm[4:0] [opcode | S-type
| imm[31:12] | 1d | opcode | U-type

sign-extended

* Instruction Encoding Types
» R-type - Register
e I-type - Immediate

. S-type - Stores
« U-Type - Loads with immediate @ ®

P RISC @ @ ® RISC-V Reference Card @

Base Integer Instructions (321641128)

Category Name | Fmt RV{32|64|128)I Base
Loads Load Byte LB rd,rsl,imm
Load Halfword LH rd,rsl,imm

Load Word

Load Byte Unsigned
Load Half Unsigned
Stores Store Byte

L{W|D|Q} rd,rsl,imm
LBU rd,rsl,imm + I 4
L{H|W|D}U rd,rsl,imm

SB rsl,rs2,imm

Store Halfword SH rsl,rs2,imm L4 L
S sord] S |sGui0lcs sasoear. tem Privi |eged
Shifts Shift Left SLL{|W|D} rd,rsl,rs2
Shift Left Immediate SLLI{|W|D} rd,rsl,shamt
Shift Right

Shift Right Immediate
Shift Right Arithmetic
Shift Right Arith Imm

SRL{|W|D} rd,rsl,rs2

SRLI{|W|D} rd,rsl,shamt RV32 I
SRA{|W|D} rd,rsl,rs2
SRAI{|W|D} rd,rsl,shamt

Arithmetic ADD ADD{ |W|D} rd,rsl,rs2
ADD Immediate ADDI{|W|D} rd,rsl,imm
SUBtract SUB{|W|D} rd,rsl,rs2 + 3 4

Load Upper Imm
Add Upper Imm to PC

LUI rd, imm
AUIPC rd, imm I O r

=IO = D= D= D= DCC I DD —= 0= DN WNON[H ===

Logical XOR XOR rd,rsl,rs2
XOR Immediate XORI rd,rsl,imm fo r F D Q
OR OR rd,rsl,rs2 ’ ’
OR Immediate ORI rd,rsl,imm + 4 6 fo r C
AND AND rd,rsl,rs2
AND Immediate ANDI rd,rsl,imm
Compare Set < SLT rd,rsl,rs2
Set < Immediate SLTI rd,rsl,imm
Set < Unsigned SLTU rd,rsl,rs2
Set < Imm Unsigned SLTIU rd,rsl,imm
Branches Branch =| SB [BEQ rsl,rs2,imm
Branch #| SB |BNE rsl,rs2,imm + 1 1 fo r A
Branch <| SB |BLT rsl,rs2,imm
Branch >| SB |BGE rsl,rs2,imm
Branch < Unsigned| SB |BLTU rsl,rs2,imm
Branch > Unsigned| SB |BGEU rsl,rs2,imm
Jump & Link J&L| Ul |JAL rd, imm
Jump & Link Register| I |JALR rd,rsl,imm
Synch Synchthread| I |FENCE
Synch Instr & Data| I |FENCE.I
System System CALL| I [SCALL
System BREAK| I [SBREAK 32-bit Instruction Formats
Counters ReaD CYCLE| I [RDCYCLE rd
ReaD CYCLE upper Half| I |RDCYCLEH rd u © - wow - - 7 . .
g : 5 24 g 5 14 : 8 1
ReaD TIME| I |RDTIME xd R funct? 1s2 sl funct3 rd opcode
ReaD TIME upper Half| I |RDTIMEH rd I Tnm[1L0] Sl Tunct3 d opcode
ReaD INSTR RETired| I |RDINSTRET rd S imm[11:5] 152 1s1 funct3 imm[4:0] opcode
ReaD INSTR upper Half| I |RDINSTRETH rd SB [imm[12]] imm[10:3] rs2 sl funct3 | imm[4:1] | imm(11] | opeode
U imm[31:12] rd opeode
U3 imm20] | imm[10:1] [imm[I]] imm[19:12] rd opcode

Compressed Instructions (C Extension) K==
« Most of the base integer instructions
“Compress” to 16-bit equivalents
 1:1 mapping of compressed instructions >

to standard instructions

 Smaller code size can reduce cost in
embedded systems

 Smaller code size can increase
performance in Cache based cores

 RV64 can also use the C Extension

SPECint2006 compressed code size with save/restore
optimization (relative to “standard” RVC)

32-bit Architectures

64-bit Architectures

180% 173%
180% 169%
160%
160%
0 140% 136% 141%
o 126% 126% 140% 131% 129%
120% 120%
100% 101% 100%
100% 100%
80% I I 80% l
e RISC-V now smallest ISA for 32- and 64-bit addresses
« All results with same GCC compiler and options ® |

Atomics (A Extension)

