
© 2017	SiFive.	All	Rights	Reserved.

RISC-V 101
An Introduction to RISC-V Architecture
for Embedded Developers

Drew Barbier – September 2017
drew@sifive.com

2

RISC-V 101

• This presentation is targeted at embedded developers who
want to learn more about RISC-V

• At the end of this presentation you should have a basic
understanding of RISC-V fundamentals and know where to
look for more information

© 2017	SiFive.	All	Rights	Reserved.

3

3 Part Webinar Series

• RISC-V 101
• The Fundamentals of RISC-V architecture

• Introduction to SiFive Coreplex IP
• October 17th, 2017

• Getting Started with SiFive Coreplex IP
• November 2017

© 2017	SiFive.	All	Rights	Reserved.

4

How to ask questions

© 2017	SiFive.	All	Rights	Reserved.

© 2017	SiFive.	All	Rights	Reserved.

RISC-V Introduction
Krste Asanovic

6

RISC-V Origin Story (pronounced: risk five)

• Started as a research project in 2010 at UC Berkeley
• Commercial ISAs were too complex and presented IP legal

issues

• RISC-V defines an ISA specification
• 2 Main specifications: User Level, and Privileged Level Spec
• User Level is currently frozen at version 2.0; released in May

2014
• Privileged Level Architecture is currently at version 1.10

• RISC-V is available freely under a permissive license
• RISC-V is not…

• A Company
• A CPU implementation

© 2017	SiFive.	All	Rights	Reserved.

7

RISC-V Foundation – riscv.org

• A non-profit RISC-V foundation
was formed in August 2015 to
publicly govern the ISA
• Similar to the Linux Foundation

• >65 member companies
representing a wide range of
markets
• The Foundation creates

Working Groups to guide
future development of the
Architecture

© 2017	SiFive.	All	Rights	Reserved.

© 2017	SiFive.	All	Rights	Reserved.

RISC-V Basics

9

RISC-V Instruction Set Architectures

• RISC-V uses a standard naming
convention to describe the ISAs
supported in a given implementation
• ISA Name format: RV[###][abc…..xyz]
• RV – Indicates a RISC-V architecture
• [###] - {32, 64, 128} indicate the width of

the integer register file and the size of the
user address space
• [abc…xyz] – Used to indicate the set of

extensions supported by an
implementation.

© 2017	SiFive.	All	Rights	Reserved.

10

The Standard Extensions

• Extensions add instructions
• “I” for Integer

• The only required Extension in a RISC-V
implementation

• RISC-V allows for custom, “Non-Standard”,
extensions in an implementation

• Putting it all together (examples)
• RV32I – The most basic RISC-V implementation
• RV32IMAC – Integer + Multiply + Atomic + Compressed
• RV64GC – 64bit IMAFDC
• RV64GCXext – IMAFDC + a non-standard extension

© 2017	SiFive.	All	Rights	Reserved.

Extension Description

I Integer

M Integer	Multiplication	and	Division

A Atomics

F Single-Precision Floating	Point

D Double-Precision Floating	Point

G General	Purpose =	IMAFD

C 16-bit Compressed	Instructions

Non-Standard	User-Level	Extensions

Xext Non-standard	extension	“ext”
Common	RISC-V	Standard	Extensions

*Not	a	complete	list

11

Register File

• 32 Integer Registers,
• Optional 32 FP registers

• Width of Registers is determined
by ISA
• RISC-V Application Binary Interface

(ABI) defines standard functions
for registers
• Allows for software interoperability

• GCC assembler accepts X## names
or ABI names

© 2017	SiFive.	All	Rights	Reserved.

