

**Titan<sup>3</sup>** Universal Strength Tester Model 910



Covering Serial Numbers 910/09/1001 and upwards

James H. Heal & Co. Ltd. Halifax, England



Publication 290-910-1\$C ©James H Heal & Co Ltd 2009



Published by:

JAMES H. HEAL & CO. LTD. RICHMOND WORKS HALIFAX WEST YORKSHIRE HX3 6EP ENGLAND TELEPHONE +44 (0) 1422 366355 FACSIMILE +44 (0) 1422 352440 E-mail info@james-heal.co.uk

Internet <u>http://www.james-heal.co.uk</u>

© 2009



# Table of Contents

| 1: Contents and Figures               |                                    | 3       |
|---------------------------------------|------------------------------------|---------|
| Table of Contents                     |                                    | 3       |
| Table of Figures                      |                                    | 5       |
| 2: Introduction to Titan <sup>3</sup> |                                    | 6       |
| 3: Tooling - Grips and Fixtures       |                                    | 7       |
| Introduction to Tooling               |                                    | 7       |
| 4: Getting Started using Quick Start  |                                    | 10      |
| 5: Testing with Titan                 |                                    | 17      |
| Introduction to Strength Test         | ing                                | 17      |
| Some Concepts Explained               | ЧЪ                                 | 18      |
| Pretension                            |                                    | 18      |
| Rate of Extension                     |                                    | 18      |
| Fabric Tensile Testing                |                                    | 10      |
| Strip Test and Grab Test              |                                    | 19      |
| -                                     |                                    | 21      |
| Seam Slippage                         |                                    |         |
| Terminology                           |                                    | 21      |
| Seam Slippage Test Methods            |                                    | 22      |
| Seam Slippage - Fixed Seam C          |                                    | 23      |
| Seam Slippage – Fixed Load M          |                                    | 25      |
| Seam Slippage – Needle Clam           | p Method                           | 27      |
| Tear Strength                         |                                    | 29      |
| Calculations of Tear Strength         |                                    | 30      |
| Yarn Strength                         |                                    | 32      |
| Yarn Strength – Single Strand         |                                    | 32      |
| Cyclic Testing – Stretch & Rec        |                                    | 36      |
| Loop Bars (standard and wide          | 2)                                 | 36      |
| Line Contact                          |                                    | 36      |
| Tooling Setup for Cyclic Testir       | ng                                 | 37      |
| Cycle Analysis                        |                                    | 38      |
| Performing a Stretch & Recov          | ery Test using the Cyclic Software | 40      |
| Attachments                           |                                    | 41      |
| Fitting the attachments               |                                    | 41      |
| Pile Loop Extraction                  |                                    | 43      |
| Button Strength                       |                                    | 44      |
| Variable Jaw Separation Feat          | ure                                | 45      |
| Compression                           |                                    | 46      |
| Switching from Tension to Co          | mpression                          | 46      |
| Switching from Compression            | to Tension                         | 46      |
| Ball Burst                            |                                    | 47      |
| Puncture                              |                                    | 48      |
| Crushing                              |                                    | 48      |
| Glossary of Terms                     |                                    | 49      |
| 6: Creating User Defined Test Method  | ls                                 | 53      |
| 7: Setting Up a New Jaws Scheme       |                                    | 57      |
| 8: Adding New Loadcells               |                                    | 59      |
| 9: Using Check Weights                |                                    | 60      |
| Check Weight Set                      |                                    | 60      |
| Instructions for use:                 |                                    | 60      |
| 10: Maintained Standards              |                                    | 62      |
| 11: Safety                            |                                    | 68      |
| General                               |                                    | 68      |
| Emergency Stop Button                 |                                    | 68      |
|                                       |                                    | 68      |
| Impact Protection                     |                                    | 68      |
| Soft Closing Jaws                     |                                    |         |
| 12: Unpacking                         |                                    | 69      |
| James H Heal & Co Ltd                 | Titan <sup>3</sup> 910             | Page    |
| ©2009                                 | Operator's Guide                   | 3 of 86 |

| Identification of Parts         | 69 |
|---------------------------------|----|
| Standard Accessories            | 69 |
| Optional Accessories            | 69 |
| 13: Installation                | 71 |
| Installation Requirements       | 71 |
| Instrument Dimensions           | 71 |
| Electrical supply               | 71 |
| Environment:                    | 71 |
| Compressed Air supply           | 72 |
| Setting up Titan                | 73 |
| Identification of Major Parts   | 73 |
| Fitting the Jaws                | 74 |
| Connecting Pneumatics           | 74 |
| Fitting Alternative Jaw Faces   | 74 |
| Setting the Pneumatic Pressure  | 75 |
| Auxiliary Connections           | 75 |
| Changing a Load Cell            | 76 |
| 14: Software Installation       | 77 |
| Minimum PC specification        | 77 |
| Software Installation Procedure | 77 |
| Starting the Titan Software     | 80 |
| First Run                       | 81 |
| 15: Technical Specification     | 82 |
| 16: Compliance Statements       | 83 |
| CE Compliance                   | 83 |
| 17: Healink                     | 84 |
| Routine Maintenance             | 84 |
| Remote Maintenance              | 84 |
| 18: Revision History            | 86 |
|                                 |    |

# Table of Figures

| Figure 1: Pretension                                               | 18 |
|--------------------------------------------------------------------|----|
| Figure 2: Strip Tensile                                            | 19 |
| Figure 3: Grab Tensile                                             | 19 |
| Figure 4: Seam Slippage Specimen                                   | 21 |
| Figure 5: Fixed Seam Opening                                       | 22 |
| Figure 6: Fixed Load                                               | 22 |
| Figure 7: Needle Clamp                                             | 22 |
| Figure 8: Grab Jaw faces                                           | 22 |
| Figure 9: Grab Jaw Faces (Alternative)                             | 22 |
| Figure 10: Seam Slippage Graph Explained                           | 24 |
| Figure 11: Examples of tear strength specimens                     | 29 |
| Figure 12: Full Rubber Faces (125mm x 25mm)                        | 29 |
| Figure 13: Wing-rip tear test                                      | 30 |
| Figure 14: Trouser tear test                                       | 30 |
| Figure 15: Peel Bond test                                          | 30 |
| Figure 16: T5 Pneumatic Yarn Jaws in Use                           | 32 |
| Figure 17: Removing T5 Jaw Faces                                   | 32 |
| Figure 18: T3 Narrow Loop Bars and Specimen                        | 36 |
| Figure 19: Line Contact Jaw Faces and Specimen                     | 36 |
| Figure 20: T3 Narrow Loop Bar with Specimen                        | 37 |
| Figure 21: T3A Wide Loop Bars with Specimen                        | 37 |
| Figure 22: T11 C-Clamps with Specimen                              | 37 |
| Figure 23: T7 Line Contact Jaw Faces with Specimen and Gauge Marks | 37 |
| Figure 24: Pneumatic Lower Grip                                    | 42 |
| Figure 25: Rivet Gripper                                           | 42 |
| Figure 26: Diamante Gripper                                        | 42 |
| Figure 27: Motif Lever Grip                                        | 42 |
| Figure 28: Pile Loop Extraction                                    | 43 |
| Figure 29: T4 Button Holder                                        | 44 |
| Figure 30: T4 Button Holder and Garments                           | 44 |
| Figure 31: Check Weight Platen                                     | 60 |
| Figure 32: Check Weight Set in Use                                 | 60 |
| Figure 33: Manual Mode                                             | 61 |
| Figure 34: Check Weight Load Reading                               | 61 |
| Figure 35: Typical Dimensions                                      | 71 |
| Figure 36: Optional Compressor (silent laboratory type)            | 72 |
| Figure 37: Left Side View                                          | 73 |
| Figure 38: Front View                                              | 73 |
| Figure 39: Setting Tension or Compression                          | 73 |
| Figure 40: Connecting the Jaws                                     | 74 |
| Figure 41: Connecting pneumatics to Jaws                           | 74 |
| Figure 42: Setting pneumatic pressures                             | 75 |
| Figure 43: Auxiliary connections (before and after)                | 75 |
| Figure 44: Fitting a Load Cell                                     | 76 |
|                                                                    | /0 |



Thank you for investing in **Titan<sup>3</sup>** 

# James H Heal & Co Ltd.

by

Heal's would like to assure you that we are committed to providing you with first class Instruments, Quality Assured Consumables, excellent Customer Service and Support.

You are part of a growing community who considers Heal's products to of the highest quality whilst offering excellent value for money.

Titan's radically innovative engineering and software are designed exclusively around International Textile Testing Standards, providing unmatched ease of use, versatility and efficiency. When a Test Standard is selected, Titan sets all test parameters automatically, including analysis and reporting formats – even the jaw separation is set, with digital precision.

Developed in conjunction with expert users throughout the industry, Titan's outstanding modular software provides exceptional real-time graphic displays, archive retrieval facilities and a wide range of advanced features – while simplified operator menus boost the confidence and efficiency of inexperienced operators. Operator confidence is also enhanced by safety features, such as clamping jaws which act at very low pressure during specimen loading, automatically switching to full pressure when the test starts.

The innovative technology incorporated in the side entry T7 Jaw design permits testing of a wide range of fabrics and test types from high tensile to low demand capacity cyclic testing. Alternative dedicated jaw and fixture systems are available for specific applications such as Yarn testing (T5), Buttons (T4), Loop Bars (T3 and T3A), C-Clamps (T11), Compression Tooling (T10 series) and Attachments Kit for the testing of garment accessories. Bespoke fixtures are also available on request.

Model 910, Titan<sup>3</sup>, supersedes Titan<sup>2</sup> which was launched in 2005 and the original Titan which was launched in 1999. Titan<sup>3</sup> has been launched with Version 9.0 software which includes many improvements and a complete Standards update.

Titan<sup>3</sup> is available in two options:

| • | Tension only            | (904-503) |
|---|-------------------------|-----------|
| • | Tension and Compression | (904-504) |

This Operator's Guide covers the use of both options.



# Introduction to Tooling

This section shows each Tooling assembly (also known as Grips or Fixtures) and their scope of application. The later section "Testing with Titan" will show them in use.









This section provides brief instructions to perform a new test, review the results, open a stored test, add more specimens and print results.

Navigation through the Titan software is best achieved using a combination of mouse and keyboard operations. Microsoft® Windows conventions apply for keyboard and mouse operations.

Note: More comprehensive descriptions of the test modules are given in the Operators Guide - Section 5 Testing with Titan.

If your Titan<sup>3</sup> instrument has the option for Tension and Compression (904-504) please follow the instructions below otherwise skip to the next page.







#### Titan Software System Message

The Titan machine requires initialising and sending to its Reference Position. Note that both jaws will be opened before moving. Press Start to continue.

Titan Software System Message

Initialising and moving to Reference Position.

Please wait...

### Log On

From the Windows Desktop, double click the Titan<sup>3</sup> icon. The Log On box is displayed.

Choose the **User Level** required from the drop down list:

Operator Administrator Service Engineer

Select Log On (F9).

When testing is completed, exit the Titan<sup>3</sup> software by selecting **Quit** (F12).

Password

required

### **New Test**

Press **New** (or press F3 on the keyboard) then select a Module Tab such as Fabric Tensile.

If at any time the Titan instrument has been switched off then these messages will be shown.

Press F9 Start.

The Upper Jaw will move to the Reference Position at the top of the carriage.

| ₽ New Test                                                   | Tear              | Cyclic                                                  | Compression       | X             |
|--------------------------------------------------------------|-------------------|---------------------------------------------------------|-------------------|---------------|
| Module - Fabric Tensile                                      |                   |                                                         | Attachments       | Seam Slippage |
| 😪 Standard - EN ISO 13934-1 (200mm 10                        |                   |                                                         |                   | Jean Sippade  |
| Statistics                                                   |                   |                                                         | n 100mm min)      | Date 1999     |
| Customer -                                                   |                   | O 13934-1 (200m                                         |                   | 200 00 mm     |
|                                                              | elongatio         | ation of maximum force and<br>in at maximum force using |                   |               |
| Test -                                                       | the strip         |                                                         | Pretension        | 2.00 N        |
| Warp Specimens                                               |                   |                                                         | Rate of Extension | 100 mm/min    |
| Weft Specimens                                               | Specimens 5       | Warp & Weft                                             | Break Detection   | 5.00 %        |
|                                                              |                   |                                                         | Maximum Load      | 3000.00 N     |
| 8                                                            | Jaws<br>Scheme T7 | Comments                                                | 1 1               |               |
| r Status<br>Select Jaws Scheme<br>Fit chosen Jaws to machine | Load N Me         | x 3000.00N                                              | Position mr       |               |
| Help         F1         F2         F3         F4             | Focus<br>F5 F6    | F7 F8                                                   | Forward F9 F1     | 0 F11 F12     |

| 1 New Test                                                 | Cu:                                       | stomer                                        |                   | X                      |
|------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------|------------------------|
| Standard - EN ISO 13934-1 (200mm 1)<br>Statistics          | - <b>Г</b> Ъ Тек                          | JHH Fabric & Trimming                         | i Co Ltd          | •                      |
| Test - 10.01.095                                           | Name                                      | 10.01.095                                     | Reference         | P123456789             |
| Weft Specimens                                             | Material                                  | 100% Polyester                                | Туре No.          | PFR5867                |
|                                                            | Comments                                  | Finished                                      |                   |                        |
| Status<br>Select Jaws Scheme<br>Fit chosen Jaws to machine | User Name<br>Load Cell S/N<br>Machine S/N | Peter Goodwin<br>3000N G600515<br>910/09/1004 | ▼<br>Date<br>Time | 11/01/2010<br>16:05:02 |
| Pelp         F2         F3         F4                      | Focus<br>F5                               | F6 F7 F8                                      | Forward<br>F9 F10 | F11 F12                |

From the drop down list select the required **Standard** (test method).

Select the required **Jaws Scheme** and ensure this matches what is fitted to Titan.

At the left hand side of the display (known as the Navigator) select **Customer**. The screen changes.

On the right hand side enter a **Customer Name**. This becomes a directory (or folder) on the computer's hard disk. All tests done for this customer will be stored in this folder. Once this customer name has been entered, it can be selected from a list for later tests.

On the right hand side enter a unique **Test Name**. This becomes a file in the customer directory on the computer's hard disk.

Note: Customer Name and Test Name are mandatory fields and must be completed in order to go Forward and proceed with testing. They are shaded green to highlight this point.

If required, enter any other information. For example, other information could be order numbers, fabric qualities, shade references.

Note: The headings used to name the Test fields can be changed. From the Main Menu select **Configuration** (F11) then select the Titles tab. For example, Name can be changed to Batch No.

#### Enter a **User Name**, then press **Forward** ► (F9).

Note: User Names can be added from the Configuration menu.



# Performing the test

**Scale** (F5) the graph if necessary, select **Warp** (F6) or **Weft** (F7). After the first specimen has been tested, the graph will rescale automatically to provide the best fit on screen.

Read the **Status** box at the bottom left hand side and follow the instructions. Titan will drive automatically to the required Jaw Separation.



Graph Module - Fabric Tensile Warn Specime Statistics Customer - JHH Fabric & Trimm Test - 10.01.095 Warp Specimens 1 of 5 Weft Specimens 2000 005 + **R** 0~ 2 m 0 Wat

| 1 New Test                                                                   | X                                                                                                                                                                     |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module - Fabric Tensile                                                      | Graph                                                                                                                                                                 |
|                                                                              | Warp Specimens                                                                                                                                                        |
| Standard - EN ISO 13934-1 (200mm 10                                          | 500.0                                                                                                                                                                 |
| Statistics                                                                   | 400.0                                                                                                                                                                 |
|                                                                              |                                                                                                                                                                       |
| Test - 10.01.095                                                             | 300.0                                                                                                                                                                 |
| Warp Specimens                                                               |                                                                                                                                                                       |
| 1 of 5                                                                       | 200.0 -                                                                                                                                                               |
| 2 of 5                                                                       |                                                                                                                                                                       |
| Weft Specimens                                                               | 100.0                                                                                                                                                                 |
|                                                                              |                                                                                                                                                                       |
|                                                                              | 0.0 10.0 20.0 30.0 40.0 50.0                                                                                                                                          |
| <                                                                            | Extension - %                                                                                                                                                         |
| Press Start                                                                  | Load N Max 3000.00N                                                                                                                                                   |
| to apply<br>Pretension                                                       |                                                                                                                                                                       |
|                                                                              |                                                                                                                                                                       |
| 2 6 4                                                                        |                                                                                                                                                                       |
| Help         Open         Open           F1         F2         F3         F4 | Scale         Warp         Weft         Zero         Start          Back           F5         F6         F7         F8         F9         F10         F11         F12 |
| F1 F2 F3 F4                                                                  | ru ro ry ro P3 FIU FII FI2                                                                                                                                            |

Insert the specimen and **Close** (F2) the top jaw using either the software or the foot pedal.

**Close** (F3) the bottom jaw in the same way.

Press Start (F9) to start testing the specimen.

Note: these instructions are shown in the red **Status** box.

If required, the specified **Pretension** is applied.

Press **Start** (F9) to begin testing the first specimen.

Note: **Pretension** is applied at a reduced rate of extension.

During the test it is possible to manually end the test by pressing **End** (F9). It is also possible to stop the traverse of the head by pressing **Stop** (F12).

Based on the results obtained for the first specimen, the load and/or extension axes may be rescaled to for best fit on screen.

Compare the scales on this screenshot with the one above.





#### Fabric Tensile Module - Fabric Tensile 😪 Standard - EN ISO 13934-1 (200mm Name Standard Statistics Date 🛛 💼 Customer - JHH Fabric & Trir Title Jaw Separation mm Test - 10.01.095 Pretension N Rate of Extension Warp Specimens mm/min 1 of 5 Specimens 5 Break Detection % 2 of 5 l'itan Soft vare Syste aximum Load 3000.00 N 3 of 5 2 Save Test "10.01.095"? 4 of 5 Yes 🞢 5 of 5 No Cancel ..... 3000.00N-2 Þ. <u>B</u>

# Accept (F9) or Reject (F12) each test in turn.

Accepting saves the results for the tested specimen, rejecting erases the last specimen test results.

When all the required specimens have been tested the message "Number of Specimens Completed". Press OK to continue.

Press **Yes** when prompted to save the test results. Yes is the default option.

Pressing No will close the test without saving and all the test results data will be lost !