« Atomic memory operations (AMO)
perform a Read-Modify-Write in a

Single Atomic inStrUCtion aga;il:tO’ 1 # Initialize swap value. |
+ Logical, Arithmetic, Swap P e
« Acquire (aq) and Release (rl) bits for gL
release consistency e
« Load-Reserved/Store-Conditional
pairs
« Guaranteed forward progress for short

sequences ® ®

Fence Instructions

» Fences are used to enforce order on Fredecessor Load/Store

device I/0 and memory accesses /vv\

« FENCE instruction format

« FENCE predecessor, successor

» Predecessor/successor can be \/\/\/

« RWILO
+ FENCE RWIO, RWIO - full barrier Successor Load/store

CSR and ECALL Instructions

 Control and Status Registers (CSRs) have their own
dedicated instructions :
« Read/Write
 Read and Set bit
 Read and Clear bit

* Environment Call instruction used to transfer control to the
execution environment and a higher privileged mode
» Triggers a synchronous Interrupt (discussed later)

« Example: User mode program can use an ECALL to transfer control
to a Machine mode OS kernel @ ©

&) siFive o

RISC-V Control and
Status Registers (CSR)

© 2017 SiFive. All Rights Reserved.

What are Control and Status Registers (CSRs)

* CSRs are Registers which contain the
working state of a RISC-V machine

* CSRs are specific to a Mode

e Machine Mode has ~17 CSRs (not including
performance monitor CSRs)

 Supervisor Mode has a similar number,
though most are subsets of their equivalent
Machine Mode CSRs

« Machine Mode can also access Supervisor CSRs
» CSRs are defined in the RISC-V privileged
specification
« We will cover a few key CSRs here

Identification CSRs

misa - Machine ISA Register

» Reports the ISA supported by the hart (i.e.

RV32IMAC)

mhartid - Machine hart ID
» Integer ID of the Hardware Thread

mvendorid - Machine Vendor ID
« JEDEC Vendor ID

marchid - Machine Architecture ID

« Used along with mvendorid to identify a
implementation. No format specified

mimpid - Machine Implementation ID
« Implementation defined format

Machine Status (mstatus) - The Most Important CSR

 Keeps track of and controls the hart's current operating state

Bits Field Name Description Bits Field Name Description
0 UIE User Interrupt Enable [14:13] FS Floating Point State
1 SIE Supervisor Interrupt Enable [16:15] XS User Mode Extension State
2 Reserved 17 MPRIV Modify Privilege (access memory as MPP)
3 MIE Machine Interrupt Enable 18 SUM Permit Supervisor User Memory Access
4 UPIE User Previous Interrupt Enable 19 MXR Make Executable Readable
5 SPIE Supervisor Previous Interrupt Enable 20 TVM Trap Virtual memory
6 Reserved 21 TW Timeout Wait (traps S-Mode wfi)
7 MPIE Machine Previous Interrupt Enabler 22 TSR Trap SRET
8 SPP Supervisor Previous Privilege [23:30] Reserved
[10:9] Reserved [31] SD State Dirty (FS and XS summary bit)
[12:11] MPP Machine Previous Privilege @ ;

RV32 mstatus CSR — + _______ @

Timer CSRs ﬁ

* mtime * mtimecmp
 RISC-V defines a requirement for RISC-V defines a memory mapped
a real-time counter exposed as a timer compare register
memory mapped register Triggers an interrupt when mtime
« There is no frequency is greater than or equal to
requirement on the timer, but mtimecmp

e It must run at a constant frequency

» The platform must expose
frequency

Bits Field Name Description Bits Field Name Description

[63:0] mtime Machine Time Register [63:0] mtimecmp Machine Time Compare Register

mtime CSR mtimecmp CSR

Supervisor CSRs

* Most of the Machine mode CSRs have — -
Supervisor mode equivalents B , Secbon
) [21:0] PPN Physical Page Number of the root page table
 Supervisor mode CSRs can be used to control (3022] D Address Space Identifier
the State Of SuperVisor and User MOdes' 31 MODE MODE=1 uses Sv32 Address Translation

» Most equivalent Supervisor CSRs have the RV32 satp CSR
same mapping as Machine mode without
Machine mode control bits

Bits Field Name Description
* sstatus, stvec, sip, Sie, sepc, scause, satp, and [43:0] PPN Physical Page Number of the root page table
more [59:44] ASID Address Space Identifier
» satp - Supervisor Address Translation and === on
Protection Register
« Used to control Supervisor mode address ®

translation and protection

&) siFive 2

RISC-V Interrupts

© 2017 SiFive. All Rights Reserved.

What is an Interrupt in RISC-V

« An event which triggers a change
in the program flow

« 2 Types of Interrupts

 Synchronous - A CPU instruction
which generates an Exception
(ECALL, Faults, etc...)