Register ABI	Name Description Saver

x0 zero Hard-wired zero -

x1 ra Return	address Caller

x2 sp Stack	pointer Callee

x3 gp Global	pointer -

x4 tp Thread	pointer -

x5-7 t0-2 Temporaries Caller

x8 s0/fp Saved	register/Frame	pointer Callee

x9 s1 Saved register Callee

x10-11 a0-1 Function	Arguments/return	values Caller

x12-17 a2-7 Function	arguments Caller

x18-27 s2-11 Saved	registers Callee

x28-31 t3-6 Temporaries Caller

12

RISC-V Modes

• RISC-V Privileged Specification defines 3
levels of privilege, called Modes

• Machine mode is the highest privileged
mode and the only required mode
• Allows for a range of targeted

implementations

• Machine and Supervisor modes each
have Control and Status Registers (CSRs)
• More on these later

© 2017	SiFive.	All	Rights	Reserved.

RISC-V	Modes
Level Name Abbr.
0 User/Application U
1 Supervisor S

Reserved
3 Machine M

Supported	Combinations	of	Modes
Supported	Levels Modes

1 M
2 M,	U
3 M,	S,	U

13

Physical Memory Protection (PMP)

• Can be used to enforce access
restrictions on less privileged
modes
• Prevent User Mode software from

accessing unwanted memory

• Ability to Lock a region
• A locked region enforces

permissions on all accesses,
including M-Mode

• Only way to unlock a region is a
Reset

• Up to 16 regions with a
minimum region size of 4 bytes

© 2017	SiFive.	All	Rights	Reserved.

Locked	Region

User	Mode	
Context

User	Mode	Data

0xFFFF_FFFF

0x0000_0000

4	Byte	Region	Locked.
Only	accessible	after	a	
reset

User	Mode	has	full	
RWX	Privileges	

User	Mode	has	Read	
only	Privileges

Shared	Library	
Code

User	Mode	has	
Execute	only	Privileges

Example	PMP	Memory	Map

Can	define
entire	address	
map	as	not	
accessible
to	U-Mode	in	1	
register

14

Virtual Memory

• RISC-V has support for Virtual Memory
allowing for sophisticated memory
management and OS support (Linux).

• Requires an S-Mode implementation
• Sv32

• 32bit Virtual Address
• 4KiB, 4MiB page tables (2 Levels)

• Sv39 (requires an RV64 implementation)
• 39bit Virtual Address
• 4KiB, 2MiB, 1GiB page tables (3 Levels)

• Page Tables also contain access
permission attributes

© 2017	SiFive.	All	Rights	Reserved.

0xFFFF_FFFF

0x0000_0000

Virtual	
Address

Virtual	Address	Map

0xFFFF_FFFF

0x0000_0000

Physical	
Address

Physical	Address	Map

15

Terms

• Hart – HARdware Thread
• For the context of this webinar, hart = core

© 2017	SiFive.	All	Rights	Reserved.

© 2017	SiFive.	All	Rights	Reserved.

RISC-V Instructions

17

Base Integer ISA Encoding

• 32-bit fixed-width, naturally aligned
instructions
• rd/rs1/rs2 in fixed location, no

implicit registers
• Immediate field (instr[31]) always

sign-extended
• Instruction Encoding Types

• R-type – Register
• I-type – Immediate
• S-type – Stores
• U-Type – Loads with immediate

© 2017	SiFive.	All	Rights	Reserved.

RISC-V Reference Card ④
 Optional Compressed Instructions: RVC

Category Name Fmt RV{32|64|128)I Base Fmt RV mnemonic Fmt RV{F|D|Q} (HP/SP,DP,QP) Category Name Fmt RVC
Loads Load Byte I LB rd,rs1,imm R CSRRW rd,csr,rs1 I FL{W,D,Q} rd,rs1,imm Loads Load Word CL C.LW rd′,rs1′,imm

 Load Halfword I LH rd,rs1,imm R CSRRS rd,csr,rs1 S FS{W,D,Q} rs1,rs2,imm Load Word SP CI C.LWSP rd,imm
Load Word I L{W|D|Q} rd,rs1,imm R CSRRC rd,csr,rs1 R FADD.{S|D|Q} rd,rs1,rs2 Load Double CL C.LD rd′,rs1′,imm