Note: To quit and save before testing all the required specimens are completed press **Back** ◄ (F12) three (3) times and press **Yes** when prompted to save the test results. Pressing No will close the test without saving and all the test results data will be lost !







### **Open a Test**

The **Open Last** and **Open Stored** functions can be used to view or print test results, change the statistical display or add more specimens to the test data.

### **Open the Last Test**

To view the results, select **Last** (F8) from the **Main Menu.** 

Select Warp Specimens ( or Weft Specimens) to see the graphical results of all warp (or weft) tests. Select **Results** to see the table of results.

To change the way the statistical analysis is reported, select **Statistics** from the Navigator to add or remove calculations. Check the box to calculate and show or uncheck not to show.

Then select Warp Specimens to see the graphical results of all warp tests. Select **Results** to see the table of results with the newly selected statistics displayed.

# **Open a Stored Test**

From the Main Menu select **Stored** (F9).

Select the type of test you wish to retrieve, e.g., Fabric Tensile, by clicking the appropriate Module Tab.

Select the **Customer** from the Navigator.

Select the **Test** from the list which appears (if list is not present then Customer has not been selected or no tests have been saved for the selected Customer).

#### Press Forward (F9).

The selected test results are loaded.

You can now view / print the results, add **More** (F9) tests, or change the way the results are reported.







### **Excluding Specimens**

Open the required data file using **Last** or **Stored** from the **Main Menu**.

In the Navigator, select the test specimen required to be excluded.

Click Results (F6).

Check the **Exclude** box.

Excluded specimens are not deleted.

However, the results are not included in any statistical calculations. Also, they are not reported in the same list as the included results.

Excluded specimens are indicated by the specimen icon displaying a red graph.

### **Basic Print Routine**

Open either **Last** (F8) or **Stored** (F9) from the **Main Menu**.

Press **Print** (F10) to display the **Print Preview** window.

By pressing the **Layout** button (at the top of screen) it is possible to customise the layout of your test reports.

Press the **Print** button (top of screen) on Print Preview window toolbar to print the test report to the default Windows printer.



# Introduction to Strength Testing

This section introduces the user to the basic test principles for textile testing accommodated by Titan<sup>3</sup>. Titan has always been described as a "Universal Strength Tester". Titan<sup>3</sup> takes this to another level with both Tension and Compression testing now available on selected models.

Tensile testing is a general term for testing on a machine that applies a force to a specimen and measures its force and extension. Tensile (tension) testing involves taking a small specimen of defined shape and size, and then pulling it in a controlled manner gradually increasing the force until the sample changes shape, breaks or fails.

In textile testing, Deformation is a change in shape that is the result of a force that influences the specimen. It can be a result of tensile (pulling) forces or compressive (pushing) forces. When a specimen is loaded in such a way that it extends it is said to be in tension. On the other hand if the specimen compresses and shortens it is said to be in compression.

Compressive strength is the ability of a material to withstand pushing forces. When the limit of compressive strength is reached, the specimen fails. The apparatus used is the same as that used in a tensile test. However, rather than applying a tensile (or pulling) load, a compressive load is applied.

In terms of Textile Testing, there are five (5) main types of test that are performed on a Universal Strength Tester: Tensile Strength, Seam Slippage, Tear, Cyclic (Stretch & Recovery) and Compression.

The number of textile standards and test methods is growing. The majority of textile standards can be put into one of the five sections. Later in this section each of these will be explained in greater detail.

Throughout this section, many technical terms specific to the testing of textiles and textiles generally will be used. To help understand these terms a <u>Glossary of Terms</u> is included at the end of this section.

# Some Concepts Explained

### Pretension



Figure 1: Pretension

Pretension is a small load that is used to pull a specimen taught before testing without causing significant extension.

If Pretension is not used then a slack mounted specimen appears to be more elastic by elongating more than the taught specimen.

The Position window shows the Jaw Separation (e.g., 200mm). When the test is started the specimen extends until the Pretension value is reached (typically 2N). The Position window shows this position (e.g., 208mm). Next the Position window becomes the Extension window and the reading becomes zero, that is zero Extension. The Extension increases as the specimen stretches.

The extension units are taken from the Statistics extension units.

The Jaw Separation at the Pretension value is used in the % Elongation calculation, not the original Jaw Separation. <u>This is very important</u>.

For example, a specimen has a 2N pretension and the Jaw Separation at this load is 208mm. The initial jaw separation is 200mm and the final extension is 92mm.

| 92 / 200 x 100% = 46% | 3C | this is not the correct result ! |
|-----------------------|----|----------------------------------|
| 92 / 208 x 100% = 44% | ✓  | this is the correct result       |

#### **Rate of Extension**

There are two (2) methods of applying the rate of extension: Constant Rate of Extension or Time to Break.

#### Constant Rate of Extension

Some Standards extend the specimen at a particular rate per unit time (e.g., 100 mm/min). Standards include DIN 53 858, M&S P11 and EN ISO 13934-1.

#### Time to Break

Other Standards state that the specimen must break in a specific time period (e.g.,  $20s \pm 3s$ ). To break in a time period the Operator uses at least one specimen and the default rate of extension. The test is rejected (F9 Reject) if the actual break time is outside the allowable limit. Titan then automatically calculates the new extension rate that will enable the next specimens to break within the correct time period. This feature cannot be used after the first specimen has been Accepted. However the Operator can reject several specimens at the beginning of the test.

For example, the time to break is 30 seconds. The first specimen used a rate of 100mm/min and failed at 45 seconds. This is rejected by the Operator and Titan calculates

New Rate = Actual Time / Required Time x Rate = 45 / 30 x 100 = 150 mm/min

Standards such as ASTM D5034, ISO 5081, ISO 5082 and BS 3424 Part 4 Method 6 use this feature.

# Fabric Tensile Testing

Software Module S1 is required to carry out Fabric Tensile tests.

Typically a tensile test puts a force onto a specimen and pulls it until destruction. The force at failure is recorded and sometimes the amount of stretch (known as elongation) at this load.

There are two types of Fabric Tensile test, strip and grab. The Standard being used will clearly state the method of tensile test is to be used. There is no simple relationship between the results of the two types of test method.

# **Strip Test and Grab Test**



Figure 2: Strip Tensile



Figure 3: Grab Tensile

For a Strip Test the Operator cuts specimens that are oversized on the width. The yarns from each of the long sides are carefully removed until it is to the specified size  $\pm$ 0.5mm. This is a time and labour intensive job. Common specimen width is 50mm.

The full width of the specimen is gripped in the jaws. With Titan we usually select full ( $125 \times 25$ mm) rubber faces for all Jaw Faces.

For a Grab Test the specimen is usually much wider than for the strip method. Common width is 100mm.

The main advantage of the Grab Test is that less preparation of the specimens is required. Specimens are cut carefully to size.

The centre of the specimen is gripped in the Jaws. With Titan we usually select rubber faces 125mm x 25mm for one face and 25mm x 25mm for the other.

The following screenshots from Titan<sup>3</sup> Software while carrying out a Strip Test according to EN ISO 13934-1 using constant rate of extension of 100mm/min.





The following screenshots from Titan<sup>3</sup> Software while carrying out a Grab Test according to ASTM D 5034 using Time to Break of 20s. Note that the Time to Break of the first specimen was only 3.4s. Titan recalculated the new rate of extension to be 51mm/min in order to achieve the correct Time to Break of 20s. Note the actual Time to Break of each specimen in the Results below.









# Seam Slippage

There are several techniques employed for the measurement of Seam Slippage (also known as Fabric Slippage by some Retailers). Some techniques rely on the Operator to make measurements of the specimen while held in the Jaws and others allow the software to calculate the results from the load/extension data.

Those techniques which rely on the Operator to measure and input results are found the Tensile Module, not the Seam Module. Those which allow the software to calculate results are found in the Seam Module.

Seam Slippage methods which rely on the Operator to measure and input results usually use a single specimen per test (a seamed specimen) whereas those which employ the software to calculate results have two (2) specimens per test, an unseamed specimen and an seamed specimen.

There are three (3) types of seam slippage test. These three (3) types are reflected in ISO 13936 Determination of the slippage resistance of yarns at a seam in woven fabrics, parts 1 to 3:

| Standard       | Description                  | Summary                                                                                                                                      | Software<br>Module |
|----------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| EN ISO 13936-1 | Fixed seam opening<br>method | Load-extension plotted using unseamed<br>and seamed specimen and the distance<br>between the two (2) curves is taken as the<br>seam slippage | Seam               |
| EN ISO 13936-2 | Fixed load method            | Seamed specimen is put under load and the seam gape is measured                                                                              | Tensile            |
| EN ISO 13936-3 | Needle clamp method          | No seamed specimen used and measures<br>the force required to pull a set of pins<br>(needles) through the specimen                           | Seam               |

To prepare a specimen for ISO 13936-1:

- Fold at one end.
- Stitch a seam to create a loop.
- Cut the loop with scissors to expose the stitched seam.
- Just before testing, cut the fabric to create two specimens and keep them together in pairs.



Figure 4: Seam Slippage Specimen

Common widths are 75mm and 100mm. Refer to the specific method for size and position of the seam as this differs according to Standard. The grab Jaws are used for seam slippage.

# Terminology

The specimen pictured above is known as "Warp over Weft". That is, when the warp yarns slip over the weft yarns which are under tension. In this case the seam would be sewn along the warp direction. The opposite direction would be "Weft over Warp".

A simple way to remember this is that the *seam is <u>warp</u> ways <u>over</u> the <u>weft</u> yarns (and vice versa).* 

If a combined seam slippage and tensile test was performed on the unseamed specimen it would be in the Weft direction, check this on the results page. This can be confusing, however, it is the terminology which has been adopted as the industry norm.

# **Seam Slippage Test Methods**

The following is a summary of the important steps in each of the three (3) methods when using Titan Software. It shows what you should expect to see on screen when you carry out your tests. However, be aware that there are many Standards for Seam Slippage and these are a small selection.



Figure 5: Fixed Seam Opening







Figure 7: Needle Clamp



Figure 8: Grab Jaw faces





Figure 9: Grab Jaw Faces (Alternative)

# Seam Slippage - Fixed Seam Opening Method

This method is widely used for testing seams in Apparel fabrics and has been adopted as the basis of many Test Methods published by Retailers.



Insert the unseamed specimen in the T7 Jaws fitted with Grab Faces.



Insert the seamed specimen



Results. In this case the force required to produce a seam-opening of 6 mm is >200N.

Notice the unseamed specimen results are referred to as just "weft".







Again pull to the defined load. Notice the two (2) curves are overlaid.





The unseamed specimen is pulled to a pre-set maximum load or to destruction. Testing to destruction becomes a combined Tensile and Seam Slippage test. This has two benefits, the first is economy because it uses the same specimen. The second is that the operator can see the force at failure of both specimens, compare them and obtain the seam efficiency (as in ASTM D1683). See Figure 10, below.

In the initial few Newtons of pulling a seamed specimen there is some extension as the seam becomes taught. The difference in extension between the unseamed and seamed specimen is called Seam Straightening. The extension value at the Seam Straightening load (typically 5N) is recorded as "x". This is similar to pretension.



Figure 10: Seam Slippage Graph Explained

Titan Software analyses the unseamed and seamed specimens to find the Seam Opening. If the standard is using a 3mm seam opening then the software will look for a seam opening of 3mm + x''.

Some Standards give a maximum load that if a Seam Opening could not be found then end the test and state "greater than Max load". Typical maximum loads are 200N and 25kg.

# Seam Slippage – Fixed Load Method

This method is widely used for testing seams in Upholstery fabrics. The example described below changes the Rate of Extension part way through the test. This type of test can be found in the Tensile Module.



Select the Tensile Module.



As soon as the maximum load is achieved, the load is reduced to 5N. There is then a timed delay to allow the Operator to manually measure the Seam Opening.



At the end of the timed delay period (typically 15s is allowed for the Operator to complete the measurement) press F8-Measure.



Note the use of a Profiled test to allow the Rate of Extension to be changed.



The seam opening can be measured with a Graduated Seam Opening Template (371-928) available from Heals, a calibrated rule or a pair of dividers.



Enter the measured seam opening and then press F9-Accept.



If the Operator has any Observations to record press F7-Observe.



Results. As specimen 1 was STB, the seam opening result would not normally be entered. The average seam opening value is calculated using the remaining valid specimens.

| L New Test                       |                                                 |
|----------------------------------|-------------------------------------------------|
| Module - Fabric Tensile          | Figure Graph                                    |
| Standard - EN ISO 13936-2 (180N) | Warp Specimens                                  |
|                                  |                                                 |
| Statistics                       |                                                 |
| Customer - JHH                   | 160.0                                           |
| Test - TEST3                     |                                                 |
| Warp Over Weft                   | z 120.0 -                                       |
| 1 of 5                           |                                                 |
| Weft Over Warp                   | ₩ 80.0 -]                                       |
| went Over warp                   |                                                 |
|                                  | 40.0 -                                          |
|                                  | = / /                                           |
|                                  | 0.0                                             |
|                                  | 0.0 20.0 40.0 60.0 80.0 100.0<br>Extension - mm |
| C Status                         | S Observe                                       |
| Ready for Next Specimen          | Comments                                        |
| Time to Break 32.8s              | Jawbreak                                        |
|                                  | STB - Sewing thread breaks                      |
| 2                                | TPO - Thread pulls out                          |
| Help F3 F4                       | FT - Fabric tears                               |
| FI F2 F3 F4                      | F5 Peel Bond Strength per 50mm width            |





Graphs displayed on screen with offset.

### Seam Slippage – Needle Clamp Method

Even though this is the most recent addition to the ISO 13936 series, the concept has been around for over five decades. Specimens for this method are prepared in a similar manner to that of the strip tensile test, i.e., a revelled strip. See Figure 7: Needle Clamp.

Ensure the correct Needle Clamp has been selected:

- T8 Needle Clamp for Apparel fabrics
- T9 Needle Clamp for Upholstery fabrics

This is important as the diameter of the needles and number of needles are very different.

T8 and T9 Needle Clamps are use in conjunction with T7 Pneumatic Fabric Jaws. The "unseamed" specimen is tested with T7 Jaws. The "seamed" specimen is tested with T7 at the top and T8 or T9 at the bottom. During this change-over the bottom T7 must remain connected to the compressed air supply. After each change-over the load value must be tared back to zero using F8-Zero.



T7 Jaw at top. T7 Jaw at bottom. Press F8-Zero to tare the load to zero. Test the "unseamed" specimen.



Press F8-Zero to tare the load to zero.

Failure to do this will result in incorrect or misleading results.

To load the "seamed" specimen turn the length of fabric around and mount in the Needle Clamp ensuring the narrow edge of the specimen butts against the stop.



#### T7 Jaw at top. T8 or T9 at bottom.

Notice the load now reads a large value after removal of the bottom T7 Jaw.



The two (2) load-extension curves are overlaid on screen. Press F9-Accept.

Test any remaining specimens.

| 🛓 Open Last Test                      | _          |                             |                  |                     |              |             |
|---------------------------------------|------------|-----------------------------|------------------|---------------------|--------------|-------------|
| Module - Seam Slippage                | Res        | ults                        |                  |                     |              |             |
|                                       | Specimen   | Extension at                | Max. Force       | Max Force           | Observations |             |
| Standard - EN ISO 13936-3 (Upholster: |            | Seam Slippage<br>of 200.00N | UnSeamed<br>Weft | Seamed              |              |             |
| Statistics                            |            | mm                          | N                | N                   |              |             |
| Customer - JHH                        | 1          | breakdown<br>breakdown      | >250.00          | 167.46 183.86       |              |             |
| Test - TEST5                          | 3          | 2.38                        | >250.00          | 207.80              |              |             |
| Warp Over Weft                        | Statistics |                             |                  |                     |              |             |
| 1 of 3                                | Mean       | 2.38                        | n/a              | 186.37              |              |             |
| THE 2 of 3                            |            |                             |                  |                     |              |             |
|                                       | Comments   |                             |                  |                     |              | *           |
| <                                     | List       | Jav break                   |                  |                     |              | -           |
| Heb<br>F1 F2 F3 F4                    | Graph Re   | oults Observe               | F8 F9            | and a second second | Copy<br>F11  | Back<br>F12 |

Results.



James H Heal & Co Ltd ©2009

# Tear Strength

Tear Strength is the force required to propagate an existing tear (not the force required to initiate a tear).

During a Tear Strength test the fabric is torn along a particular direction. As the fabric is torn each yarn breaks in turn. The peaks on the graph are the individual yarn breaks in the specimen.

There are many different types of tear specimen. Below are three popular shapes. The terminology relating to the names/shapes/ of the specimens varies by Standard Authority so care is required when comparing, e.g., a Tongue Tear in an ISO method is different to that in an ASTM method.



Wing-rip (single rip)

Trouser tear (single rip)

Trapezoidal tear (single rip)

Figure 11: Examples of tear strength specimens

The full width of the specimen is gripped in the T7 Jaws. With Titan we usually select full rubber faces for all tear strength tests. Two sizes are currently available: 125mm x 25mm and 200mm x 35mm. The larger size is typically only required for the double-rip tongue tear test such as ISO 13937-4.





Figure 12: Full Rubber Faces (125mm x 25mm)

Similar to tear testing is Peel Bond. This test is also known as Delamination or Adhesion test where two (2) or more laminated surfaces are peeled apart. As the adhesion breaks it gives the same shape graph as tear testing, with peaks and troughs. Standards for these types of test can also be found in the S2 Tear Software Module.

# **Calculations of Tear Strength**

This is complicated by the many different methods of finding the start and end point of peak analysis, these can be:

- Ignore up to and including the first peak. Analyse the remaining peaks. For example, BS 4303.
- Ignore up to and including the first peak. Ignore a further distance. Analyse the remaining peaks.
- Ignore up to and including the first peak. Ignore a further % distance of the overall distance. Analyse the remaining peaks.
- Ignore up to and including the first peak. Analyse the peaks in a further distance. For example, ISO 9073-3, ASTM D2261.
- Ignore up to and including the first peak. Analyse the peaks up to a % distance of the initial jaw separation.
- Ignore an initial distance. Analyse the remaining peaks. For example BS 3424 Part 5 Method 7A &7B.
- Ignore an initial distance. Analyse the peaks in a further distance. For example, BS 2782 Part 3 Method 360 B
- Ignore an initial % distance of the overall distance. Analyse the remaining peaks.
- Ignore an initial % distance of the overall distance. Analyse the peaks in a further % distance.