« Asynchronous - An Exception
which is triggered by an external
event (peripheral and other IO
devices)

RISC-V Interrupts

 RISC-V defines the following

interrupts
° Softwa re 4 Machine Software Interrupt
e Timer Machine Timer Interrupt
° External Machine External Interrupt
e Local Stgnals Local Interrupt 0 hart 0
* Local interrupts are optional and I
. . o o ocal Interrupt
implementation specific - :

 Can be used for peripheral interrupts

 Great for latency sensitive embedded
systems

Interrupt Cause CSR

Exception Description
Code
0 Instruction Address Misaligned
Interrupt = 1 (Asynchronous)
. o [o 1 Instruction Access Fault
* Interrupts are identified Exception Description .
X Code 2 lllegal Instruction
by readl ng th € mcause 0 User Software Interrupt 3 Breakpoint
CS R 1 Supervisor Software Interrupt 4 Load Address Misaligned
) i 2 Reserved 5 Load Access Fault
* The interruptfield —
d t ° of 3 Machine Software |nterrupt 6 Store/AMO Address I\/Ilsallgned
e e rm I n es I a n 4 User Timer |nterrupt 7 Store/AMO Access Fault
Interru pt WaS 5 Supervisor Timer Interrupt 8 Environment Call from U-mode
Syn C h rO n O U S O r 6 Reserved 9 Environment Call from S-mode
AsynCh Fonous 7 Machine Timer Interrupt 10 Reserved
8 User External Interrupt 11 Environment Call from M-mode
Bits Field Name Description 9 Supervisor External Interrupt 12 Instruction Page Fault
XLEN-1 Interrupt Identifies if an interrupt was 10 Reserved 13 Load Page Fault
synchronous or asynchronous 11 Machine External Interrupt 14 Reserved
[XLEN-2:0] Exception Code Identifies the exception 12 -15 Reserved 15 Store/AMO Page Fault
mcause CSR >16 Local Interrupt X >16 Reserved

Machine Interrupt-Enable and Pending CSRs

« mie used to enable/disable a Bits __Field Name Description
glven Interru pt 0 USIE Use-rSoftware Interrupt Enable
1 SSIE Supervisor Software Interrupt Enable
» mip indicates which interrupts are | 2 resene
CuUu rrently pending 3 MSIE Machine Software Interrupt Enable
° Can be used for p0”|ng 4 UTIE Use-rTimérInterrupt Enable
. . . 5 STIE Supervisor Timer Interrupt Enable
» Lesser privilege bits in mip are 6 Reservec
Writea b I e 7 MTIE Machine Timer Interrupt Enable
° |e MaCh|ne mode Software can be 8 UEIE Use-rExternaIInterrupt Enable
used tO generate 3 SuperVISor 9 SEIE Supervisor External Interrupt Enable
interrupt by setting the STIP bit 10 feserved |
. . . 11 MEIE Machine External Interrupt Enable
* mip has the same mapping as mie [z resened o
>16 LIE Local Interrupt Enable @

mie CSR """" * """" @

Interrupt Handler - Entry and Exit

* On entry, the RISC-V hart will < Typical interrupt handler

- Save the current state software will
PC MEPC Push Registers
Priv ‘ MPP .
MIE MPIE i:yz:§rllzqi;qmcause.msb
branch_async_handler[mcause.code]
¢ Then SEt PC = mtvec elks;ianch synch handler[mcause.code]
« MRET instruction restores
S t a te Interrupt handler pseudo code
PC MEPC

Priv - MPP @ @

MIE MPIE () |

RISC-V Global Interrupts

 RISC-V defines Global Interrupts
as a Interrupt which can be routed
to any hartin a system

* Global Interrupts are prioritized
and distributed by the Platform
Level Interrupt Controller (PLIC)

* The PLIC is connected to the
External Interrupt signal for 1 or
more hartsin an implementation

Global Interrupt O

To hart 0

Global Interrupt 1

To hart 1

Global Interrupt XX

To hart X

Platform Level Interrupt Controller

* The PLIC is loosely defined in the
RISC-V Privileged Spec allowing for

a variety of implementations e
 Can handle as many interrupts as ST \\
required in a given implementation
* Decouples the complexity of some

 Scalable to multi-core
RISC-V Harts FL‘
interrupt types from the hart (such

implementations
as PCle MSI) ®

RISC-V Interrupt System Architecture (M-mode
only example)

Machine Software Interrupt

Machine Timer Interrupt

Machine Global External Interrupt

hart 0

Local Interrupt O

Global Interrupt 0

Local Interrupt X

Global Interrupt 1

Global Interrupt XX Machine Software Interrupt

Machine Timer Interrupt

Machine Global External Interrupt

hart 1

Local Interrupt O

Local Interrupt X @ @

@ SiFive

Questions

© 2017 SiFive. All Rights Reserved.

3 Part Webinar Series

« RISC-V 101 O =

« The Fundamentals of RISC-V architecture

» Introduction to SiFive Coreplex IP
 October 17t, 2017

NE
» Getting Started with SiFive Coreplex IP 6 Eb
« November 2017 sy

Resources

* https://riscv.org/
 RISC-V Specifications

e Links to the RISC-V mailing lists : 4 RISC

« Workshop proceedings

 GitHub
* https://github.com/sifive/

e https://github.com/riscv/
e https://www.sifive.com/ @ Si - ve

e RISC-V IP and Boards
« RISC-V Tools @
« Forums e @