 Load Byte Unsigned I LBU rd,rs1,imm R CSRRWI rd,csr,imm R FSUB.{S|D|Q} rd,rs1,rs2 Load Double SP CI C.LWSP rd,imm
Load Half Unsigned I L{H|W|D}U rd,rs1,imm R CSRRSI rd,csr,imm R FMUL.{S|D|Q} rd,rs1,rs2 Load Quad CL C.LQ rd′,rs1′,imm

Stores Store Byte S SB rs1,rs2,imm R CSRRCI rd,csr,imm R FDIV.{S|D|Q} rd,rs1,rs2 Load Quad SP CI C.LQSP rd,imm
Store Halfword S SH rs1,rs2,imm Change Level Env. Call R ECALL R FSQRT.{S|D|Q} rd,rs1 Load Byte Unsigned CL C.LBU rd′,rs1′,imm

Store Word S S{W|D|Q} rs1,rs2,imm R EBREAK R FMADD.{S|D|Q} rd,rs1,rs2,rs3 Float Load Word CL C.FLW rd′,rs1′,imm
Shifts Shift Left R SLL{|W|D} rd,rs1,rs2 R ERET R FMSUB.{S|D|Q} rd,rs1,rs2,rs3 Float Load Double CL C.FLD rd′,rs1′,imm

 Shift Left Immediate I SLLI{|W|D} rd,rs1,shamt R MRTS R FMNSUB.{S|D|Q} rd,rs1,rs2,rs3 Float Load Word SP CI C.FLWSP rd,imm
 Shift Right R SRL{|W|D} rd,rs1,rs2 R MRTH R FMNADD.{S|D|Q} rd,rs1,rs2,rs3 Float Load Double SP CI C.FLDSP rd,imm

 Shift Right Immediate I SRLI{|W|D} rd,rs1,shamt R HRTS R FSGNJ.{S|D|Q} rd,rs1,rs2 Stores Store Word CS C.SW rs1′,rs2′,imm
 Shift Right Arithmetic R SRA{|W|D} rd,rs1,rs2 Interrupt Wait for Interrupt R WFI R FSGNJN.{S|D|Q} rd,rs1,rs2 Store Word SP CSS C.SWSP rs2,imm
 Shift Right Arith Imm I SRAI{|W|D} rd,rs1,shamt MMU Supervisor FENCE R SFENCE.VM rs1 R FSGNJX.{S|D|Q} rd,rs1,rs2 Store Double CS C.SD rs1′,rs2′,imm

Arithmetic ADD R ADD{|W|D} rd,rs1,rs2 R FMIN.{S|D|Q} rd,rs1,rs2 Store Double SP CSS C.SDSP rs2,imm
 ADD Immediate I ADDI{|W|D} rd,rs1,imm Category Name Fmt R FMAX.{S|D|Q} rd,rs1,rs2 Store Quad CS C.SQ rs1′,rs2′,imm

 SUBtract R SUB{|W|D} rd,rs1,rs2 Multiply MULtiply R R FEQ.{S|D|Q} rd,rs1,rs2 Store Quad SP CSS C.SQSP rs2,imm
 Load Upper Imm U LUI rd,imm MULtiply upper Half R R FLT.{S|D|Q} rd,rs1,rs2 Float Store Word CSS C.FSW rd′,rs1′,imm

 Add Upper Imm to PC U AUIPC rd,imm MULtiply Half Sign/Uns R R FLE.{S|D|Q} rd,rs1,rs2 Float Store Double CSS C.FSD rd′,rs1′,imm
Logical XOR R XOR rd,rs1,rs2 MULtiply upper Half Uns R R FCLASS.{S|D|Q} rd,rs1 Float Store Word SP CSS C.FSWSP rd,imm