Once the peaks have been found there are different methods of obtaining the final result, these are:

- Use all peaks
- Use n highest peaks (e.g. ten highest)
- Use nth highest and nth lowest peaks (e.g. fifth highest and fifth lowest)
- Use n highest % (e.g. top 20%)







Figure 13: Wing-rip tear testFigure 14: Trouser tear testFigure 15: Peel Bond testThis example shows Titan screens as it progresses through the ISO 13937-2 trouser tear test.



Select the Tear Module and required Standard from the Standard List.



As the test progresses, a series of peaks and troughs are displayed on screen.

Notice vertical lines indicating the areas of analysis. The horizontal line through the peaks is the mean of the peak forces.

It is not recommended to display more than one tear test at a time in graphical form. The large number of peaks and troughs become difficult to discern from each other.

| Module - Tear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Resu                                  | ts         |                |             |              |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|----------------|-------------|--------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Specimen                              | Mean       | Maximum        | Median      | Observations |       |
| Standard - EN ISO 13937-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Peak Force | Peak Force     | Peak Force  |              | _     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | N          | N              | N           |              |       |
| Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                     | 46.81      | 63.87          | 47.20       |              |       |
| Customer - JHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                     | 46.68      | 61.83          | 46.86       |              |       |
| Customer - JHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                     | 46.69      | 62.85          | 46.17       |              |       |
| Test - TEST8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |                |             |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Statistics                            | 10 70      | 00.05          | 10.7.1      |              |       |
| Warp Specimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean<br>Conf. Limits +                | 46.73      | 62.85          | 46.74 48.05 |              |       |
| THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE | Cont. Limits +<br>Conf. Limits -      |            | 65.38<br>60.32 | 48.05       |              |       |
| 1 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coeff. of Var                         |            | 1.62%          | 45.44       |              |       |
| Weft Specimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |            |                |             |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |            |                |             |              | 100   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments                              |            |                |             |              | < >   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments<br>List                      | Jav break  | 5              |             |              | < [2] |

Results are analysed and displayed are per the requirements of the selected Standard.

# Yarn Strength

The tensile strength of yarn can be determined using Titan.

### Yarn Strength – Single Strand Method

As in Fabric Strength testing, the rate of Extension can be fixed (e.g., always 500mm/min) or variable to achieve a specified Time to Break (e.g.,  $20 \pm 3s$ ). In addition, Standards often give a choice of Gauge Length (e.g., 500mm or 250mm). Before each test a pretension (typically 0.5cN/tex) is applied to the yarn in order to give a reproducible extension value. Yarn Strength results are usually expressed relative to their Linear Density, e.g., cN/tex. This is often referred to as Tenacity. If the Linear Density is not known the test can still be carried out but the results will be in absolute force, e.g., cN. However, should the Linear Density become known later, the value can be entered and the Tenacity calculated.

#### **Cautionary Note:**

Results from yarn strength tests carried out on Universal Strength Testers such as Titan and others, are not directly comparable with results obtained from high-speed testers such as the Uster<sup>®</sup> TENSORAPID range. Such high-speed testers can have a Rate of Extension of up to 5000mm/min. This tends to produce higher strength results when compared to the slower Universal Strength Testers. The very detailed statistical analysis provided by high-speed testers is not available Universal Strength Testers.



Figure 16: T5 Pneumatic Yarn Jaws in Use with Yarn Guide



Figure 17: Removing T5 Jaw Faces

Here is an example of a Single Strand Yarn Strength test <u>without</u> using Linear Density.



Select the Yarn Tensile Module and the required Standard from the Standard List.

Notice that no value is entered in the Linear Density field.



Test in progress before breakage.



Results on screen.

Some of the results have been Excluded to show the Statistics.



Thread the yarn from the package through the Yarn Guide on the side of Titan and on to the top T5 Jaw, through the pig-tail and into the T5 Jaws. Pull the yarn down to the bottom T5 Jaw and through the lower pig-tail guide. Avoid excessive tension in the yarn. Close the T5 Jaws using the Footswitch.



Test after breakage. Press F9-Accept to save the results. If there was a problem with the test press F12-Reject and the results will be discarded (deleted).



Graphs on screen. Note the variation in test results.

Here is a example of a Single Strand Yarn Strength test using Linear Density, expressing the yarn strength as Tenacity.



Select the required unit of Linear Density from the drop-down list. This example shows English Cotton Count being selected. Enter the Linear Density value.

| 🚊 Open Last Test                                 |                                                                                     |
|--------------------------------------------------|-------------------------------------------------------------------------------------|
| Module - Yam Tensile                             | Yarn Tensile                                                                        |
| Standard - EN ISO 2062 (250mm 250m<br>Statistics | Statistics Select All Select All Add Columns P Max Force P Latencian T Ime to Break |
| Test - TEST7                                     | Units & Graph Axes CN V 96 V 5 V<br>NC V V<br>72 Lines Cemby<br>20.0 NeC            |
| 2 of 5<br>3 of 5                                 | Mean 🔽 🖓 Г<br>Maximum Г Г<br>Minimum Г Г                                            |
| 4 of 5                                           | Range T T<br>Median T T<br>Std. Dev. T T                                            |
| EH 2002                                          | Conf. Limits +/- T T<br>Coeff. of Var. T T                                          |
|                                                  |                                                                                     |
| Help F1 F2 F3 F4                                 | Focus<br>F5 F6 F7 F8 F9 F10 F11 F12                                                 |

Carrying out the tests as previously described. Open the test and click on Statistics in the Titan Explorer.



In Titan Explorer, click on Specimens, then F6-Results. Tenacity results are now displayed in gf/NeC.

| Standard - EN ISO 2062 (250mm 250n<br>Statistics<br>Customer -<br>Trat -<br>Trat -<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>Specimens<br>S | and the second second |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Statistics Name EN ISO 2062 (250mm-250mm-210)<br>Customer -<br>Teta -<br>Specimens 20<br>Linear Density 20.0 NoC<br>Linear Density 2                                                                                                                                                                                                                                                                                                                                                                              | 00 mm                 |
| Customer -  Inter -  Tete -  Specimens  Toto  Tete -  Specimens  20  Lineer Density  20.0  Net    Lineer Density  Lineer Dens                                                                                                                                                                                                                                                                                                                                                                                  | and the second second |
| Test - Angeweit testing fore and testing                                                                                                                                                                                                                                                                                                                                                                                 | and the second second |
| Pate of Extension Specimens 20 Break Detection 50 C<br>Maximum Load 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| Specimens 20 Break Detection 500<br>Maximum Load 120<br>Lineer Density 200 NeC -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - CN                  |
| Linear Density 20.0 NeC -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cN/NeC                |
| Linear Density 20.0 NeC -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 %                   |
| Lineer Density 20.0 NeC -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 cN                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w laces)              |
| t Jews Scheme<br>n Jaws to machine + 0,31 + 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |

Choose how Pretension will be applied, i.e., as absolute force or relative to yarn linear density. We are selecting cN/NeC in this example so that pretension is relative to linear density.

| 1 Open Stored Test                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module - Yam Tensile<br>Standard - EN ISO 2062 (250mm 250n<br>Statistics<br>Customer - JHH                                                                                                                                                                                                                                                   | Statistics         Select All         Select All           Add Columnes         If Man Econe         If Extension         I Ime to Basek           Unite & Greph Axes         If Man Econe         If Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Specimens           1 of 5           1 of 5 | Image: New Sector Se |
| C 2<br>Heb For F3 F4                                                                                                                                                                                                                                                                                                                         | Focus<br>15 F6 F7 F8 F9 F10 F11 F12<br>F10 F11 F12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

It is more common to express results for cotton yarn in gf/NeC. If required, change the Force units as shown above.



This example shows Force changed to cN and Linear Density changed to tex.

| 2 Open Stored Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Resu                                                    | ilts                                                                     |                                                                  |              |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|--------------|------|------|
| Module - Yam Tensile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specimen                                                | Tenacity                                                                 | Extension                                                        | Observations |      | _    |
| Standard - EN ISO 2022 (250mm 250m           Statistics           Customer - JHH           Tot. T EST7           Tot. T EST7 | 1<br>2<br>3<br>5<br>Statistics<br>Mean<br>Coeff. of Var | cN/tex<br>82.51<br>86.89<br>93.44<br>98.50<br>95.39<br>79641.42<br>7.13% | %<br>30.30<br>34.36<br>35.62<br>36.61<br>33.31<br>34.04<br>7.16% |              |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments                                                |                                                                          |                                                                  |              |      | < >  |
| ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | List                                                    | Jaw bres                                                                 | ık                                                               |              |      | -    |
| Help         Focus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Graph Res                                               |                                                                          | •                                                                | Export Print | Copy | Back |

Tenacity results in cN/tex.

| Module - Yarn Tensile                            | Yarn Tensile                            |                  |                         |                 |
|--------------------------------------------------|-----------------------------------------|------------------|-------------------------|-----------------|
| Standard - EN ISO 2062 (250mm 25<br>■ Statistics | On Statistics                           | Select All       | Select All              | 1               |
| Customer - JHH                                   | C Add Columns<br>Units & Graph Axes     | CN •             | ₩ <u>Extension</u><br>% | S Time to Break |
| Specimens                                        |                                         | C Linear Density |                         |                 |
| 2 of 5                                           | Mean<br>Maximum                         |                  |                         | I C             |
| 3 of 5<br>4 of 5                                 | Minimum<br>Range                        |                  |                         |                 |
| 5 of 5                                           | Median<br>Std. Dev.<br>Conf. Limits +/- |                  |                         |                 |
|                                                  | Coeff. of Var.                          | S.               | 4                       |                 |
|                                                  |                                         |                  |                         |                 |
| 2     1                                          | >                                       | 1 1              |                         | 1 1 4           |

To view the absolute force results: Click on Statistics and uncheck the Linear Density checkbox then press F6-Results.

| Open Stored Test                     |               |              |                |              |         |
|--------------------------------------|---------------|--------------|----------------|--------------|---------|
| Module - Yam Tensile                 | Resu          | lits         |                |              |         |
|                                      | Specimen      | Max Force    | Extension      | Observations |         |
| 😞 Standard - EN ISO 2062 (250mm 250m |               | cN           | %              |              |         |
| Statistics                           | 1             | 2436         | 30.30          |              |         |
|                                      | 2             | 2566<br>2759 | 34.36<br>35.62 |              |         |
| Customer - JHH                       | 3             | 2759 2908    | 35.62<br>36.61 |              |         |
|                                      | 5             | 2817         | 33.31          |              |         |
| Test - TEST7                         | ľ             | Lon          | 00.01          |              |         |
| Specimens                            | Statistics    |              |                |              |         |
|                                      | Mean          | 2697         | 34.04          |              |         |
| 1 of 5                               | Coeff. of Var | 7.13%        | 7.16%          |              |         |
| 2 of 5                               |               |              |                |              |         |
|                                      |               |              |                |              |         |
| 3 of 5                               |               |              |                |              |         |
|                                      |               |              |                |              |         |
| 4 of 5                               |               |              |                |              |         |
| 5 of 5                               |               |              |                |              |         |
| 2411                                 |               |              |                |              |         |
|                                      |               |              |                |              |         |
|                                      |               |              |                |              |         |
|                                      | Comments      |              |                |              |         |
|                                      |               |              |                |              |         |
|                                      | List          | Jay break    | ¢              |              |         |
|                                      |               |              |                |              |         |
| 2     🗽                              | 斑             |              |                |              |         |
|                                      | Graph Res     |              |                | Export Print | Copy B. |
| Help Focus                           |               |              |                |              |         |

Yarn strength results in absolute force (cN).

| Unit | Description                              | Comments                   |
|------|------------------------------------------|----------------------------|
| tex  | Tex                                      | g/km                       |
| dtex | Decitex                                  | g/10km                     |
| den  | Denier                                   | g/9km                      |
| NeC  | English Cotton Count<br>(also Spun Silk) | Number of 840 yd hanks/lb  |
| Nm   | Metric Number (Metric Count)             | km/kg                      |
| NeK  | Worsted Count                            | Number of 560 yd hanks/lb  |
| NeW  | Woollen Run                              | Number of 1600 yd hanks/lb |
| NeL  | Linen (Lea) Count<br>(also Woollen Cut)  | Number of 300 yd hanks/lb  |

 Table 1: Units of Linear Density Available

Notes: 1 yard (yd) = 0.9144m 1 pound (lb) = 0.4536kg 1km = 1000m

# Cyclic Testing – Stretch & Recovery

Cyclic is a general term that refers to a specimen being repeatedly loaded and unloaded. This type of test does not rupture or cause the specimen to fail. The maximum load cycled up to are in the region of 10N to 100 N (1kg to 10kg) and is considered quite low. Typical extension is 100%. There are two main types of specimen, looped and strip.

### Loop Bars (standard and wide)

Looped, used with a pair of T3 Loop Bars shown. This specimen is usually 75mm wide and is made to have a circumference of 200mm or 250mm. A wide version of Loop Bars, T3A, are available for specimens up to 125mm wide. T11 C-Clamps are an alternative to Loop Bars.



Figure 18: T3 Narrow Loop Bars and Specimen

### **Line Contact**

Line contact jaws are used extensively in Marks & Spencer's Standards. ISO 14707-1 Method A is also performed with these jaws.







Figure 19: Line Contact Jaw Faces and Specimen
### **Tooling Setup for Cyclic Testing**



Figure 20: T3 Narrow Loop Bar with Specimen



Figure 22: T11 C-Clamps with Specimen



Figure 21: T3A Wide Loop Bars with Specimen



Figure 23: T7 Line Contact Jaw Faces with Specimen and Gauge Marks

### **Cycle Analysis**

Extension at Force



Determination of Modulus



Determination of Tension Decay



Determination of Residual Extension



Select the appropriate force to cycle up to. This is agreed between the operator and customer.

The force is marked **A** on the graph. Cycle twice (for example) to this force.

The extension  ${\bf B}$  and  ${\bf C}$  is recorded from each cycle at the force  ${\bf A}.$ 

Select the appropriate force to cycle up to. This is agreed between the operator and customer.

The force is marked **A** on the graph. Cycle twice (for example) to this force.

At elongation intervals on the second cycle (as agreed, for example) find the corresponding forces **D** from either extension or retraction.

Select the appropriate force to cycle up to. The standard states 5N/cm or 10N/cm or as agreed between the operator and customer.

The force is marked **A** on the graph. Cycle twice (for example) to this force **A** and return to the jaw separation. Cycle to an agreed extension **E**, maintain this position for 5 minutes (for example) and return to the jaw separation.

Physically mark two gauge points 100mm apart even though the jaw separation is 200mm.

Select the appropriate force to cycle up to. This is agreed between the operator and customer. The force is marked  $\bf{A}$  on the graph.

On the second cycle at **A**, maintain the load, wait 10 seconds and return to the jaw separation. Immediately remove from the machine, lay on a flat surface and after 1 minute measure the distance between the two marked gauge points, alternatively wait 30 minutes and measure the distance. Cycle Analysis calculations can be accessed via the Statistics option. The details displayed on the Statistics screen will vary dependent on which calculation has been selected.

| L Open Stored Test                         |                                                                                                                                                                                          |                       |             |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|
| Module - Cyclic                            | Cyclic                                                                                                                                                                                   |                       |             |
| Standard - Adidas 4-27 (22N)<br>Statistics | Statistics                                                                                                                                                                               | Select All Select All | ne to Break |
| Test - Adidas Test 1                       | Units & Graph Axes                                                                                                                                                                       | N • % • s             | -           |
| Specimens<br>1 of 3<br>2 of 3<br>3 of 3    | Cycle Analysis<br>Residual Extension<br>Find Force Find Extension Load Decay Tension Decay Recovery Residual Extension Slope Work Recovery Extension Recovery Std. Dev. Conf. Limits +/- | Gauge Marks 100.00 mm |             |
| Help F2 F3 F4                              | Coeff. of Var.                                                                                                                                                                           |                       | F11 F12     |

### Find Extension:

Enter two forces to find specific extensions.

#### Load Decay:

Difference in force between two force readings at the same extension on two different cycles

### Tension Decay:

Difference in force between the start and end of extension-hold (e.g., what is the difference in force before and after 1 minute at a fixed elongation). Tension decay is the same as Stress Decay. %Stress Decay = Load loss / Initial load x 100

### Recovery:

Difference between the maximum extension and the extension at the first positive force reading (the slack is removed).

#### Residual Extension:

Difference between the initial length and the final length after cycling. (e.g., cycle twice, remove from machine, wait 1 minute, measure new length). %Residual Extension = (Measured distance – Gauge Marks) / Gauge Marks x 100

### Slope:

Ratio of one point on a cycle to another (e.g., load at 80% elongation on load curve divided by load at 30% elongation on unload curve).

### Work Recovery:

%Work Recovery = Area under unload curve / Area under load curve x 100

### Extension Recovery:

The immediate change in elongation displayed by a textile during a load cycle when, after being held at a defined elongation for a defined time, the applied tension is removed. Also known as Elastic Recovery. %Extension Recovery = (Measured distance – Recovery Length) / (Measured distance – Gauge Marks) x 100

### Performing a Stretch & Recovery Test using the Cyclic Software

Begin by selecting the correct tooling for the chosen Standard, if in doubt, consult the relevant standard or Retailer's Test Method. Essentially the choice is from Narrow Loop Bars, Wide Loop Bars, C-Clamps or Line Contact Faces. In some rare cases, standard flat jaw faces are used.

The most recent international standard is EN 14704 which is published in three (3) parts. This standard has replaced the long established BS 4952: 1992 which is now withdrawn.

| EN 14704-1 | Determination | of the elasticity | of fabrics. | Strip tests           |
|------------|---------------|-------------------|-------------|-----------------------|
|            |               | A                 |             | and the second second |

EN 14704-2 Determination of the elasticity of fabrics. Multiaxial tests

EN 14704-3 Determination of the elasticity of fabrics. Narrow fabrics

Part 1 is the most widely used.

Part 2 requires special Compression tooling.

EN 14704-1 describes two (2) methods:

Method A – which uses Line Contact faces for testing flat strip specimens Method B – which utilises Loop Bars or C-Clamps for testing specimens sewn into a loop

The fabric from which the specimens are prepared is first conditioned for 20h, followed by a further 4h after preparation. The conditioning atmosphere is specified in ISO 139.

