
Designing a scalable 

data platform 

for 

high performance 

transaction processes



Click to edit Master title style

Revenue generating engines

Database is in the critical path

Lots of custom logic

Data can never be lost

High performance transactional systems



Click to edit Master title styleProblems people are having right now

Locking and 

deadlocking 

issues

Traditional database 

design 

doesn’t scale

Lots of 

custom code

in the data tier

Data is created too fast 

to update 

reporting databases

Database servers 

become 

CPU bound

Conflicting workloads, 

out of date data 

or more locking



Click to edit Master title style

Understand your platform

Physical vs. virtual vs. cloud

Storage performance

Software licensing model

Platform Design goals

Understand application architecture

Scale-out app tier vs. data-tier centric

Logic written in app or data languages

Expected pressure points during high volumes

Understand workload profile

Read vs. write operations

Large vs. small queries

User vs. machine generated

Understand your expectations

Security and compliance

Availability

Analytics



Click to edit Master title style

Queries

Transactional systems favour loop joins

As well as indexed paths to the data

CPU work is the scalability killer

Platform Design goals

Storage

Avoid pagelatch contention

Create enough data files (25%+ of CPU cores)

Transaction log will always be a bottleneck

High write performance storage

Memory

Keep working data set in memory

Avoid large analytics queries

Consider in-memory features

Server architecture

Application network round trips

Individual CPU core performance

High availability features



Click to edit Master title style

In-memory database engine within SQL Server
For high throughput and highly concurrent database applications

Application developers toolkit (not a /enable flag!)

In-memory OLTP

Natively compiled stored procedures

T-SQL compiled once into native DLLs

Access memory optimised tables

Reduced T-SQL surface area

Good for heavy CPU-bound calculations

Executable by regular T-SQL queries

Memory optimised tables

Fully durable and ACID compliant

No locks or latches

Row versioning concurrency control

Good for large insert operations (pagelatch)

Accessible from regular T-SQL queries