 XOR Immediate I XORI rd,rs1,imm Divide DIVide R R FMV.S.X rd,rs1 Float Store Double SP CSS C.FSDSP rd,imm
OR R OR rd,rs1,rs2 DIVide Unsigned R R FMV.X.S rd,rs1 Arithmetic ADD CR C.ADD rd,rs1

OR Immediate I ORI rd,rs1,imm RemainderREMainder R R FCVT.{S|D|Q}.W rd,rs1 ADD Word CR C.ADDW rd',rs2'
AND R AND rd,rs1,rs2 REMainder Unsigned R R FCVT.{S|D|Q}.WU rd,rs1 ADD Immediate CI C.ADDI rd,imm

AND Immediate I ANDI rd,rs1,imm R FCVT.W.{S|D|Q} rd,rs1 ADD Word Imm CI C.ADDIW rd,imm
Compare Set < R SLT rd,rs1,rs2 Category Name Fmt R FCVT.WU.{S|D|Q} rd,rs1 ADD SP Imm * 16 CI C.ADDI16SP x0,imm

 Set < Immediate I SLTI rd,rs1,imm Load Load Reserved R LR.{W|D|Q} rd,rs1 R FRCSR rd ADD SP Imm * 4 CIW C.ADDI4SPN rd',imm
 Set < Unsigned R SLTU rd,rs1,rs2 Store Store Conditional R SC.{W|D|Q} rd,rs1,rs2 R FRRM rd Load Immediate CI C.LI rd,imm

 Set < Imm Unsigned I SLTIU rd,rs1,imm Swap SWAP R AMOSWAP.{W|D|Q} rd,rs1,rs2 R FRFLAGS rd Load Upper Imm CI C.LUI rd,imm
Branches Branch = SB BEQ rs1,rs2,imm Add ADD R AMOADD.{W|D|Q} rd,rs1,rs2 R FSCSR rd,rs1 MoVe CR C.MV rd,rs1

 Branch ≠ SB BNE rs1,rs2,imm Logical XOR R AMOXOR.{W|D|Q} rd,rs1,rs2 R FSRM rd,rs1 SUB CR C.SUB rd',rs2'
 Branch < SB BLT rs1,rs2,imm AND R AMOAND.{W|D|Q} rd,rs1,rs2 R FSFLAGS rd,rs1 SUB Word CR C.SUBW rd',rs2'
 Branch ≥ SB BGE rs1,rs2,imm OR R AMOOR.{W|D|Q} rd,rs1,rs2 I FSRMI rd,imm Logical XOR CS C.XOR rd',rs2'

 Branch < Unsigned SB BLTU rs1,rs2,imm Min/Max MINimum R AMOMIN.{W|D|Q} rd,rs1,rs2 I FSFLAGSI rd,imm OR CS C.OR rd',rs2'

 Branch ≥ Unsigned SB BGEU rs1,rs2,imm MAXimum R AMOMAX.{W|D|Q} rd,rs1,rs2 AND CS C.AND rd',rs2'
Jump & Link J&L UJ JAL rd,imm MINimum Unsigned R AMOMINU.{W|D|Q} rd,rs1,rs2 Category Name Fmt RV{F|D|Q} (HP/SP,DP,QP) AND Immediate CB C.ANDI rd',rs2'

 Jump & Link Register I JALR rd,rs1,imm MAXimum Unsigned R AMOMAXU.{W|D|Q} rd,rs1,rs2 R FMV.{D|Q}.X rd,rs1 Shifts Shift Left Imm CI C.SLLI rd,imm
Synch Synch thread I FENCE R FMV.X.{D|Q} rd,rs1 Shift Right Immediate CB C.SRLI rd',imm

 Synch Instr & Data I FENCE.I R FCVT.{S|D|Q}.{L|T} rd,rs1 Shift Right Arith Imm CB C.SRAI rd',imm
System System CALL I SCALL R FCVT.{S|D|Q}.{L|T}U rd,rs1 Branches Branch=0 CB C.BEQZ rs1′,imm