In Titan software, the options described in EN 14704-1 are made possible by selecting from the following standards:

| Standard Name           | Description                                                             |
|-------------------------|-------------------------------------------------------------------------|
| EN 14704-1 (K-A-X%)     | Knitted fabric, method A, pull to extension                             |
| EN 14704-1 (K-A-XN)     | Knitted fabric, method A, pull to load                                  |
| EN 14704-1 (K-A-XN+FD)  | Knitted fabric, method A, pull to load including Force Decay            |
| EN 14704-1 (K-B-X%)     | Knitted fabric, method B, pull to extension                             |
| EN 14704-1 (K-B-XN)     | Knitted fabric, method B, pull to load                                  |
| EN 14704-1 (K-B-XN+FD)  | Knitted fabric, method B, pull to load including Force Decay            |
| EN 14704-1 (W-A-30N)    | Woven fabric, method A, pull to fixed load of 30N                       |
| EN 14704-1 (W-A-30N+FD) | Woven fabric, method A, pull to fixed load of 30N including Force Decay |
| EN 14704-1 (W-B-90N)    | Woven fabric, method B, pull to fixed load of 90N                       |
| EN 14704-1 (W-B-90N+FD) | Woven fabric, method B, pull to fixed load of 90N including Force Decay |

Illustrations of various tooling setups and specimens are shown on page 37.

## **Attachments**

The T12 Attachments Kit is used for the assessment of security of components on garments and toys. Examples of the application of the T12 Attachments Kit are:

- Appliqué on garments
- Rivets
- Diamante
- Snap fasteners (aka: snap, popper, press stud)
- Toy Eyes
- General rigid attachments

EN 71-1 Safety of toys – Part 1: Mechanical and physical properties.

This standard applies to toys for children. Toys being any product or material designed or clearly intended for use in play by children of less than 14 years of age.

Within EN 71-1, the test methods applicable to Titan are the Tension Tests. The Tension Tests employ a tensile testing instrument with a means of applying forces up to 90N.

Test methods other than EN 71-1 may use forces greater than 90N.

After establishing that a component is grippable, a suitable clamp is affixed behind the component and a force applied and maintained for 10 seconds. The component is examined to determine if the component has become detached from the toy or garment.

Jaw faces (19mm diameter washer faces) for "Seam and materials" are not currently available for Titan.

The attachments offered in the EN 71 Attachments Kit are suitable for testing a large range of products. However, we cannot guarantee that every product can be accommodated.

### Fitting the attachments



Many of the tests using Attachments may result in debris being ejected from the specimen at failure.

As a precaution, impact resistant safety glasses or goggles should be worn during testing.

The choice of attachment is dependent upon the component to be tested. The T12 Attachments Kit contains the following fixtures:

- Pneumatic Lower Clamp
- Universal Hook Attachment
- Diamante Gripper
- Popper/Eyelet/Rivet Gripper
- Motif Lever Grip

The Pneumatic Lower Clamp is used for gripping a section of fabric with a prong-ring rivet or popper attached. The Pneumatic Lower Clamp is powered by compressed air and has two clamping faces; one fixed and one moving. Two removable clamping faces are supplied to accommodate a rivet or popper up to 13mm in diameter. Other sizes are available on request.

For operator safety the integrated pneumatic module operates the jaws at very low pressure during the loading of the specimen. Full clamping pressure is only applied when the test starts.

The testing pressure can be set to a maximum of 7 bar. 7 bar means that the lower clamp applies 220N gripping force onto the specimen to reduce the chance of slippage. Reduce the testing pressure to avoid damage to delicate fabric.

Refer to Figure 24 to Figure 27 for illustrations of the tolling setup.



Figure 24: Pneumatic Lower Grip



Figure 26: Diamante Gripper



Figure 25: Rivet Gripper



Figure 27: Motif Lever Grip

Notice how the Universal Hook is used to connect the different Attachments.

The Pneumatic Lower Clamp is connected to the Load Cell.

The Jaw Separation of each of the Attachments is different.

This is accommodated in the software using the Variable Jaw Separation Feature described on Page 44.

Note: if the standard specifically defines the Jaw Separation then the variable jaw separation feature is not available.

### **Pile Loop Extraction**



Figure 28: Pile Loop Extraction

The T13 Pile Loop Extraction Kit is used in conjunction with T7 Pneumatic Jaws. One T7 is used as the bottom jaw to grip the folded terry towel specimen.

The special small hook is carefully placed through a loop in the pile.

In the standard EN 15598, illustrated in Figure 28, the loop is withdrawn at 100mm/min.

An alternative test method to EN 15598 is the much older Swiss Standard, SIS 65 00 68.

### **Button Strength**

There are many test methods describing how to test the strength of buttons. The following example is based on the tension strength test in BS 4162. The test establishes the resistance to strain of all types of buttons of 10mm diameter or greater. The buttons are subjected to a tension in which the load is gradually increased until breakage occurs.

The following Apparatus are required:

- Titan Universal Testing Instrument set giving a constant rate of extension of 6.35 mm/min.
- T4 Button Holder.
- T7 Jaws for lower grips.
- 1.6 mm diameter welding rod.
- As a precaution, impact resistant safety glasses or goggles should be worn during testing.

Some other test methods based on BS 4162 use a textile thread in place of the welding rod. For example, a braided cord with a minimum breaking strength of 350N or braided polyester cord of at least 25 kgf breaking strength. Other modifications to this method include changing the rate of extension to 100 mm/min. Some methods also specify the initial jaw separation at 50mm.



Figure 29: T4 Button Holder

Test a minimum of 10 buttons.

Pass the looped welding rod through two holes diagonally opposite each other or through the hole in the shank of the button.

Assemble the button and rod in T4 Button Holder mounted as the top clamp on Titan.

Apply a gradually increasing load until the button or shank breaks.

Record the breaking load in Newtons. Repeat the procedure on the remaining test buttons.

Calculate the average and report the minimum and maximum breaking loads.

The minimum and maximum values are normally expected to deviate by up to 25% of the average strength.

T4 Button Holder can also be used to test the strength of buttons or the sewing thread used to attach them to garments as illustrated in Figure 30.



Figure 30: T4 Button Holder and Garments



### Variable Jaw Separation Feature

Many of the test methods employing Attachments requires the Jaw Separation to be variable. The main reason for this is the variable size of the specimens.

| L New Test                                                                                                           |                                                              |                            |                                                   | ×                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Module - Attachments                                                                                                 | Tear<br>Fabric Tensile                                       |                            | Compression<br>Attachments                        | Seam Slippaqe                                                                                        |
| Statistics<br>Customer -<br>Test -<br>Specimens                                                                      | Name Standa<br>BS 416:<br>Title Test for but<br>tension stre | 2<br>ons. Determination of | Jaw Separation<br>Pretension<br>Rate of Extension | Date         1983           100.08         mm           0.00         N           6.35         mm/min |
|                                                                                                                      | Specimens 10                                                 | nts 💌 Comments             | Break Detection<br>Maximum Load                   | 5.00 %<br>600.00 N                                                                                   |
| Status<br>Select Jaws Scheme<br>Fit chosen Jaws to machine<br>Use Manual to set Jaw Separation<br>Rep<br>Hep<br>Foos | + Max                                                        | 600.00N                    | Position mm                                       |                                                                                                      |
| F1 F2 F3 F4                                                                                                          | F5 F6                                                        | F7 F8                      | F9 F10                                            | F11 F12                                                                                              |

Select New Test.

Select the Attachments tab.

Use the drop down arrow to select the appropriate standard, in this example, BS 4162.

Select the appropriate Jaws Scheme, for example, "Attachments".

Click the mouse inside the Jaw Separation field.

Set the Jaw Separation to any convenient working distance. You can do this in two ways:

- 1. Select the existing Jaw separation value (as shown highlighted in blue above) and overtype with the new value.
- 2. Use the Up ↑ and Down ↓ arrows on the PC keyboard to manually move to the desired Jaw Separation. The top jaw with move as soon as you press the up or down arrow key.

In either case, the new Jaw Separation value will be used for all subsequent specimens in the test.

## Compression

The Compression feature was added to Titan<sup>3</sup> in 2009.

Compression, as the word suggests is the opposite of Tension. In this mode of operation the direction of traverse is reversed, i.e., the crosshead moves downwards during the test. There are many applications in which compression forces are required to measure the desired properties. For example, Ball Burst, Puncture, Crushing and Flexing. Each of these applications requires its own unique compression fixtures (tooling). Compression testing of materials is an important application in many industries. In Textiles, an important application is Personal Protective Equipment (PPE).

### **Cautionary Note:**

In Compression Mode, the top limit switch is disabled by moving the shuttle to the right.

## Switching from Tension to Compression Mechanical setting: Push the **GREEN** shuttle button to the right so that the **GREEN** button is in the casing and the **RED** shuttle button appears on the right. Software setting: Titan Software System Message Warning - You have selected Compression Module. When the Compression Module is selected you are OK to proceed, Cancel to return to previous Module. prompted with the message to the left. OK Cancel Switching from Compression to Tension Mechanical setting: Push the **RED** shuttle button to the left so that the **RED** button is in the casing and the **GREEN** shuttle button appears on the left. Software setting: Titan Software System Message Warning - You are exiting Compression Module. ١ When any of the Tension Modules is selected you OK to proceed, Cancel to return to Compression Module. are prompted with the message to the left. OK Cancel

### **Ball Burst**

The Ball Burst Strength test is an alternative to the more traditional diaphragm type burst strength test. However, the results between the two distinct methods are not comparable: Ball Burst produces results in force units whereas the diaphragm method produces results in pressure units.

Typically, in the test a 25mm diameter steel ball probe is pushed through the specimen and the force recorded. Hypothetically, there is no limit to the extension (or distension) the specimen can be subjected to as the is in the diaphragm method (bell or dome height).

There are a number of Ball Burst Fixture options – T10A is illustrated below. Ball Burst Strength is applicable to woven, knitted, coated and nonwoven fabrics. T10A can be used for Ball Burst Strength testing according to ASTM D751, D3787, D6797, and WSP 110.5. Fixtures for other standards are available on request.



Mechanically set Compression Mode. Fit the appropriate tooling, e.g., T10A. Selection the Compression Tab in the software. Select the appropriate Standard for Ball Burst.

In this photograph, a sheet of rubber is being tested for improved illustrative effect.



### Puncture

An example of this test method is described in section 6.4 of EN 388.

### Crushing

An example of this test method is described in section 8.8 of EN 71-1.

## **Glossary of Terms**

| Adhesion Test;<br>Delamination Test; Peel<br>Bond Test                  | Test to measure the force required force per unit width to separate layers of coated or laminated fabrics.                                                                                                                                                                                      |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Breaking Force;<br>Tensile Strength at Break                            | Tensile force indicated at the moment the specimen breaks.                                                                                                                                                                                                                                      |
| Breaking Strength;<br>Tensile Strength                                  | Maximum tensile force indicated when the specimen is extended to breaking point.                                                                                                                                                                                                                |
| Cloth                                                                   | Textile fabric.                                                                                                                                                                                                                                                                                 |
| Compression Test                                                        | A compression test determines behaviour of materials under crushing loads.<br>The specimen is compressed and deformation at various loads is recorded.<br>Compressive stress and strain are calculated and plotted as a stress-strain<br>diagram which is used to determine various properties. |
| Conditioning                                                            | A process of allowing textile materials to reach hygroscopic equilibrium with<br>the surrounding atmosphere. Materials are conditioned in a standard<br>atmosphere (65%RH and 20°C) for testing purposes. See also Pre-<br>conditioning.                                                        |
| CRE                                                                     | Constant Rate of Extension. Machine setting in which the rate of increase in<br>the length of the specimen is uniform with time. The rate of increase of force<br>or elongation is dependent upon the extension characteristics of the specimen.                                                |
| Cross Direction                                                         | The width direction, within the plane of the fabric, that is perpendicular to the direction in which the fabric is being produced by the machine. See also Machine Direction.                                                                                                                   |
| Cyclic Stress-Strain                                                    | Repeated loading and unloading of a yarn on a tensile testing machine and the determination of the physical properties of the yarn during these cycles.                                                                                                                                         |
| Cyclic Test                                                             | Test in which a sequence of operations is repeated between defined limits.                                                                                                                                                                                                                      |
| Deformation                                                             | A change in the shape of a specimen, e.g., an increase in length produced as<br>the result of the application of a tensile load or force. Deformation may be<br>immediate or delayed, and the latter may be recoverable or non-recoverable.                                                     |
| Delayed Deformation                                                     | Deformation that is time-dependent and is exhibited by material subjected to a continuing load; creep. Delayed deformation may be recoverable following removal of the applied load.                                                                                                            |
| Denier                                                                  | Mass in grams of 9000 metres of product. See also Tex.                                                                                                                                                                                                                                          |
| Dynamic Loading Test                                                    | Test in which the load is repeatedly applied to a textile fabric for a given<br>number of cycles. See also Cyclic Test.                                                                                                                                                                         |
| Elastic Fabric;<br>Stretch Fabric;<br>Power Stretch;<br>Comfort Stretch | Fabric that incorporates rubber or other elastomeric yarns. Elastic fabrics typically have breaking elongations in excess of 100%.                                                                                                                                                              |
| Elasticity                                                              | The ability of a strained material to recover its original size and shape immediately after removal of the stress that causes deformation.                                                                                                                                                      |
| Elastic Recovery                                                        | The immediate change in elongation displayed by a textile during a load cycle when, after being held at a defined elongation for a defined time, the applied tension is removed.                                                                                                                |
| Elastic Limit                                                           | In strength and stretch testing, the load below which the specimen shows elasticity and above which it shows permanent deformation. See also Yield Point.                                                                                                                                       |
| Elastomer                                                               | A macromolecular material which returns rapidly to approximately its initial size and shape after substantial deformation by a weak stress and release of stress.                                                                                                                               |
| Elongation                                                              | The increase in length of a specimen during a tensile test, expressed in units of length.                                                                                                                                                                                                       |
| Elongation %                                                            | Ratio of the extension of a specimen to its initial length, expressed as a percentage.                                                                                                                                                                                                          |
| Extension & Modulus                                                     | Maximum extension at the specified maximum force.                                                                                                                                                                                                                                               |
| Extension at Break;<br>Breaking Extension                               | The Extension Percentage of a test specimen at breaking point.                                                                                                                                                                                                                                  |

| Extension Percentage                          | The increase in length of the specimen during a tensile test, expressed as a percentage of the Gauge Length or the Nominal Gauge Length. See also Elongation.                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extensibility                                 | The ability of a material to undergo elongation on the application of force.<br>See also Elongation.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Face                                          | The correct, used side or "better-looking" side of a fabric.<br>As opposed to Back.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gauge Length ;<br>Jaw Separation              | Distance between the bottom of the top jaw and the top of the bottom jaw before testing (e.g., starting distance). See also Nominal Gauge Length.                                                                                                                                                                                                                                                                                                                                                                             |
| Gauge Marks;<br>Datum Marks                   | Two points manually marked by the operator onto the specimen at a specific distance. Used for manual determination of elongation, e.g., comparison of initial distance apart to final distance apart after testing.                                                                                                                                                                                                                                                                                                           |
| Grab Test                                     | Tensile test in which the only the centre part of the specimen is gripped in the jaws of the testing machine.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Greige Fabric;<br>Grey Fabric; Gray Fabric    | An unfinished fabric from the loom or knitting machine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Growth                                        | The non-recoverable component of creep. Also known as Secondary Creep.<br>See also Delayed Deformation.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hank; Skein; Reel                             | Unsupported coil of a specified number of wraps or sliver wound on a reeling machine (Wrap Reel).                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Hosiery                                       | Knitted fabrics for the legs and feet. See also Knitwear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Impact Resistance;<br>Impact Strength         | The resistance of a material to fracture by a blow, expressed in terms of the amount of energy absorbed before fracture.<br>In yarn or cord, the ability to withstand instantaneous or rapid rate of loading.                                                                                                                                                                                                                                                                                                                 |
| Initial Longth                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Initial Length<br>Initial Modulus             | <ul><li>Length of test specimen under specified pretension.</li><li>The slope of the initial straight portion of the stress-strain curve. The modulus</li></ul>                                                                                                                                                                                                                                                                                                                                                               |
|                                               | is the ratio of the change in stress, expressed in newtons to the change in strain expressed as a fraction of the original length.                                                                                                                                                                                                                                                                                                                                                                                            |
| Jaws; Clamps                                  | The parts of a testing machine that are used to hold a specimen while it is subjected to force.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Jaw Break                                     | Any specimen that break within 5mm of the jaw face.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Knitwear                                      | All knitwear outer garments except stockings and socks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LASE                                          | Acronym for load at specified elongation: the load required to produce a given elongation.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LCSP; CSP;<br>Break Factor                    | Lea Count Strength Product: lea strength (lbf) x count (Nec) of cotton yarn.<br>See also Specific Stress.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Linear Density                                | Linear density is the ratio of mass to length.<br>The SI unit is tex, i.e., g/1000m.<br>This is the direct system of "yarn numbering".<br>The older indirect systems of yarn numbering are based on the ratio of length                                                                                                                                                                                                                                                                                                       |
|                                               | to mass. English Cotton Count (Nec) is an example of this system.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Load at Elongation                            | Force required to produced the specified elongation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Load Decay                                    | Difference in force between two force readings at the same extension on two different cycles.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Load-Deformation Curve                        | A graphical representation of the relationship between the change in dimension (in the direction of the applied force) of the specimen resulting from the application of an external force, and the magnitude of that force. In a tension test, a load-deformation curve becomes a load-elongation curve.                                                                                                                                                                                                                     |
| Load-Elongation Curve;<br>Stress-Strain Curve | A graphical representation, showing the relationship between the change in dimension (in the direction of the applied stress) of the specimen from the application of an external stress, and the magnitude of that stress. In tension tests of textile materials, the stress can be expressed either in units of force per unit cross-sectional area, or in force per unit linear density of the original specimen, and the strain can be expressed either as a fraction or as a percentage of the original specimen length. |
| Machine Direction                             | The long direction in the fabric, i.e., the direction in which the fabric is being or was produced by the machine. See also Cross Machine.                                                                                                                                                                                                                                                                                                                                                                                    |

| Modulus                              | The tensile force in a test specimen required to produce a known extension.<br>The ratio of change in stress to change in strain following the removal of                                                                                                                                                                                                                                                             |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | crimp from the material being tested; i.e., the ratio of the stress expressed in<br>either force per unit linear density or force per unit area of the original<br>specimen, and the strain expressed as either a fraction of the original length<br>or percentage elongation.                                                                                                                                        |
| Necking                              | Reduction in width that may occur when the specimen is stretched.                                                                                                                                                                                                                                                                                                                                                     |
| Nominal Gauge Length                 | Length of the specimen under defined pre-tension, measured from nip to nip of the jaws in their starting position. See also Gauge Length.                                                                                                                                                                                                                                                                             |
| Nonwoven Fabric                      | Fabrics made directly from fibres rather than yarns.                                                                                                                                                                                                                                                                                                                                                                  |
| Permanent Deformation                | The change in length of a sample after removal of an applied tensile stress.<br>The permanent deformation is expressed as a percentage of the original<br>sample length.                                                                                                                                                                                                                                              |
| Permanent Growth;<br>Secondary Creep | The non-recoverable component of creep. See also Delayed Deformation.                                                                                                                                                                                                                                                                                                                                                 |
| Pile Loop                            | Uncut loops in Terry Towelling fabrics.                                                                                                                                                                                                                                                                                                                                                                               |
| Pre-conditioning                     | Bringing a sample or specimen of textile material to a relatively low moisture<br>content (approximate equilibrium in an atmosphere between 5 and 25%<br>relative humidity) prior to conditioning in a controlled atmosphere of higher<br>humidity for testing. (While pre-conditioning is frequently translated as pre-<br>drying, specimens should not be brought to the over-dry state). See also<br>Conditioning. |
| Pretension                           | The relatively low (but controlled) tension (low force) applied to remove slack when mounting a specimen prior to making a test.                                                                                                                                                                                                                                                                                      |
| Primary Creep                        | The recoverable component of creep. See also Delayed deformation.                                                                                                                                                                                                                                                                                                                                                     |
| Ravelling                            | The process of undoing or separating the weave or knit of a fabric.<br>The pulling out of threads to make the specimen the correct size for testing, as in ravelled strip.                                                                                                                                                                                                                                            |
| Residual Extension                   | Percentage difference between the initial length and the final length after cycling. (e.g., cycle twice, remove from machine, wait 1 minute, measure new length).                                                                                                                                                                                                                                                     |
| Sample                               | Material from which the specimens are taken from.                                                                                                                                                                                                                                                                                                                                                                     |
| SASE                                 | Acronym for stress at specified elongation; the stress experienced at a given elongation.                                                                                                                                                                                                                                                                                                                             |
| Seam Slippage                        | A defect consisting of separated yarns occurring when sewn fabrics pull                                                                                                                                                                                                                                                                                                                                               |
|                                      | apart at the seams. Seam slippage is more prone to occur in smooth-yarn                                                                                                                                                                                                                                                                                                                                               |
|                                      | fabrics produced from manufactured filament yarns.                                                                                                                                                                                                                                                                                                                                                                    |
|                                      | Sliding or slipping of the filling threads over the warp ends (or vice versa), which leaves open spaces in the fabric. Slippage results from a loose weave                                                                                                                                                                                                                                                            |
|                                      | or unevenly matched warp and weft.                                                                                                                                                                                                                                                                                                                                                                                    |
| Selvedge; Selvage                    | The narrow edge of woven fabric that runs parallel to the warp. It<br>is made with stronger yarns in a tighter construction than the body of the<br>fabric to prevent ravelling. A fast selvedge encloses all or part of the picks,<br>and a selvedge is not fast when the filling threads are cut at the fabric edge<br>after every pick.                                                                            |
| Slack mounting                       | Starting a test without pre-tension. The specimen is clamped and is not mad taught by pre-tension.                                                                                                                                                                                                                                                                                                                    |
| Slope                                | Ratio of one point on a graph to another (e.g., load at 80% elongation on load curve divided by load at 30% elongation on unload curve).                                                                                                                                                                                                                                                                              |
| Specific Stress                      | Ratio of force to the linear density expressed as N/tex, or submultiples such a mN/tex. See also LCSP.                                                                                                                                                                                                                                                                                                                |
| Specimen                             | Individual item to be tested. Textile specimens are usually directional.                                                                                                                                                                                                                                                                                                                                              |
| Stress                               | The resistance to deformation developed within a specimen subjected to an external force. Typical examples are tensile stress, shear stress, or compressive stress. Stress usually reaches a maximum at the time of rupture. When a textile material is subjected to a stress below that causing rupture, the stress gradually decreases or decays with time.                                                         |
| Stress Decay;<br>Tension Decay       | Difference in force between the start and end of extension-hold (e.g., what is the difference in force before and after 1 minute at a fixed elongation).                                                                                                                                                                                                                                                              |
|                                      | and an ordered in torse before and area a minute at a fixed clongation.                                                                                                                                                                                                                                                                                                                                               |

| Stress Recovery Curve      |                                                                                          |
|----------------------------|------------------------------------------------------------------------------------------|
| Strip test                 | Tensile test in which the full width of the specimen is gripped in the jaws of           |
| outp toot                  | the testing machine                                                                      |
| Tear Strength              | The force required to begin or to continue a tear in a fabric under specified            |
|                            | conditions.                                                                              |
| Tenacity                   | Maximum Specific Stress in a Tensile Test taken to rupture.                              |
| Tensile Hysteresis Curve;  | A complex force-elongation, or stress-strain curve obtained when a specimen              |
| Tensile Recovery Curve     | is successively subjected to the application of a load or stress less than that          |
|                            | causing rupture and to the removal of the load or stress according to a                  |
|                            | predetermined procedure, or, when a specimen is stretched less than the                  |
|                            | breaking elongation and allowed to relax by removal of the strain according to           |
|                            | a predetermined procedure.                                                               |
| Tensile Stress             | The resistance to deformation developed within a specimen subjected to                   |
|                            | tension by external force. The tensile stress is commonly expressed in two               |
|                            | ways, either as the tensile strength, i.e., the force per unit cross-sectional area      |
|                            | of the unstrained specimen, or as tenacity, i.e., the force per unit linear              |
|                            | density of the unstrained specimen. The latter is used in yarn testing.                  |
| Tensile Strength           | In general, the strength shown by a specimen subjected to tension as distinct            |
|                            | from torsion, compression, or shear. Specifically, the maximum tensile stress            |
|                            | expressed in force per unit cross-sectional area of the unstrained specimen.             |
| Tensile Test               | A test in which the resistance of a yarn or fabric to a force tending to stretch         |
|                            | the specimen in one direction.                                                           |
| Tex (tex)                  | Direct system for expressing linear density. Mass per unit length. Unit of               |
|                            | measure is "tex", a recognised SI Unit, defined as the mass in grams of one              |
|                            | kilometre of product (fibres, filaments, slivers, yarns). Submultiples and               |
|                            | multiples are commonly used, e.g., decitex (dtex) and kilotex (ktex).                    |
| Time-to-Break              | In tensile testing, the time interval during which a specimen is under                   |
|                            | prescribed conditions of tension and is absorbing the energy required to reach           |
|                            | maximum load.                                                                            |
| Titan Universal Tensile    | A high precision electronic test instrument designed for testing a variety of            |
| Tester                     | material under a broad range of test conditions. It is used to measure display           |
|                            | and record the load-elongation properties of yarns, fabrics, webbings, plastics,         |
|                            | films, rubber, leather, paper, etc. Titan may also be used to measure such               |
|                            | properties as tear resistance, seam slippage and resistance to compression.              |
| Warp; Chain                | Threads lengthways in a woven fabric.                                                    |
| Weft; Woof; Shute; Filling | Threads widthways in a woven fabric.                                                     |
| Wet Strength               | The measurement of the strength of a material when it is saturated with                  |
|                            | water, normally relative to the dry strength.                                            |
| Work Recovery              | Ratio of area under one curve to another (e.g., area under unload curve                  |
|                            | divided by area under load curve).                                                       |
| Yarn Guide                 | Device for controlling the path of a yarn during yarn tensile testing.                   |
| Yarn; Thread               | Material of substantial length and relatively small cross-section consisting of          |
|                            | fibres and/or filaments with or without twist.                                           |
| Yield Point                | Point on the stress-strain curve where the load and elongation stop being                |
|                            | directly proportional. See also Elastic Limit.                                           |
| Young's Modulus            | A property of <i>perfectly</i> elastic materials, it is the ratio of change in stress to |
|                            | change in strain within the elastic limits of the material. The ratio is calculated      |
|                            | from the stress expressed in force per unit cross sectional area, and the strain         |
|                            | expressed as a fraction of the original length. Modulus so calculated is                 |
|                            | equivalent to the force required to strain the sample 100% of its original               |
|                            | length, at the rate prevailing below the elastic limit.                                  |



# **6: Creating User Defined Test Methods**





1 Jog Mode Cyclic Standard t ▼ Date 18/01/2010 Jaw Separation 100.00 mm -Title termination of the elasticity rics - Part 1: Strip tests 10mm/min 0.00 N • Pretension ŀ Bate of Extension 500 mn nin 🔻 Based on FN 14704-1 (K-6.30N) Date April 200 Break Detection 0.00 Dowr Specimens 5 Warp & Wett -N • Maximum Load 15.00 Fixed Time at Max Load 0 N • . Co Jog Speed Override % 5 • of 5 Cycle • Cycle Maintain Load ▼ Time at Jaw Sep 0 • 10 50 Schem Jaws Joa Speed 100% 100 Comments T3 top T3 bottom 4mm bars T3-4 -15 00N 콜콜림 2 11 8 Ø B Standard

Log On to the Titan software as an "Administrator", the factory default password is "titan".

Click Manual (F6).

Select the Module tab in which you want to create a user defined test method. In the following example we have selected the **Cyclic** tab.

Then select the standard on which you want to base your new user defined test method. In the following example we have selected **EN 14704-1 (K-A-XN)**.

Click New (F8).

You will be prompted by a message box asking if you to confirm you want to create a New Standard.

Click **Yes** to confirm.

Notice the Standard Name field has been cleared and all the test parameters are now available for editing.



1 Jog Mode Cyclic Name Standard t Date 18/01/2010 • 100.00 mm 🝷 Jaw Separation Title 10mm/min Determination of the elast fabrics - Part 1: Strip tests • 0.00 Pretension N ŀ Rate of Extension 500 Based on EN 14704-1 (K-A-XN) Date April 200 n 👻 Break Detection • Do Specimens 5 Warp & Weft • 0.00 N mum Load 15.00 Comp N -1 Jog Speed Override % Cycle of 3 • Time at Max Load Cycle Pu Type Pu • Time at Jaw Sep Scherr Jaws Jog Speed 100% 100 T3 top T3 bottom 4mm bars ∋ T3-4 Comments Load N Max 15.00Nect Jaws Scheme sen Jaws to mach Eitch ? Help 11 Module 0 F5



The following example will create a new standard and reduce the number of cycles from 5 to 3, set a *fixed* maximum load of 30N on all cycles and hold at maximum load for 60 seconds on the third  $(3^{rd})$  (last) cycle.

Notice the Cycle 1 of 5 fields.

Click in the "of" field and replace the 5 with 3 and press enter. The new test now has only 3 cycles.

Each Cycle can be defined separately therefore when creating a new cyclic test each cycle must be redefined as required.

Select Cycle 1. Type 30 in the Maximum Load field. Check (tick) the Fixed box.



| ↑↓ Jog Mode                                                 | Cyclic                                      |                           |          |          |
|-------------------------------------------------------------|---------------------------------------------|---------------------------|----------|----------|
| 1                                                           | Standard                                    | •                         | Date 18/ | 01/2010  |
| Up<br>10mm/min                                              | Title Determination of the elasticity of    | Jaw Separation            | 100.00   | mm 💌     |
|                                                             | fabrics - Part 1: Strip tests               | Pretension                | 0.00     | N -      |
| 1                                                           | Based on EN 14704-1 (K-A-XN) Date April 200 | Rate of Extension         | 500      | mm/min 👻 |
| Down                                                        | Specimens 5 Warp & Weft -                   | Break Detection           | 0.00     | N -      |
|                                                             |                                             | Maximum Load              | 30.00    | N -      |
| Jog Speed Override %                                        | Cycle 3 • of 3                              | Fixed<br>Time at Max Load | 60       | s •      |
|                                                             | Cycle Pull 2                                | Time at Jaw Sep           | 0        | s •      |
| 10 50 100                                                   | Jaws                                        |                           |          |          |
| og Speed 100% 100 mm/min                                    | Scheme T3-4 Comments                        | T3 top T3 bottom 4        | mm bars  |          |
| Status-<br>Select Jaws Scheme<br>Fit chosen Jaws to machine | Load N Max 30.00N                           | +                         | 38       | 88       |
| P Jog                                                       | Module Standard Stats New                   | Forward Librar            |          | Back     |

1 Jog Mode Fabric Tensile | Yarn Tensile | Attachments | Seam Slippage Tear Cyclic Compression t Statistics SelectAll 
 Image: Second state
 Image: Second state

 %
 Image: Second state
 Columns Units & Graph Axes 1000mm/mi N • Cycle Analysis Residual Extension ŀ • Gauge Marks 100.00 mm Mean Maximum • Г Jog Speed Override % Minimum Range Median Std. Dev. Conf. Limits +/-Coeff. of Var. 100 1000 Jog Sp mm/mir ÷ 2 11 9 Ø 0 No. 

Repeat the above instructions for Cycle 2.

Repeat the above instructions for Cycle 3 and then type 60 in the Time at Max Load field.

To change which **Statistics** are presented in the Test Report, click **Stats** (F7).

In the example we are following here, it is also possible to change the default calculation for **Cycle Analysis** and to change the **Gauge Marks** setting (initial value).

The appearance of the Statistics page will vary dependent upon which Module and Standard are selected.

| 11 Jog Mode                                                | Су             | clic                               |                    |           |         |
|------------------------------------------------------------|----------------|------------------------------------|--------------------|-----------|---------|
| 1                                                          | Name           | Standard<br>MyStandard (30N)       |                    | Date 18/0 | 01/2010 |
| Up<br>10mm/min                                             | Title          | Determination of the elasticity of | Jaw Separation     | 100.00    | mm      |
| 1 Minimin                                                  |                | fabrics                            | Pretension         | 0.00      | N       |
| 1                                                          | Based on       | EN 14704-1 (K-A-XN) Date April 200 | Rate of Extension  | 500       | mm/min  |
| Down                                                       | Specim         | ens 5 Warp & Weft 🔹                | Break Detection    | 0.00      | N       |
| Jog Speed Override %                                       | Compr<br>Oycle | assion<br>3 - of 3                 | Maximum Load       | 30.00     | N       |
|                                                            |                |                                    | Time at Max Load   | 60        | S       |
| [                                                          | Cycle<br>Type  | Pull to Load                       | Time at Jaw Sep    | 0         | S       |
| 10 50 100<br>og Speed 100% 100 mm/min                      | Scheme         | Jaws<br>T3-4 Comments              | T3 top T3 bottom 4 | mm bars   |         |
| Status<br>Select Jaws Scheme<br>Fit chosen Jaws to machine | Load           | N Max 30.00N                       | Position mr        | 30,       |         |
| PHEP Jog                                                   | Module         | Standard Stats New                 | Forward Libra      | <b>b</b>  | в       |

| 1 Jog Mode                                                 | Cyclic                                                                                                                                              |                                 |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                                            | Standard           Name         MyStandard (30N)         •           Title         Determination of the elasticity of labels         Jaw Separation | Date 18/01/2010                 |
| 1                                                          | Based on EN 14704-1 (K-A-XN) Date April 200 Reate of Extension                                                                                      | 0.00 N •<br>500 mm/min •        |
| Jog Speed Override %                                       | Specimens 5 Warp & Wett Break Detection Titan Software System Message Revinum Load Fixed Do you want to save this New Standard Imme at Max Load     | 0.00 N •<br>30.00 N •<br>60 s • |
| 10 50 100<br>Jog Speed 100% 100 mm/min                     | Ves No Cancel                                                                                                                                       | 0 s •                           |
| Status<br>Select Jaws Scheme<br>Fit chosen Jaws to machine | Scheme T3-4 Comments T3 top T3 bottom 4                                                                                                             |                                 |
| Help         F3         F4                                 | Module Standard F7 F8 F0ward ELive                                                                                                                  |                                 |

| 🛃 New Test                                                   |                                                                                                                                                          |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module - Cyclic                                              | Fabric Tensile         Yarn Tensile         Attachments         Seam Slippage           Tear         Cyclic         Compression                          |
| Statistics                                                   | Standard           Name         Mystandard (80N)         _         Date         18/01/2010           Title         M&S P15A         _         100.000 mm |
| Test -                                                       | M&S P15B<br>MyStandard (30N)                                                                                                                             |
| Weft Specimens                                               | NEXT© TM 21 (narrow elastic)<br>NEXT© TM 21 (woven)                                                                                                      |
|                                                              | Compres NEXT© TM 21a (knift)<br>Cycle NEXT© TM 21a (woven)<br>Time at Max Load 0 s                                                                       |
|                                                              | Cycle Pull to Load Time at Jaw Sep 0 s                                                                                                                   |
|                                                              | Scheme T3-4 Comments T3 top T3 bottom 4mm bars                                                                                                           |
| - Status<br>Select Jaws Scheme<br>Fit chosen Jaws to machine | Load N Max 30.00N Position mm + + + + + + + + + + + + + + + + + +                                                                                        |
| Help F2 F3 F4                                                | Focus F6 F7 F8 F10 F11 F12                                                                                                                               |

Enter a **Name** for the new Standard, in this case we have entered "MyStandard 30N". This must be a unique name in the Module.

Enter or edit the **Title** for the new Standard.

When all the parameters have been set as required for the new Standard click **Back** (F12).

You will then be prompted to save the new Standard.

If you wish to save click **Yes**.

To return to editing parameters click Cancel. To abort the new Standard click No.

The new Standard is now available to all Users as illustrated in the New Test screen to the left.



Any Jaws which are purchased at the same as the Titan instrument will be configured ready for use. However, Jaws purchased subsequently need to be setup manually using the following instructions.

Each different piece of jaw tooling and faces must be set up as described below and have a separate entry in the Jaws Scheme drop down list.