 System BREAK I SBREAK 16-bit (RVC) and 32-bit Instruction Formats R FCVT.{L|T}.{S|D|Q} rd,rs1 Branch≠0 CB C.BNEZ rs1′,imm
Counters ReaD CYCLE I RDCYCLE rd R FCVT.{L|T}U.{S|D|Q} rd,rs1 Jump Jump CJ C.J imm
 ReaD CYCLE upper Half I RDCYCLEH rd CI Jump Register CR C.JR rd,rs1

 ReaD TIME I RDTIME rd CSS R Jump & Link J&L CJ C.JAL imm
 ReaD TIME upper Half I RDTIMEH rd CIW I Jump & Link Register CR C.JALR rs1
 ReaD INSTR RETired I RDINSTRET rd CL S System Env. BREAK CI C.EBREAK

 ReaD INSTR upper Half I RDINSTRETH rd CS SB
CB U
CJ UJ

Category Name

Convert to Int Unsigned

Swap Rounding Mode Imm
Swap Flags Imm

3 Optional FP Extensions: RV{64|128}{F|D|Q}

Move Move from Integer
Move to Integer

Convert Convert from Int
Convert from Int Unsigned

Convert to Int

Configuration Read Stat
Read Rounding Mode

Read Flags
Swap Status Reg

Swap Rounding Mode
Swap Flags

REMU{|W|D} rd,rs1,rs2 Convert from Int Unsigned
Optional Atomic Instruction Extension: RVA Convert to Int

RV{32|64|128}A (Atomic) Convert to Int Unsigned

DIV{|W|D} rd,rs1,rs2 Move Move from Integer
DIVU rd,rs1,rs2 Move to Integer
REM{|W|D} rd,rs1,rs2 Convert Convert from Int

MULH rd,rs1,rs2 Compare Float <
MULHSU rd,rs1,rs2 Compare Float ≤
MULHU rd,rs1,rs2 Categorize Classify Type

Optional Multiply-Divide Extension: RV32M Min/Max MINimum
RV32M (Mult-Div) MAXimum

MUL{|W|D} rd,rs1,rs2 Compare Compare Float =

Redirect Trap to Hypervisor Negative Multiply-ADD
Hypervisor Trap to Supervisor Sign Inject SiGN source

Negative SiGN source
Xor SiGN source

Environment Breakpoint Mul-Add Multiply-ADD
Environment Return Multiply-SUBtract

Trap Redirect to Supervisor Negative Multiply-SUBtract

SUBtract
Atomic Read & Set Bit Imm MULtiply

Atomic Read & Clear Bit Imm DIVide
SQuare RooT

Category Name
CSR Access Atomic R/W Load Load
 Atomic Read & Set Bit Store Store
 Atomic Read & Clear Bit Arithmetic ADD

 Atomic R/W Imm

 ① ② ③
Base Integer Instructions (32|64|128) RV Privileged Instructions (32|64|128) 3 Optional FP Extensions: RV32{F|D|Q}

RV32I
RV 64I
RV128I
+ M, A ,

F, D,	Q,	C

+14	
Privileged

+	8	for	M

+	11	for	A

+	34				
for	F,	D,	Q +	46	for	C

19

Compressed Instructions (C Extension)

• Most of the base integer instructions
“Compress” to 16-bit equivalents
• 1:1 mapping of compressed instructions

to standard instructions

• Smaller code size can reduce cost in
embedded systems

• Smaller code size can increase
performance in Cache based cores

• RV64 can also use the C Extension

© 2017	SiFive.	All	Rights	Reserved.

I’m	mostly
embedded	flash

A	Microcontroller

20

SPECint2006 compressed code size with save/restore
optimization (relative to “standard” RVC)

• RISC-V now smallest ISA for 32- and 64-bit addresses
• All results with same GCC compiler and options

© 2017	SiFive.	All	Rights	Reserved.