- 1. Run the Titan software and Log On as an Administrator using the Password "Titan". From the Main Menu select F11-Config.
- 2. Select the Jaws tab. You should have at least one Jaws Scheme already in the list. This example below shows Jaws Scheme Name T7. Your Reference Position may be different. All Titans have slightly different values due to manufacturing tolerances. Do not change it.
- 3. Select "New Entry" to copy the parameters for T7 giving you an additional Name in the Jaws Schemes list. This example shows the addition of Jaws Scheme Name T11. However, the same procedure applies for all additional Jaws Schemes, only the parameters entered will be different. Edit the Selected Scheme parameters to be as listed in Table 1 at the end of this section except for the Reference Position. Do not change it.
- 4. Fit the new jaws to the instrument exactly as you will be using them, including jaw face inserts where used and select F8-Setup to zero the Load. The Position window will now show Absolute Position in mm of the top jaw from the Reference Switch at the top of the column to its current position.
- 5. Note that for Loop Bars T3-4, Wide Loop Bars T3A and T11 C-Clamps this step is not possible see additional step 6 below.

Use the Jog Mode to move the top jaw downwards until it just touches the bottom jaw. Use the Jog Speed Override % set to 10% when you are getting close. When the jaws are just touching this is zero (0.00mm) Jaw Separation. Check that the Load window is reading approximately zero and if so select F8-Record. If the Load window reads negative then the jaws have moved too far and are putting the load cell into compression. Move up slightly.

- 6. To set up T3 Loop Bars, T3A Wide Loop Bars and T11 C-Clamps follow these additional stages. For any other jaws continue from step 7 below.
  - Use the Jog Mode to move the top jaw downwards until it is at a distance of 100mm above the bottom jaw. Use a ruler to measure between the faces of the metal housings that the looped bars pass through.
  - Select F8-Record.
  - This measured "offset" of 100mm now needs to be manually added to the Reference Position and typed in. Press Enter to accept this value and the Position window will now display an increase of 100mm.
- 7. Upon selecting F8-Record, the value in the Position window will be copied to the Reference Position and the Position window will be set to 0.00mm. Note that the Top Jaw Face Offset and Bottom Jaw Face Offset values will also be taken into account to calculate the Reference Position.
- 8. You have successfully taught the Titan the new Reference Position for the new jaws. This value is the distance in mm from the Reference Switch at the top of the column to zero (0.00mm) Jaw Separation. On the Standard page whenever you select this Name from the Jaws Scheme drop down list this Reference Position is used to calculate the distance to move up or down for the correct Jaw Separation.

- 9. Finally decide if you want either the top and / or bottom jaws to automatically Open at Break. If "Yes" then tick the boxes as shown. Note that this option is usually ticked for pneumatic jaws to save the user having to manually select Open at the end of each specimen test. However if you are using either jaw to hold a jig or fixture for a particular test then do not tick these boxes otherwise at the end of each specimen test the jaws will open and the jig or fixture could fall out.
- 10. To save these changes select F12-Back and answer "Yes" to the question.

When you select New Test you must make sure that the Jaws Scheme drop down list on the Standard page is set to the same name as the physical jaws fitted to the machine. The software does not know which jaws you have fitted, you must tell it. If you do not select the correct jaws then the jaw separation will be wrong. For example if T7 jaws with plain jaw faces are fitted to the machine then select T7 as shown below.

Each different piece of jaw tooling and faces must be set up as described above and have a separate entry in the Jaws Scheme drop down list.

The Jaws Scheme Name and Comments that appear above are only for your reference. If you wish to use different text then select the Jaw Scheme from the list on the Jaws tab of the Configuration page and make any wording changes in the Selected Scheme boxes shown below.

| Name    | Comments                                         | Top<br>Jaw Face<br>Offset | Pneumatic | Bottom Jaw<br>Face Offset | Pneumatic | Minimum<br>Jaw<br>Separation |
|---------|--------------------------------------------------|---------------------------|-----------|---------------------------|-----------|------------------------------|
|         |                                                  | mm                        |           | mm                        |           | mm                           |
| T3-4    | T3 top T3 bottom<br>4mm bars                     | 12                        | No        | 12                        | No        | 0                            |
| T3-8    | T3 top T3 bottom<br>8mm bars                     | 14                        | No        | 14                        | No        | 0                            |
| T3A-6.5 | T3A top, T3A bottom<br>6.5mm bars                |                           | No        |                           | No        |                              |
| T3A-8   | T3A top, T3A bottom<br>8mm bars                  |                           | No        |                           | No        |                              |
| T3A-10  | T3A top, T3A bottom<br>10mm bars                 |                           | No        |                           | No        |                              |
| T3A-13  | T3A top, T3A bottom<br>13mm bars                 |                           | No        |                           | No        |                              |
| T4      | Button T4 top<br>T7 bottom                       | 0                         | No        | 0                         | Yes       | 0                            |
| Т5      | T5 top<br>T5 bottom                              |                           | Yes       |                           | Yes       |                              |
| Т7      | T7 top<br>T7 bottom                              | 0                         | Yes       | 0                         | Yes       | 0                            |
| T10A    | Ball Probe top<br>Clamp bottom                   |                           | No        |                           | No        |                              |
| T11-8   | C-Clamps<br>8mm bars                             |                           | No        |                           | No        |                              |
| T11-10  | C-Clamps<br>10mm bars                            |                           | No        |                           | No        |                              |
| T12     | Universal Hook top,<br>pneumatic clamp<br>bottom | -                         | No        | -                         | Yes       | 0                            |
| T13     | Hook top<br>T7 bottom                            | -                         | No        | -                         | Yes       | 0                            |



# 8: Adding New Loadcells

Loadcells purchased at the same time as the Titan instrument are already configured. However, if you have subsequently taken delivery of a new loadcell for use on your Titan instrument then you will need to enter the Calibration Values into the software configuration file so that Titan will indicate "true" force.

- Power On the Titan instrument. Run the Titan software and Log On as an Administrator using the Password "Titan". From the Main Menu select F11-Config. Select the Loadcells tab.
- Fit the new loadcell. Titan will automatically detect this loadcell and enter its maximum force (N) in the Load Cell Capacity field. Check this value is correct.
- 3. Type the new loadcell serial number into the Serial Number field. There will be a label on the loadcell similar to this:

| Load Cell                                                                                                        | L1        |  |
|------------------------------------------------------------------------------------------------------------------|-----------|--|
| Capacity                                                                                                         | 3000N     |  |
| Serial No.                                                                                                       | 16310 19K |  |
| Cal8, 20                                                                                                         | -4438     |  |
| Cal8, 100                                                                                                        | 20439     |  |
| Cal1, 20                                                                                                         | 4826      |  |
| Cal1, 100                                                                                                        | 29705     |  |
| and the second |           |  |

4. Type the Calibration Values into the fields in the New Reading column. From the above example loadcell label the configuration page should look like this:

| L Configuration                   |                             |           |                    |               | _ 🗆 ×     |
|-----------------------------------|-----------------------------|-----------|--------------------|---------------|-----------|
| 1 Jog Mode                        | Observations                | Passwor   | ds                 | <u>U</u> sers |           |
|                                   | ( P <u>C</u> )              | Jaws      | <u> 1</u> <u>5</u> | peeds         | Loadcells |
|                                   | -Calibration -              |           |                    |               |           |
| Up                                | Lo <u>a</u> d Cell Capacity | L1        |                    | N             |           |
| 100mm/min                         | Serial <u>N</u> umber       |           | 16310 19K          |               |           |
|                                   | -Adjustment -<br>Select %   | Load N Ne | wReading           | Current Value |           |
|                                   |                             |           |                    |               |           |
| Down                              | E 8:1 20                    | 75        | -4438              | 5898          |           |
|                                   | E 8:1 100                   | 375       | 20439              | 29491         |           |
| Jog Speed <u>O</u> verride %      | 1:1 20                      | 600       | 4826               | 5898          |           |
| 10 50 100                         | 1:1 100                     | 3000      | 29705              | 29491         |           |
| Jog <u>S</u> peed 100% 100 mm/min |                             |           |                    |               |           |
| r Status                          | – Load N Max                | 3000 00N  |                    | osition mm—   |           |
|                                   |                             |           |                    |               | uenl      |
|                                   | -                           | <b></b> . |                    |               |           |
|                                   |                             |           |                    |               |           |
| Help Close Close Jog              | Module Adjust               |           |                    | Print         | Back      |
| F1 F2 F3 F4                       | F5 F6                       | F7 F      |                    |               | F11 F12   |

- 5. Select F12-Back and answer "Yes" to the following question to accept these new Calibration Values. You have successfully entered the new loadcell Calibration Values.
- 6. Next, answer "Yes" to the following question to save the changes to the software configuration file.

You can now verify that the new loadcell is reading true force correctly by using the Check Weight Set.



## **Check Weight Set**

The optional Check Weight Set can be used periodically, between annual loadcell calibrations, to verify the load reading from the Titan Universal Strength Tester. Some Retailers specify weekly verification.

### **Instructions for use:**

- 1. Power On the Titan instrument.
- 2. Run the Titan software and Log On as normal.
- 3. Allow the Titan instrument 20 30 minutes "warm up" time so that the loadcell and its associated electronics stabilises at ambient temperature. This is good practice in general whenever you are using Titan and is always done prior to calibration.
- 4. Remove both top and bottom jaws.
- Fit the circular Check Weight Platen in place of the lower jaw. This allows the five circular weights to be centrally positioned on the loadcell. See Figure 31, below.



Figure 31: Check Weight Platen



Figure 32: Check Weight Set in Use

- 6. Select F6-Manual from the Main Menu. The load reading will automatically zero.
- Ensure the reading is nominally zero before proceeding. If not nominally zero then press F9-Forward, the F8-Zero, then F12-Back.
- 8. Carefully place all five (5) circular Check Weights, one at a time, on to the platen, ensuring they are mounted centrally. See Figure 32, above.





Figure 33: Manual Mode

Figure 34: Check Weight Load Reading

9. Check the values obtained against Table 2, below, which indicates the theoretical expected values which are within tolerance based on the Loadcell capacity and the Calibration Class.

| Check Weight | t   | 50   |      |      |      | Ν |  |
|--------------|-----|------|------|------|------|---|--|
| Loadcell     |     | 3000 | 600  | 120  | 60   | Ν |  |
| Class 0.5 fr | rom | 48.1 | 49.6 | 49.4 | 49.7 | Ν |  |
| to           | D C | 51.9 | 50.4 | 50.6 | 50.3 | Ν |  |
| Class 1.0 fr | rom | 46.3 | 49.3 | 48.8 | 49.4 | Ν |  |
| to           | C   | 53.8 | 50.8 | 51.2 | 50.6 | Ν |  |

Table 2: Expected Check Weight Values



**S**4

Titan<sup>3</sup> software has up to 4 software modules:

- S1 Tensile Module
- Supplied as standard with Tension Only and Compression models Optional
- S2Tear ModuleOptionalS3Cyclic ModuleOptional
  - Compression Module Supplied as standard with Compression models

This is a list of pre-loaded Standards. Other similar Standards not mentioned in this list can be input manually (User Defined). Pre-loaded means that all parameters relevant to a Standard are automatically pre-set when the Standard is selected.

| S1 | Attachments    | BS 4162                                                                                                         | Test for buttons. Determination of tension strength                                                                                                                                                                                                                                                                                                                                                       |
|----|----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                | M&S P115                                                                                                        | Security of Attachments of Accessories to Garments                                                                                                                                                                                                                                                                                                                                                        |
|    |                | M&S P115A                                                                                                       | Security of Attachment of Poppers to Garments                                                                                                                                                                                                                                                                                                                                                             |
|    |                | M&S P115B                                                                                                       | Test to Failure Security of Attachment of Accessories                                                                                                                                                                                                                                                                                                                                                     |
|    |                |                                                                                                                 | to Garments                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                | M&S P115C                                                                                                       | Test to Failure Security of Attachment of Poppers to                                                                                                                                                                                                                                                                                                                                                      |
|    |                |                                                                                                                 | Garments                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                | M&S P115H                                                                                                       | Security of Attachment of Handles and Straps on                                                                                                                                                                                                                                                                                                                                                           |
|    |                |                                                                                                                 | Handbags and Laptop Bags                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                | M&S P122                                                                                                        | Strength of Buttons                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                | M&S P124                                                                                                        | Security of Attachments of Component Parts of                                                                                                                                                                                                                                                                                                                                                             |
|    |                |                                                                                                                 | Fabric Covered Buttons                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                | ASTM D4846                                                                                                      | Resistance to Unsnapping of Snap Fasteners                                                                                                                                                                                                                                                                                                                                                                |
|    |                | NEXT© TM37                                                                                                      | Button Strength                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                | NEXT© TM42                                                                                                      | Attachments strength of components and                                                                                                                                                                                                                                                                                                                                                                    |
|    |                |                                                                                                                 | embellishments                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                | NEXT© TM45                                                                                                      | Handle attachment strength                                                                                                                                                                                                                                                                                                                                                                                |
|    |                | NEXT© TM46                                                                                                      | Strength of belt buckles                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                | EN 15598                                                                                                        | Test method for the determination of the resistance                                                                                                                                                                                                                                                                                                                                                       |
|    |                |                                                                                                                 | to pile loop extraction                                                                                                                                                                                                                                                                                                                                                                                   |
| C1 | Tabula Tavalla | 16 650 1500 52 0-15 (6)                                                                                         | Test weathed for simulating uses and shares of the s                                                                                                                                                                                                                                                                                                                                                      |
| S1 | Fabric Tensile | 16 CFR 1500.53 Para (f)                                                                                         | Test method for simulating use and abuse of toys                                                                                                                                                                                                                                                                                                                                                          |
|    |                |                                                                                                                 | and other articles intended for use by children over                                                                                                                                                                                                                                                                                                                                                      |
|    |                | AATCC-ASTM TS-010                                                                                               | 36 but not over 96 months of age - TENSION TEST                                                                                                                                                                                                                                                                                                                                                           |
|    |                | AATCC-ASTM TS-010<br>AATCC-ASTM TS-015                                                                          | Procedure for Determining Pocket Reinforcement<br>Seam Stretchability of Knitted Garments                                                                                                                                                                                                                                                                                                                 |
|    |                | ASTM D5034                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                |                                                                                                                 | Breaking Strength and Elongation of Textile Fabrics (Grab Test)                                                                                                                                                                                                                                                                                                                                           |
|    |                | ASTM D5035                                                                                                      | Breaking Force and Elongation of Textile Fabrics                                                                                                                                                                                                                                                                                                                                                          |
|    |                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                | BHS 1                                                                                                           | (Strip Method)<br>Tensile Strength                                                                                                                                                                                                                                                                                                                                                                        |
|    |                |                                                                                                                 | (Strip Method)<br>Tensile Strength                                                                                                                                                                                                                                                                                                                                                                        |
|    |                | BHS 1                                                                                                           | (Strip Method)                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                | BHS 1                                                                                                           | (Strip Method)<br>Tensile Strength<br>Woven and knitted fabrics for upholstery. Annex A                                                                                                                                                                                                                                                                                                                   |
|    |                | BHS 1<br>BS 2543                                                                                                | (Strip Method)<br>Tensile Strength<br>Woven and knitted fabrics for upholstery. Annex A<br>Method of test for seam slippage resistance                                                                                                                                                                                                                                                                    |
|    |                | BHS 1<br>BS 2543                                                                                                | (Strip Method)<br>Tensile Strength<br>Woven and knitted fabrics for upholstery. Annex A<br>Method of test for seam slippage resistance<br>Method for determination of maximum strength and                                                                                                                                                                                                                |
|    |                | BHS 1<br>BS 2543<br>BS 2576                                                                                     | (Strip Method)<br>Tensile Strength<br>Woven and knitted fabrics for upholstery. Annex A<br>Method of test for seam slippage resistance<br>Method for determination of maximum strength and<br>elongation (strip method) of woven fabrics                                                                                                                                                                  |
|    |                | BHS 1<br>BS 2543<br>BS 2576<br>BS 3424 Part 4                                                                   | (Strip Method)<br>Tensile Strength<br>Woven and knitted fabrics for upholstery. Annex A<br>Method of test for seam slippage resistance<br>Method for determination of maximum strength and<br>elongation (strip method) of woven fabrics<br>Testing Coated Fabrics. Method for determination of                                                                                                           |
|    |                | BHS 1           BS 2543           BS 2576           BS 3424 Part 4           Method 6                           | (Strip Method)<br>Tensile Strength<br>Woven and knitted fabrics for upholstery. Annex A<br>Method of test for seam slippage resistance<br>Method for determination of maximum strength and<br>elongation (strip method) of woven fabrics<br>Testing Coated Fabrics. Method for determination of<br>breaking strength and elongation at break                                                              |
|    |                | BHS 1           BS 2543           BS 2576           BS 3424 Part 4           Method 6           BS 3424 Part 33 | (Strip Method)<br>Tensile Strength<br>Woven and knitted fabrics for upholstery. Annex A<br>Method of test for seam slippage resistance<br>Method for determination of maximum strength and<br>elongation (strip method) of woven fabrics<br>Testing Coated Fabrics. Method for determination of<br>breaking strength and elongation at break<br>Testing Coated Fabrics. Determination of seam             |
|    |                | BHS 1<br>BS 2543<br>BS 2576<br>BS 3424 Part 4<br>Method 6<br>BS 3424 Part 33<br>Method 36                       | (Strip Method)<br>Tensile Strength<br>Woven and knitted fabrics for upholstery. Annex A<br>Method of test for seam slippage resistance<br>Method for determination of maximum strength and<br>elongation (strip method) of woven fabrics<br>Testing Coated Fabrics. Method for determination of<br>breaking strength and elongation at break<br>Testing Coated Fabrics. Determination of seam<br>strength |

| EN ISO 1421 Method 1 | Rubber or plastics-coated fabrics - Determination of                                        |
|----------------------|---------------------------------------------------------------------------------------------|
|                      | tensile strength and elongation at break (strip test                                        |
|                      | method)                                                                                     |
| EN ISO 1421 Method 2 | Rubber or plastics-coated fabrics - Determination of                                        |
| EN 100 12024 1       | maximum strength (grab test method)                                                         |
| EN ISO 13934-1       | Determination of maximum force and elongation at maximum force using the strip method       |
| EN ISO 13934-2       | Determination of maximum force using the grab method                                        |
| EN ISO 13935-1       | Determination of maximum force to seam rupture using the strip method                       |
| EN ISO 13935-2       | Determination of maximum force to seam rupture<br>using the grab method                     |
| EN ISO 13936-2       | Determination of the slippage resistance of yarns at a seam in woven fabrics                |
| ISO 5081             | Textiles - Woven fabrics - Determination of breaking strength and elongation (Strip method) |
| ISO 5082             | Textiles - Woven fabrics. Determination of maximum strength. Grab method                    |
| ISO 9073-3           | Methods of test for nonwovens. Determination of tensile strength and elongation             |
| IWS TM 117           | Seam Slippage (Woven Fabrics)                                                               |
| M&S P11              | Tensile strength                                                                            |
| M&S P12A             | Fabric Slippage (including all stretch wovens) - Fixed<br>Load Method                       |
| M&S P12B             | Garment Seam Slippage and Seam Strength - Fixed<br>Load Method                              |
| NEXT© TM 16a         | Seam slippage of garment production seams                                                   |
| NEXT© TM 27          | Breaking Strength and Elongation of woven fabrics (Ravelled strip)                          |
| NF G 35-107 Method B | Tissus d'ameublement. Détermination du glissement des files. Essai à la griffe              |
| RSG 1                | Tensile strength using the grab method                                                      |
| RSG 3                | Seam slippage - seam method for fabrics containing elastanes                                |