100%

141%

131% 129%

169%

80%

100%

120%

140%

160%

180%

RV64C	 RV64	 X86-64	 ARMv8	 MIPS64	

64-bit	Architectures

100%

140%

126%

136%

101%

173%

126%

80%

100%

120%

140%

160%

180%

RV32C	 RV32	 x86	 ARMv7-A	 Thumb-2	 MIPS32	 MIPS16e	

32-bit	Architectures

21

Atomics (A Extension)

• Atomic memory operations (AMO)
perform a Read-Modify-Write in a
single Atomic instruction
• Logical, Arithmetic, Swap
• Acquire (aq) and Release (rl) bits for

release consistency

• Load-Reserved/Store-Conditional
pairs
• Guaranteed forward progress for short

sequences

© 2017	SiFive.	All	Rights	Reserved.

li t0, 1 # Initialize swap value.
again:

amoswap.w.aq t0, t0, (a0) # Attempt to acquire lock.
bnez t0, again # Retry if held.
...
Critical section.
...
amoswap.w.rl x0, x0, (a0) # Release lock by storing 0.

Example	RISC-V	Spinlock

22

Fence Instructions

• Fences are used to enforce order on
device I/O and memory accesses

• FENCE instruction format
• FENCE predecessor, successor
• Predecessor/successor can be

• R,W,I,O

• FENCE RWIO, RWIO – full barrier

© 2017	SiFive.	All	Rights	Reserved.

Predecessor Load/Store

Fence

Successor Load/Store

23

CSR and ECALL Instructions

• Control and Status Registers (CSRs) have their own
dedicated instructions :
• Read/Write
• Read and Set bit
• Read and Clear bit

• Environment Call instruction used to transfer control to the
execution environment and a higher privileged mode
• Triggers a synchronous Interrupt (discussed later)
• Example: User mode program can use an ECALL to transfer control

to a Machine mode OS kernel

© 2017	SiFive.	All	Rights	Reserved.

© 2017	SiFive.	All	Rights	Reserved.

RISC-V Control and
Status Registers (CSR)

25

What are Control and Status Registers (CSRs)

• CSRs are Registers which contain the
working state of a RISC-V machine
• CSRs are specific to a Mode

• Machine Mode has ~17 CSRs (not including
performance monitor CSRs)

• Supervisor Mode has a similar number,
though most are subsets of their equivalent
Machine Mode CSRs
• Machine Mode can also access Supervisor CSRs

• CSRs are defined in the RISC-V privileged
specification
• We will cover a few key CSRs here

© 2017	SiFive.	All	Rights	Reserved.

26

Identification CSRs

• misa – Machine ISA Register
• Reports the ISA supported by the hart (i.e.

RV32IMAC)

• mhartid – Machine hart ID
• Integer ID of the Hardware Thread

• mvendorid – Machine Vendor ID
• JEDEC Vendor ID

• marchid – Machine Architecture ID
• Used along with mvendorid to identify a

implementation. No format specified

• mimpid - Machine Implementation ID
• Implementation defined format

© 2017	SiFive.	All	Rights	Reserved.

27

Machine Status (mstatus) - The Most Important CSR

• Keeps track of and controls the hart’s current operating state

© 2017	SiFive.	All	Rights	Reserved.

Bits Field	Name Description

0 UIE User	Interrupt Enable

1 SIE Supervisor	Interrupt	Enable

2 Reserved

3 MIE Machine	Interrupt	Enable

4 UPIE User	Previous	Interrupt	Enable

5 SPIE Supervisor	Previous	Interrupt	Enable

6 Reserved

7 MPIE Machine	Previous	Interrupt	Enabler

8 SPP Supervisor	Previous	Privilege

[10:9] Reserved

[12:11] MPP Machine	Previous	Privilege

Bits Field	Name Description

[14:13] FS Floating	Point	State

[16:15] XS User Mode	Extension	State

17 MPRIV Modify	Privilege (access	memory	as	MPP)

18 SUM Permit Supervisor	User	Memory	Access

19 MXR Make	Executable	Readable

20 TVM Trap	Virtual	memory

21 TW Timeout	Wait	(traps	S-Mode	wfi)

22 TSR Trap	SRET

[23:30] Reserved

[31] SD State Dirty	(FS	and	XS	summary	bit)

RV32	mstatus CSR

28

Timer CSRs

• mtime
• RISC-V defines a requirement for

a real-time counter exposed as a
memory mapped register

• There is no frequency
requirement on the timer, but
• It must run at a constant frequency
• The platform must expose

frequency

• mtimecmp
• RISC-V defines a memory mapped

timer compare register
• Triggers an interrupt when mtime

is greater than or equal to
mtimecmp

© 2017	SiFive.	All	Rights	Reserved.

Bits Field	Name Description

[63:0] mtime Machine	Time	Register

Bits Field	Name Description

[63:0] mtimecmp Machine	Time	Compare	Register

mtime CSR mtimecmp CSR

29

Supervisor CSRs

• Most of the Machine mode CSRs have
Supervisor mode equivalents
• Supervisor mode CSRs can be used to control

the state of Supervisor and User Modes.
• Most equivalent Supervisor CSRs have the

same mapping as Machine mode without
Machine mode control bits

• sstatus, stvec, sip, sie, sepc, scause, satp, and
more

• satp - Supervisor Address Translation and
Protection Register
• Used to control Supervisor mode address

translation and protection

© 2017	SiFive.	All	Rights	Reserved.

Bits Field	Name Description

[21:0] PPN Physical	Page	Number	of	the	root	page	table

[30:22] ASID Address Space	Identifier

31 MODE MODE=1	uses Sv32	Address	Translation

RV32	satp CSR

Bits Field	Name Description

[43:0] PPN Physical	Page	Number	of	the	root	page	table

[59:44] ASID Address Space	Identifier

[63:60] MODE Encodings	for	Sv32,	Sv39,	Sv48

RV64	satp CSR

© 2017	SiFive.	All	Rights	Reserved.

RISC-V Interrupts

31

What is an Interrupt in RISC-V

• An event which triggers a change
in the program flow

• 2 Types of Interrupts
• Synchronous – A CPU instruction

which generates an Exception
(ECALL, Faults, etc…)
• Asynchronous – An Exception

which is triggered by an external
event (peripheral and other IO
devices)

© 2017	SiFive.	All	Rights	Reserved.

32

RISC-V Interrupts

• RISC-V defines the following
interrupts
• Software
• Timer
• External
• Local

• Local interrupts are optional and
implementation specific
• Can be used for peripheral interrupts
• Great for latency sensitive embedded

systems

© 2017	SiFive.	All	Rights	Reserved.

33

Interrupt Cause CSR

• Interrupts are identified
by reading the mcause
CSR
• The interrupt field

determines if an
Interrupt was
Synchronous or
Asynchronous

© 2017	SiFive.	All	Rights	Reserved.

Interrupt	= 1	(Asynchronous)
Exception	
Code

Description

0 User	Software	Interrupt

1 Supervisor	Software	Interrupt

2 Reserved

3 Machine	Software	Interrupt

4 User	Timer	Interrupt

5 Supervisor	Timer	Interrupt

6 Reserved

7 Machine	Timer	Interrupt

8 User	External	Interrupt

9 Supervisor	External	Interrupt

10 Reserved

11 Machine	External	Interrupt

12	- 15 Reserved

≥16 Local	Interrupt		X

Interrupt	= 0	(Synchronous)