| S1 | Seam         | ASTM D434             | Resistance to Slippage of Yarns in Woven Fabrics<br>Using a Standard Seam                                             |
|----|--------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
|    |              | ASTM D1683            | Standard Test Method for Failure in Sewn Seams of Woven Apparel Fabrics                                               |
|    |              | ASTM D4034            | Resistance to yarn slippage at the sewn seam in woven upholstery fabrics                                              |
|    |              | BS 3320               | Method for determination of slippage resistance of yarns in woven fabrics: seam method                                |
|    |              | DIN 53868             | Determination of the Resistance to Seam Shifting of Woven Fabrics                                                     |
|    |              | EN ISO 13936-1        | Determination of the slippage resistance of yarns at a seam in woven fabrics                                          |
|    |              | EN ISO 13936-3        | Slippage Resistance of Yarns at a Seam in Woven<br>Fabrics: Needle Clamp Method                                       |
|    |              | M&S P12               | Fabric Slippage                                                                                                       |
|    |              | NEXT© TM 16           | Grab strength and seam slippage of woven fabrics                                                                      |
|    |              | RSG 2                 | Determination of tensile strength, seam slippage and strength                                                         |
|    |              |                       | 1                                                                                                                     |
| S1 | Yarn Tensile | ASTM D1578 (Option 2) | Breaking Strength of Yarn in Skein Form                                                                               |
|    |              | ASTM D2256            | Tensile Properties of Yarns by the Single-Strand<br>Method                                                            |
|    |              | BS 1932 Part 2        | Testing the strength of yarns and threads from packages. Methods for determination of knot strength and loop strength |
|    |              | EN ISO 2062           | Yarns from packages. Determination of single-end breaking force and elongation at break                               |
|    |              | M&S P70               | Strength Testing of Sewing Threads                                                                                    |

| S2 | Tear | AS 2001-2.10        | Determination of the Tear Resistance of Woven                                           |
|----|------|---------------------|-----------------------------------------------------------------------------------------|
|    |      |                     | Textile Fabrics by the Wing-rip Method                                                  |
|    |      | ASTM D2261          | Tearing Strength of Fabrics by the Tongue (Single                                       |
|    |      |                     | Rip) Procedure                                                                          |
|    |      | ASTM D2724          | Standard Test Methods for Bonded, Fused, and                                            |
|    |      |                     | Laminated Apparel Fabrics                                                               |
|    |      | ASTM D5587          | Tearing Strength of Fabrics by Trapezoid Procedure                                      |
|    |      | ASTM D5735          | Tearing Strength of Nonwoven Fabrics by the<br>Tongue (Single Rip) Procedure            |
|    |      | BHS 16              | Peel Bond Strength of Fused Collars and Cuffs and<br>Bonded / Laminated Textile Fabrics |
|    |      | BS 3424 Part 5      | Testing Coated Fabrics. Determination of tear                                           |
|    |      | Method 7A           | strength                                                                                |
|    |      | BS 3424 Part 5      | Testing Coated Fabrics. Determination of tear                                           |
|    |      | Method 7B           | strength                                                                                |
|    |      | BS 3424 Part 5      | Testing Coated Fabrics. Determination of tear                                           |
|    |      | Method 7C           | strength                                                                                |
|    |      | BS 4303             | Method for the determination of the resistance to                                       |
|    |      |                     | tearing of woven fabrics by the wing-rip technique                                      |
|    |      | DBA RMQT-OI-020-050 | Testing Procedure - Peel Strength of Laminated                                          |
|    |      | Rev 02              | Fabric                                                                                  |
|    |      | DIN 53859 Part 2    | Tear growth testing of textile fabrics - Leg tear growth test                           |
|    |      | DIN 53859 Part 5    | Tear Growth Test on Textile Fabrics - Trapezoid Test                                    |
|    |      | DUPONT TTM 035      | Tear Strength Shirtings                                                                 |
|    |      | EN ISO 4674-1 -     | Rubber- or plastics-coated fabrics. Determination of                                    |
|    |      | Method A            | tear resistance. Constant rate of tear methods.<br>Tongued (double-tear) test           |
|    |      | EN ISO 4674-1 -     | Rubber- or plastics-coated fabrics. Determination of                                    |
|    |      | Method B            | tear resistance. Constant rate of tear methods.<br>Trouser-shaped (single-tear) test    |
|    |      | EN ISO 9073-4       | Test methods for nonwovens - Determination of tear resistance                           |
|    |      | EN ISO 13937-2      | Determination of tear force of trouser-shaped test specimens (single tear method)       |
|    |      | EN ISO 13937-3      | Determination of tear force of wing-shaped test specimens (single tear method)          |
|    |      | EN ISO 13937-4      | Determination of tear force of tongue-shaped test specimens (double tear test)          |
|    |      | M&S P13             | Peel Bond Strength                                                                      |
|    |      | M&S P35             | Baumann Tear Strength of Leather                                                        |
|    |      | M&S P98             | Tear Strength Wing Rip                                                                  |
|    |      | NEXT© TM 25         | Tearing of woven fabrics by the Wing Rip technique                                      |
|    |      | SIS 25 12 31        | Textiles. Determination of tearing strength<br>(Withdrawn 2000)                         |

| S3 | Cyclic | AATCC-ASTM TS-016               | Procedure for the Stretch and Recovery of Knit                                             |
|----|--------|---------------------------------|--------------------------------------------------------------------------------------------|
|    | C) Che |                                 | Fabrics                                                                                    |
|    |        | Adidas 4-27                     | Elongation and Recovery of Elastic Fabrics C-Clamp                                         |
|    |        | ASTM D4964                      | Tension and Elongation of Elastic Fabrics                                                  |
|    |        | ASTM D6614                      | Standard Test Method for Stretch Properties of                                             |
|    |        |                                 | Textile Fabrics - CRE Method                                                               |
|    |        | BHS 15J                         | Stretch and Recovery Properties                                                            |
|    |        | BS 4952 (2.1 2.2)               | Methods of test for Elastic fabrics. Determination of                                      |
|    |        | line contact                    | extension at a specified force. Determination of modulus                                   |
|    |        | BS 4952 (2.1 2.2)               | Methods of test for Elastic fabrics. Determination of                                      |
|    |        | loop bar                        | extension at a specified force. Determination of modulus                                   |
|    |        | BS 4952 (2.3)                   | Methods of test for Elastic fabrics. Determination of tension decay                        |
|    |        | BS 4952 (2.4)                   | Methods of test for Elastic fabrics. Determination of residual extension                   |
|    |        | Calida Bodywear<br>Test No. 21  | Stress-strain behaviour of elastic bra straps                                              |
|    |        | Decathlon DS-275                | Follow-up of the stretch properties of knitted textile<br>and rubber foam based assemblies |
|    |        | DUPONT TTM 076                  | Fabric Elongation                                                                          |
|    |        | EN 14704-1                      | Determination of the elasticity of fabrics - Part 1:<br>Strip tests                        |
|    |        | EN 14704-3 - Method A           | Determination of the elasticity of fabrics - Part 3:<br>Narrow Fabrics                     |
|    |        | Limited Brands LTD03            | Stretch Fabrics - Power and Recovery                                                       |
|    |        | M&S P14                         | Extension and Modulus of Elastomeric Fabrics and Narrow Elastics                           |
|    |        | M&S P14A                        | Extension and Modulus of Stretch Laces                                                     |
|    |        | M&S P14B                        | Elastic Properties of Fabrics Labelled "Lycra Soft"                                        |
|    |        | M&S P15 Part 1                  | Extension, Modulus and Residual Extension of<br>Stretch Woven Fabrics                      |
|    |        | M&S P15A                        | Extension, Modulus and Residual Extension of<br>Stretch Fabric                             |
|    |        | M&S P15B                        | Prediction of Recoverability of Stretch Leggings<br>(Knee Bagging)                         |
|    |        | NEXT© TM 21<br>(knit)           | Extension and modulus                                                                      |
|    |        | NEXT© TM 21<br>(narrow elastic) | Extension and Modulus for elastics less than 2 cm. width                                   |
|    |        | NEXT© TM 21<br>(woven)          | Extension and Modulus                                                                      |
|    |        | NEXT© TM 21a<br>(knit)          | Extension and Recovery                                                                     |
|    |        | NEXT© TM 21a<br>(woven)         | Extension and Recovery                                                                     |
|    |        | RSG 4                           | Extension and modulus of knitted elastic fabrics                                           |
|    |        | RSG 5                           | Residual extension of knitted elastic fabrics                                              |
|    |        | RSG 6                           | Residual extension of woven fabrics containing elastanes                                   |
|    |        | SIS 65 00 68                    | Determination of the firmness of loops in terry cloths                                     |

| S4 | Compression | ASTM D751  | Standard test methods for coated fabrics              |
|----|-------------|------------|-------------------------------------------------------|
|    |             | ASTM D3787 | Standard test method for bursting strength of fabrics |
|    |             |            | CRT ball burst test                                   |
|    |             | ASTM D4830 | Standard test method for characterizing               |
|    |             |            | thermoplastic fabrics used in roofing and             |
|    |             |            | waterproofing                                         |
|    |             | ASTM D5748 | Standard test method for protrusion puncture          |
|    |             |            | resistance of stretch wrap film                       |
|    |             | ASTM D6797 | Standard test method for bursting strength of fabrics |
|    |             |            | CRE ball burst test                                   |
|    |             | EN 388     | Protective gloves against mechanical risks            |
|    |             | EN 12332-1 | Rubber- or plastics-coated fabrics - determination of |
|    |             |            | bursting strength                                     |
|    |             | ISO 3303-A | Rubber- or plastics-coated fabrics - determination of |
|    |             |            | bursting strength                                     |
|    |             | ISO 9073-5 | Textiles - Test methods for nonwovens - Part 5:       |
|    |             |            | Determination of resistance to mechanical             |
|    |             |            | penetration (ball burst procedure)                    |
|    |             | WSP 110-5  | Standard test method for resistance to mechanical     |
|    |             |            | penetration (ball burst procedure) of nonwoven        |
|    |             |            | fabrics                                               |



## **General**

Titan has been specifically designed with the Operator's health and safety in mind. This ensures the minimum Operator stress and fatigue. Titan is virtually silent in operation to suit the laboratory environment.

Please observe the following points at all times:

- Take extreme care when moving the machine. Never attempt to manoeuvre Titan without the appropriate lifting gear. Without jaws, Titan weighs approximately 85kg.
- Always remove both hands from the specimen area before starting a test.
- Take care when changing grips and load cell assemblies. Ensure they are always firmly and securely attached to the machine.
- Never place any obstruction in the path of the carriage.
- Always ensure the jaw faces are correctly seated.
- Always ensure pneumatic connections are secure when changing jaws.
- Some materials when tested to rupture can leave the test area either by a whipping action or as fragments. A risk assessment should be made for these types of uncommon materials.

### Emergency Stop Button

Familiarise yourself with the location of the large red Emergency Stop Button at bottom right of the instrument. Use this button only in case of emergency to completely stop Titan.

## **Impact Protection**

When the load on an obstruction, such as a hand, equals the weight of the jaw the drive will stop, this will prevent any serious injury. The Operator should, however, always be vigilant and never obstruct the motion of the jaw. If in doubt hit the Emergency Stop Button.

## Soft Closing Jaws

Full jaw pressure is automatically applied when the Operator presses the Start button. When loading a sample, only a low pressure is applied, this will help prevent serious injury. The Operator should, however, always be vigilant and never place fingers between the jaw faces. If in doubt hit the Emergency Stop Button.



Do not dispose of any packaging material until all standard and optional accessories are accounted for. If there are any discrepancies, please contact your supplier/agent immediately.

- Use a forklift truck or hydraulic pump up trolley to move the packing case on its pallet as near as possible to its final location. Carefully cut and remove the two metal straps.
- Remove the staples from the lid of the case and open.
- Carefully remove the packaging and contents from the upper part of the case.
- Note that any accessories ordered with the instrument are packed in this top section.
- Carefully remove the packing from around the instrument.
- Lift the outer cardboard sleeve to reveal the Titan on the wooden pallet.
- Using lifting gear, carefully lift the instrument and place it on a firm flat surface.
- Carefully adjust the four feet of the instrument until the instrument is level.

## Identification of Parts

### Standard Accessories

The following items accompany every Titan supplied:

- CD with Titan software module S1 and/or software module S4
- CD with customer specific configuration (Key CD)
- Power cables
- RS 232 Serial Cable (9 pin D type)
- 1m of 4mm O/D plastic pipe
- Titan Foot Pedal Assembly

### **Optional Accessories**

The following items are supplied as optional accessories:

### Stock

| <b>Code</b><br>201-928 | <b>Description</b><br>ISO Certificate of Calibration for Titan (machine only) based on<br>ISO 7500-1 Annex A and ASTM D76 |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 794-714                | 'Tear' Software Module S2                                                                                                 |
| 794-715                | 'Cyclic' Software Module S3                                                                                               |
| 794-716                | Enablement of M & S Test Methods                                                                                          |
| 794-717                | Enablement of Next Test Methods                                                                                           |
| 794-578                | Load Cell L1 (3000N) 3000N - 30N (300kgf - 3kgf)                                                                          |
| 202-517                | UKAS Certificate of Calibration for Titan 3000N Load Cell (6 point calibration in tension)                                |
| 202-511                | UKAS Certificate of Calibration for Titan 3000N Load Cell (9 point calibration in tension)                                |
| 202-522                | UKAS Certificate of Calibration for Titan 3000N Load Cell (9 point calibration compression)                               |
| 794-579                | Load Cell L2 (600N) 600N - 6N (60kgf - 0.6kgf)                                                                            |
| 202-518                | UKAS Certificate of Calibration for Titan 600N Load Cell (6 point calibration in tension)                                 |
| 202-512                | UKAS Certificate of Calibration for Titan 600N Load Cell (9 point calibration in tension)                                 |
| 202-523                | UKAS Certificate of Calibration for Titan 600N Load Cell (9 point calibration compression)                                |
| 794-807                | Load Cell L4 (120N) 120N -1.2N (12000gf - 120gf)                                                                          |
| 202-519                | UKAS Certificate of Calibration for Titan 120N Load Cell (6 point calibration in tension)                                 |
| 202-513                | UKAS Certificate of Calibration for Titan 120N Load Cell (9 point calibration in tension)                                 |

| Stock<br>CodeDescription794-872Pneumatic Fabric Jaws T7 (pair)<br>4 rubber-lined jaw faces 100 x 25mm<br>2 rubber-lined jaw faces 25 x 25mm (grab)Additional Jaw Faces for T7794-8734 plain steel jaw faces 100 x 25mm<br>4 rubber-lined jaw faces 100 x 25mm794-8744 rubber-lined jaw faces 75 x 25mm794-8752 rubber-lined jaw faces 25 x 25mm794-8762 rubber-lined jaw faces 25 x 25mm794-8772 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm794-8784 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)794-814Looped Bars T3 (pair)794-842Looped Bars T3 (pair)794-846Button Holder T4 (used with T7)794-866Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-838C-Clamps T11 (pair)794-846Attachments Kit T12 (used with T7)794-846Attachments Kit T12 (used with T7)                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>794-872 Pneumatic Fabric Jaws T7 (pair)<br/>4 rubber-lined jaw faces 100 x 25mm<br/>2 rubber-lined jaw faces 25 x 25mm (grab)</li> <li>Additional Jaw Faces for T7</li> <li>794-873 4 plain steel jaw faces 100 x 25mm</li> <li>794-874 4 rubber-lined jaw faces 75 x 25mm</li> <li>794-875 2 rubber-lined jaw faces 25 x 25mm</li> <li>794-877 2 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm</li> <li>794-878 4 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)</li> <li>794-814 Looped Bars T3 (pair)</li> <li>794-842 Looped Bars T3 (pair)</li> <li>794-864 Button Holder T4 (used with T7)</li> <li>794-866 Needle Clamp [Apparel Version] T8 (used with T7)</li> <li>794-687 Needle Clamp [Upholstery Version] T9 (used with T7)</li> <li>794-838 C-Clamps T11 (pair)</li> <li>794-866 Attachments Kit T12 (used with T7)</li> </ul> |
| 4 rubber-lined jaw faces 100 x 25mm<br>2 rubber-lined jaw faces 25 x 25mm (grab)Additional Jaw Faces for T7794-8734 plain steel jaw faces 100 x 25mm<br>794-874794-8744 rubber-lined jaw faces 75 x 25mm794-8752 rubber-lined jaw faces 25 x 25mm794-8772 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm794-8784 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)794-814Looped Bars T3 (pair)794-842Looped Bars T3 (pair)794-864Button Holder T4 (used with T7)794-866Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                           |
| 2 rubber-lined jaw faces 25 x 25mm (grab)Additional Jaw Faces for T7794-8734 plain steel jaw faces 100 x 25mm794-8744 rubber-lined jaw faces 75 x 25mm794-8752 rubber-lined jaw faces 25 x 25mm794-8772 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm794-8784 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)794-814Looped Bars T3 (pair)794-842Looped Bars T3A (pair)794-864Button Holder T4 (used with T7)794-866Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-836C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                            |
| Additional Jaw Faces for T7794-8734 plain steel jaw faces 100 x 25mm794-8744 rubber-lined jaw faces 75 x 25mm794-8752 rubber-lined jaw faces 25 x 25mm794-8772 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm794-8784 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)794-814Looped Bars T3 (pair)794-842Looped Bars T3A (pair)794-864Button Holder T4 (used with T7)794-866Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide794-687Needle Clamp [Apparel Version] T8 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                  |
| 794-8734 plain steel jaw faces 100 x 25mm794-8744 rubber-lined jaw faces 75 x 25mm794-8752 rubber-lined jaw faces 25 x 25mm794-8772 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm794-8784 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)794-814Looped Bars T3 (pair)794-842Looped Bars T3 (pair)794-864Button Holder T4 (used with T7)794-866Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide794-687Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                              |
| <ul> <li>794-874 4 rubber-lined jaw faces 75 x 25mm</li> <li>794-875 2 rubber-lined jaw faces 25 x 25mm</li> <li>794-877 2 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm</li> <li>794-878 4 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)</li> <li>794-814 Looped Bars T3 (pair)</li> <li>794-842 Looped Bars T3A (pair)</li> <li>794-864 Button Holder T4 (used with T7)</li> <li>794-866 Needle Clamp [Apparel Version] T8 (used with T7)</li> <li>794-878 Needle Clamp [Upholstery Version] T9 (used with T7)</li> <li>794-843 Ball Burst Compression Tooling T10A</li> <li>794-838 C-Clamps T11 (pair)</li> <li>794-866 Attachments Kit T12 (used with T7)</li> </ul>                                                                                                                                                                           |
| <ul> <li>794-874 4 rubber-lined jaw faces 75 x 25mm</li> <li>794-875 2 rubber-lined jaw faces 25 x 25mm</li> <li>794-877 2 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm</li> <li>794-878 4 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)</li> <li>794-814 Looped Bars T3 (pair)</li> <li>794-842 Looped Bars T3A (pair)</li> <li>794-864 Button Holder T4 (used with T7)</li> <li>794-866 Needle Clamp [Apparel Version] T8 (used with T7)</li> <li>794-878 Needle Clamp [Upholstery Version] T9 (used with T7)</li> <li>794-843 Ball Burst Compression Tooling T10A</li> <li>794-838 C-Clamps T11 (pair)</li> <li>794-866 Attachments Kit T12 (used with T7)</li> </ul>                                                                                                                                                                           |
| <ul> <li>794-875 2 rubber-lined jaw faces 25 x 25mm</li> <li>794-877 2 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm</li> <li>794-878 4 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)</li> <li>794-814 Looped Bars T3 (pair)</li> <li>794-842 Looped Bars T3A (pair)</li> <li>794-864 Button Holder T4 (used with T7)</li> <li>794-866 Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide</li> <li>794-686 Needle Clamp [Apparel Version] T8 (used with T7)</li> <li>794-687 Needle Clamp [Upholstery Version] T9 (used with T7)</li> <li>794-843 Ball Burst Compression Tooling T10A</li> <li>794-866 Attachments Kit T12 (used with T7)</li> </ul>                                                                                                                                                                                            |
| 794-8772 line contact jaw faces 100 x 6mm diameter and 2 plain steel jaw faces 100 x 25mm794-8784 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)794-814Looped Bars T3 (pair)794-842Looped Bars T3A (pair)794-864Button Holder T4 (used with T7)794-866Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide794-686Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                        |
| 794-8784 rubber-lined jaw faces 200 x 35mm (ISO 13937-4 - double tear test)794-814Looped Bars T3 (pair)794-842Looped Bars T3A (pair)794-844Button Holder T4 (used with T7)794-806Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide794-686Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 794-842Looped Bars T3A (pair)794-864Button Holder T4 (used with T7)794-806Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide794-686Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 794-842Looped Bars T3A (pair)794-864Button Holder T4 (used with T7)794-806Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide794-686Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 794-864Button Holder T4 (used with T7)794-806Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide794-686Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 794-806Pneumatic Yarn Jaws T5 (pair) complete with Yarn Guide794-686Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 794-686Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 794-686Needle Clamp [Apparel Version] T8 (used with T7)794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 794-687Needle Clamp [Upholstery Version] T9 (used with T7)794-843Ball Burst Compression Tooling T10A794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 794-838C-Clamps T11 (pair)794-866Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 794-866 Attachments Kit T12 (used with T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 704 844 Dila Loop Extraction Kit T12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 794-844 Pile Loop Extraction Kit T13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 783-224 Air Compressor 230V 50Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 783-232 Air Compressor 110V 60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 371-928 Graduated Seam Opening Template (ISO 13936 Part 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 772-111 Wing Rip Specimen Preparation Template (BS 4303, M&S P98 and Next TM25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 772-112 Wing Rip Specimen Preparation Template (ISO 13937 Part 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 772-142 Ving Kip Specifien Preparation Template (ISO 15557 Part 5)<br>772-140 Seam Slippage Sample Preparation Template (Next TM16/BS 3320)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 789-575 Sewing Thread Epic/Polyfil 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (M&S P12; ISO 13936-1 for apparel; ISO 13936-2 for apparel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 785-516 Sewing Thread Polyester Oxlene 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (ISO 13936-1 for furnishing fabric; ISO 13936-2 for furnishing fabric)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 788-251 Sewing Machine Needles Metric Size 80 Normal Point (M&S P12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 706-680 Fabric Conditioner (M&S P12, P12A and P12B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 794-817 Check Weight Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 910-spares 2-year Spares Kit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 541-960 100 x 25mm rubber lined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 541-965 100 x 25mm plain steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 541-964 75 x 25mm rubber lined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 541-963 25 x 25mm rubber lined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 541-966 100 x 6mm diameter line contact jaw face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 541-908 39.75 x 14mm aluminium jaw face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

541-908 39.75 x 14mm aluminium jaw face



## Installation Requirements

### Instrument Dimensions

| Width  | 395 mm  |
|--------|---------|
| Depth  | 570 mm  |
| Height | 1310 mm |

Desk depth750 mm recommended, 600 mm absolute minimum.Desk length1500 mm to allow for Titan, PC ( desktop style ), monitor and printer.



Figure 35: Typical Dimensions

### **Electrical supply**

Machine single phase 110 - 230Va.c. +/-10% at 10A maximum, 50/60Hz, 500W. Provision must also be made for the PC, monitor and optional printer.

### **Environment:**

As with all physical testing, tests should be carried out in a standard atmosphere for testing textiles, i.e., 20°C and 65% RH. However, the instrument will operate satisfactorily providing temperature and humidity levels are relatively stable. The humidity conditions must be non-condensing. The surrounding area should be electrically and magnetically stable.

### **Compressed Air supply**



It is recommended the air supply has a minimum Free Air Delivery (FAD) of 11 litres per minute at 8 bar (116psi) and must be filtered to 5 microns (absolute) or better to remove excess particulates, oil and moisture. Minimum air supply 7 bar.

Note: Titan is fitted with onboard filtering. However, a contaminated air supply (not filtered) will result in early blockage of the onboard filter element.

For laboratories without a dedicated compressed air supply, we can offer the choice of a 110V (60Hz) or 230V (50Hz) silent laboratory compressor. See Figure 36 (Stock Codes 783-232 and 783-224 respectively).

### Figure 36: Optional Compressor (silent laboratory type)

WARNING : NO OIL IN COMPRESSOR !

To fill with oil refer to Operators Handbook

### ACHTUNG : KEIN OEL IM KOMPRESSOR !

Zum einfullen von Oel bitte die Betriebsanweisung durch lesen

### IMPORTANT : LE COMPRESSEUR EST LIVRE SANS APPOINT d'HUILE !

Afin d'effectuer l'appoint - referez vous au Mode d'Emploi


## Setting up Titan

Whilst Titan is a sophisticated and reliable instrument, it is a sensitive high technology product and a few simple precautions are recommended to ensure satisfactory performance and long life.

- Check the operating voltage on the serial number plate is the same as your supply.
- The surface on which the instrument rests should be level, firm and free from vibration.

### **Identification of Major Parts**







Figure 39: Setting Tension or Compression

Tension/Compression shuttle switch
GREEN out for Tension testing
RED out for Compression testing

### **Fitting the Jaws**



Figure 40: Connecting the Jaws

### **Connecting Pneumatics**



Figure 41: Connecting pneumatics to Jaws

## **Fitting Alternative Jaw Faces**

The jaw faces simply snap into position. Each jaw face locates on two dowel pins and is held in position by powerful magnets. To remove a jaw, push the jaw face away from the mating face and then pull out. To insert a jaw face, position the jaw face so that the dowels fit into the holes in the jaw. Then simply allow the magnets to pull the jaw face into position. The dowels stop the specimens pulling the jaw faces out during testing and the magnets keep the faces in their position. Do not force the jaw faces into position.

# 0: Connecting the laws

## Position the jaw so that the square locator fits into the square hole in the threaded connector.

Screw the threaded capstan onto the threaded connector until it is hand tight; do not use any tools.

Do not over tighten.

The jaws are supplied with the requisite length of pneumatic pipe already connected, once the jaws are fitted simply push the pipe into the corresponding fitting.

To remove the pipe, push and hold the collar of the fitting and pull the pipe in the opposite direction.

Do not force the pipe from the fitting.

#### **Setting the Pneumatic Pressure**



Pressure regulators are found on the left hand side of the instrument

#### Figure 42: Setting pneumatic pressures

#### **Auxiliary Connections**

Connect the appropriate electrical power lead. Connect the RS232 serial cable to Titan and the PC. Connect the foot switch if required (recommended). Connect the compressed air. Finally, switch the instrument on. To reduce operator hazards and increase productivity, the integrated pneumatic module operates the jaws at very low pressure during the loading of the specimen. Only when the operator actually starts the test does the pneumatic module apply full clamping pressure.

#### Loading pressure

To set the loading pressure pull knob upwards until it clicks. Rotate to increase or decrease pressure. The maximum pressure is 2 bar but should be ideally set to one third of a bar. Press down once adjusted.

#### Testing pressure

Adjust the pressure as above using knob. The testing pressure can be set to a maximum of 7 bar. It is necessary to reduce the testing pressure when the jaws damage delicate fabric or yarn.

Do not set the testing pressure higher than 7 bar.



Figure 43: Auxiliary connections (before and after)



### **Changing a Load Cell**



Titan is supplied with a load cell fitted. This cell will be the largest capacity unit ordered. Changing the load cell is a simple procedure.

Firstly remove the bottom jaw and simply disconnect the loadcell plug by pulling the serrated sleeve back.

Finally unscrew the load cell threaded capstan and remove the loadcell.

Position the required loadcell so that the square locator fits into the square hole in the threaded connector.

Screw the threaded capstan onto the threaded connector until it is hand tight; do not use any tools.

Push in the loadcell plug into the socket making sure that the red dot on the plug aligns with the red dot on the socket.

Figure 44: Fitting a Load Cell



## Minimum PC specification

| Processor        | 2 GHz 32-bit processor or faster                                 |
|------------------|------------------------------------------------------------------|
| RAM              | 1 GB of system memory                                            |
| Operating System | Windows XP, Windows Vista, Windows 7                             |
| Graphics Card    | 512 MB of graphics memory                                        |
| Monitor          | 17" LCD or CRT with minimum 800x600 pixels                       |
| Hard disk        | 80 GB (2 GB equates to about 1 year's testing without archiving) |
| Optical Drive    | DVD/CD-ROM drive compatible with CD-R media                      |
| Ports            | RS232 serial port                                                |
| Printer          | Any Windows compatible printer                                   |

Please note:

James H Heal & Co Ltd have made every effort to ensure the Titan software is compatible with the above specification. The company cannot, however, accept responsibility for any additional or resident software which may compromise the operation of the PC and/or Titan software.

## Software Installation Procedure







Titar<sup>2</sup> - Universal Strength Tester has been successfully installed.

Please use Windows Update to check for any critical updates to the .NET Framework.

Cancel < <u>B</u>ack

<u>C</u>lose

Click "Close" to exit.

Once complete the option of installing the "James H Heal – Key Products" screen saver can be made.

To skip and not install the screen saver, click Cancel.

Click Next to install screen saver.

This screen is advising you of the importance of the second stage of the software installation.

Click **Next** to continue.

Click **Close** to complete Stage 1.

Remove the Titan Software CD from the optical drive and store in a safe place.

Keep the .NET Framework up to date by using Windows Update.

| Titan2 KeyDisk Installation                             | ×        |
|---------------------------------------------------------|----------|
| Unlock Titan S/N 510/99/1003 with KeyCode 1ADB8-OEM-1FE | :633EB ? |
| Cancel                                                  |          |

### Stage 2

The KeyDisk determines Module permissions and is read every time the software is run. This is intended to ensure the user only has access to their permitted Modules. If this stage is skipped then a demo/trial version of Titan software is enabled.

Insert the Titan KeyDisk CD in to the optical drive.

After a few seconds the installation procedure should start automatically. If it does not, then run unlock.exe from the DVD/CD drive.

A message similar to that shown on the left should be displayed.

Press **OK** to continue.

Click **OK** to complete Stage 2.

The Titan software is now ready for use.

| Titan2 KeyDisk Installation 🔀 |  |
|-------------------------------|--|
| KeyCode Installed             |  |
| ОК                            |  |

## Starting the Titan Software

The installation program places two icons on the Windows Desktop of the Titan PC: the Titan Universal Strength Tester icon and the Titan Info folder. Both of these icons are Shortcuts.



## First Run

When the Titan Software is first run it needs to establish the speed of your PC hardware.

Titan Software System Message

The Titan PC requires its timer checking. This will take approximately 1 minute.

Press Forward to continue.

## Titan Software System Message

Timer checking in progess.

Please wait...

## Titan Software System Message

Timer checking finished.

Actual elapsed time 58.2s Required elapsed time 60.0s Timer Correction Factor 1.030928

Press Forward to accept this value.

The first time you attempt to start a F3-New test this message will be displayed.

Click F9-Forward (or just press the F9 function key)

The Timer Check takes just over 1 minute.

Please wait ...

Click F9-Forward accept and save this value.



| Dimensions                |         |
|---------------------------|---------|
| Width                     | 395 mm  |
| Depth                     | 570 mm  |
| Height                    | 1310 mm |
| Weight excluding fixtures | 85 kg   |

| Load                |                                  |
|---------------------|----------------------------------|
| Capacity            | 3000 N (Tension and Compression) |
| Accuracy            | ±0.5%                            |
| Range               | 1 - 100%                         |
| Available Loadcells | 3000 / 600 / 120 N               |

| Extension                |                 |
|--------------------------|-----------------|
| Maximum Speed            | 4000 mm/min     |
| Testing/Return/Jog speed | 2 - 4000 mm/min |
| Speed Accuracy           | ±0.005%         |
| Maximum Stroke           | 600 mm          |
| Total Vertical Space     | 840 mm          |
| Positional Accuracy      | ±0.03 mm        |

| Safety         |                                      |
|----------------|--------------------------------------|
| Gripping       | Low pressure during specimen loading |
| Jaw Movement   | Impact protection (Tension Only)     |
| Loadcell       | Force overload inhibit               |
| Emergency Stop | Yes - located on front panel         |
| Conformity     | Complies with current CE Directives  |

| Pneumatics             |                                                                                            |
|------------------------|--------------------------------------------------------------------------------------------|
| Input Pressure         | 800 kPa (8 bar / 116 psi) - maximum                                                        |
| Test Pressure          | 800 kPa (8 bar / 116 psi) - maximum                                                        |
| Footswitch             | Electronic footswitch control of pneumatic grips (software enable/disable)                 |
| Compressed Air Quality | Filtered to 5 microns (absolute) or better to remove excess particulates, oil and moisture |

| Control System     |                                                                                                                               |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Туре               | Constant Rate of Extension (CRE)                                                                                              |  |
| PC Control         | Windows XP, Windows Vista or Windows 7 running dedicated Titan<br>software                                                    |  |
| Drive Control      | Digital precision closed loop AC servo system via RS232 serial port                                                           |  |
| Power Requirements | $110-230V \pm 10\%$ , 50/60 Hz, 500W (mains electricity must be free from spikes and surges exceeding 10% of nominal voltage) |  |



## **CE Compliance**

Titan is CE marked. It therefore complies with the following directives:

- •
- Machinery Directive 2006/42/EC Low Voltage Directive 2006/95/EC •
- Electromagnetic Compatibility Directive 2004/108/EC



## **Routine Maintenance**

The Titan Universal Strength Tester is generally a maintenance free instrument as far as the user is concerned. The only customer maintenance required is to keep the instrument clean and free from debris and to apply a small amount of grease to the jaw mounting capstans if they start to bind or become difficult to remove and fit.

Servicing & Calibration are available world-wide – contact your local agent or HEALINK at James H Heal for further details. HEALINK is our totally comprehensive, world-wide support programme; it provides a range of services designed to maximise the potential of your testing resources. A brochure summarising the services is available on request.

Customer choosing a HEALINK Service & Calibration Contract are entitled to free Titan Software upgrades when they become available. The upgrade is normally carried out by the visiting HEALINK Engineer.

Contact: <u>support@james-heal.co.uk</u>

www.james-heal.co.uk

## *Remote Maintenance*

New to Titan<sup>3</sup> Software is the ability to carry out Remote Maintenance via the internet. We use a software application known as Healink On-line Support. This application is located in the "Titan3 Info" folder which is installed to the user's desktop along with the "Titan3" shortcut.

In order to use this application the Titan PC <u>must be</u> connected to the internet with a broadband connection.

With the Healink On-line Support Application we can:

- Update Test Configuration Files
- Update Titan Software
- Interrogate the Titan PC remotely for problems.
- Provide online training and presentations (additional costs apply)

The Healink On-line Support Application is not troubled by firewalls, disabled ports and Network Address Translation (NAT) routers for local IP addresses and uses 256 bit AES encryption ensuring a secure connection. The key exchange also guarantees a full client-to-client data protection. This means that even the routing servers will not be able to read the data stream. The application will not run unless launched by the remote user, i.e., the customer. The customer can cancel the session at any time.

Before we can access your system, you supply us with a unique session id and password (by email or telephone), and once the session has ended we can no longer access your system. The Healink On-line Support Application is secured using VeriSign code signing technology. This allows you to verify the origin of any files you receive.

The Healink On-line Support Application also has Chat, VoIP and Video capabilities (subject to your hardware).

## Launching the Healink On-line Support Application

Only launch the HealinkOS.exe program when requested by HEALINK or our Technical Team. The HEALINK and Technical offices are only manned during UK office hours.

To launch the application from the Titan PC desktop:





See front cover for Publication number, e.g., 290-910-1\$A.

| Rev | Date     | Originator | Details of revision                             |
|-----|----------|------------|-------------------------------------------------|
| А   | 08-12-09 | PG         | Draft release                                   |
| В   | 18-01-10 | PG         | First release                                   |
| С   | 25-08-10 | PG         | Update to Installation – Compressed Air section |