Exception	
Code

Description

0 Instruction	Address	Misaligned

1 Instruction Access	Fault

2 Illegal	Instruction

3 Breakpoint

4 Load	Address	Misaligned

5 Load	Access	Fault

6 Store/AMO	Address	Misaligned

7 Store/AMO	Access	Fault

8 Environment	Call	from	U-mode

9 Environment Call	from	S-mode

10 Reserved

11 Environment Call	from	M-mode

12 Instruction Page	Fault

13 Load	Page	Fault

14 Reserved

15 Store/AMO Page	Fault

≥16 Reserved

Bits Field	Name Description

XLEN-1 Interrupt Identifies if	an	interrupt	was	
synchronous	or	asynchronous

[XLEN-2:0] Exception	Code Identifies the	exception	

mcause CSR

34

Machine Interrupt-Enable and Pending CSRs

• mie used to enable/disable a
given interrupt
• mip indicates which interrupts are

currently pending
• Can be used for polling

• Lesser privilege bits in mip are
writeable
• i.e. Machine mode software can be

used to generate a supervisor
interrupt by setting the STIP bit

• mip has the same mapping as mie

© 2017	SiFive.	All	Rights	Reserved.

Bits Field	Name Description

0 USIE User	Software	Interrupt Enable

1 SSIE Supervisor	Software	Interrupt	Enable

2 Reserved

3 MSIE Machine Software	Interrupt	Enable

4 UTIE User	Timer	Interrupt	Enable

5 STIE Supervisor	Timer	Interrupt	Enable

6 Reserved

7 MTIE Machine	Timer	Interrupt Enable

8 UEIE User	External	Interrupt	Enable

9 SEIE Supervisor	External	Interrupt Enable

10 Reserved

11 MEIE Machine	External	Interrupt	Enable

12-15 Reserved

≥16 LIE Local	Interrupt	Enable

mie CSR

35

Interrupt Handler – Entry and Exit

• On entry, the RISC-V hart will
• Save the current state

• Then set PC = mtvec

• MRET instruction restores
state

• Typical interrupt handler
software will

© 2017	SiFive.	All	Rights	Reserved.

PC
Priv
MIE

MEPC
MPP
MPIE

PC
Priv
MIE

MEPC
MPP
MPIE

Push Registers
…
async_irq = mcause.msb
if async_irq

branch async_handler[mcause.code]
else

branch synch_handler[mcause.code]
…
Pop Registers
MRET

Interrupt	handler	pseudo	code

36

RISC-V Global Interrupts

• RISC-V defines Global Interrupts
as a Interrupt which can be routed
to any hart in a system

• Global Interrupts are prioritized
and distributed by the Platform
Level Interrupt Controller (PLIC)

• The PLIC is connected to the
External Interrupt signal for 1 or
more harts in an implementation

© 2017	SiFive.	All	Rights	Reserved.

37

Platform Level Interrupt Controller

• The PLIC is loosely defined in the
RISC-V Privileged Spec allowing for
a variety of implementations
• Can handle as many interrupts as

required in a given implementation
• Scalable to multi-core

implementations

• Decouples the complexity of some
interrupt types from the hart (such
as PCIe MSI)

© 2017	SiFive.	All	Rights	Reserved.

PLIC

PCIe

RISC-V	Harts

System	Peripheral	Devices

38

RISC-V Interrupt System Architecture (M-mode
only example)

© 2017	SiFive.	All	Rights	Reserved.

© 2017	SiFive.	All	Rights	Reserved.

Questions

40

3 Part Webinar Series

• RISC-V 101
• The Fundamentals of RISC-V architecture

• Introduction to SiFive Coreplex IP
• October 17th, 2017

• Getting Started with SiFive Coreplex IP
• November 2017

© 2017	SiFive.	All	Rights	Reserved.

41

Resources

• https://riscv.org/
• RISC-V Specifications
• Links to the RISC-V mailing lists
• Workshop proceedings

• GitHub
• https://github.com/sifive/
• https://github.com/riscv/

• https://www.sifive.com/
• RISC-V IP and Boards
• RISC-V Tools
• Forums

© 2017	SiFive.	All	Rights	Reserved.

42 42

