
HIDING IN THE FAMILIAR:
STEGANOGRAPHY AND VULNERABILITIES IN POPULAR
ARCHIVES FORMATS

Mario Vuksan, Tomislav Pericin & Brian Karney

BlackHat Europe 2010, Barcelona

Agenda

 Introduction to steganography in archives

 Introduction to file format “malformations”
 Steganography implications

 Vulnerability implications

 Demonstrations
 Quick and dirty hex editing

 Hide text and file data

 Invent our own file format

 Introduction to NyxEngine

“Steganography is the art and science of writing hidden messages in such
a way that no one, apart from the sender and intended recipient,
suspects the existence of the message, a form of security through
obscurity. The word steganography is of Greek origin and means
concealed writing.”

Steganography

Steganography

Steganography History

 Ancient Fascination

 Rumours & Conspiracies
 From Pearl Harbor to Al-Qaida & eBay

 2008 arrest
 British Muslim, Rangzieb Ahmed used invisible ink to write

down Al-Qaida telephone directory

 Difference is in the purpose
 Malicious Uses

 Private communication for illicit purposes, so-called Stego

 Legitimate Uses
 Watermarking, DRM, Movies (CAP – Coded Anti-Piracy),

Medical Images Tracking

Malicious Angle on Stego

 Types
 Messages
 Images
 Media Files

 Open source projects
 600+ different tools
 Private/commissioned tools
 Obscurity is power
 Detection

 Stego Tool discovery
 Brute Force

Reality

 Why can’t we find any good stories about
stego in the wild?
 It could be due to the fact it really is not that

prevalent in the wild

 It could be that analysts are not really looking so
they never find it

 That most media based approaches have many
weakness and make it hard to hide large amounts
of data.

 That the best method to identify stego is to find
the tools based off of Hashes

New Paradigms for Forensics

 Traditional Steganography

 Typical stego is thought of embedding data into
media files (audio files, JPG, BMP, GIF, PNG)

 New paradigm for Stego: Shift away from
media

 to archive files (zip,cab..)

 other approaches such as SFS (Stego File System)

 Other novel approaches

Investigating Stego in Archives

 Why it is relevant from an investigative
perspective?

 Easier way to hide larger payloads in plain sight

 Not easy to identify using existing methods

 blind anomaly-based approach

 image analysis using image filters

 audio analyzer

 Signature analysis (substitution)

 Using hashes to identify tools is pointless

 Makes you always question what is inside the archive

UnixWindows

Archive formats

 Most common file formats found in every Microsoft
Windows, Unix and Mac OS system

File formats are not binded to operating system

ZIP file format

 Most common archive file format in use today

 The format was originally created in 1986 by Phil Katz for PKZIP

 Format is fully documented by PKWARE (32k line text file)

 The PKZIP format is now supported by many software utilities :

 Microsoft Windows has included built-in ZIP support

 WinZIP (most popular ZIP archiver program) – www.winzip.com

 PowerArchiver - www.powerarchiver.com

 WinRAR – www.rarlab.com

 7ZIP - www.7-zip.org

 Format supports:
 Error recovery, multi-disk spanning, encryption and SFX

 Multiple compression algorithms in use (DEFLATE)

RAR file format

 Very popular archive file format

 The format was as developed by Eugene Roshal

 Format is partially documented by developer (TechNote)

 The RAR format is now supported by many software utilities :

 RAR format ships with a free decompressor library (SDK)

 WinRAR – www.rarlab.com

 WinZIP – www.winzip.com

 PowerArchiver - www.powerarchiver.com

 7ZIP - www.7-zip.org

 Format supports:
 Error recovery, multi-disk spanning, encryption and SFX

 Compression algorithms based on LZ and PPMd

CAB file format

 Common installer file format (rarely used by users)

 CAB is the Microsoft Windows native compressed archive format

 Format is fully documented by Microsoft (20 page PDF)

 The cabinet format is now supported by many software utilities :

 Microsoft Windows has included built-in CAB support

 PowerArchiver (can compress) - www.powerarchiver.com

 WinZIP – www.winzip.com

 WinRAR – www.rarlab.com

 7ZIP - www.7-zip.org

 Format supports:
 Multi-disk spanning, digital signing and SFX

 Uses LZX, DEFLATE, Quantum and MsZIP compression

7Zip file format

 Very common archive file format used today

 The format was created in 2000 and is developed by Igor Pavlov

 Format processor is free and open source (LGPL license)

 Format is fully documented by developer (series of text files)

 The 7Zip format is now supported by many software utilities :

 7ZIP - www.7-zip.org

 WinZIP – www.winzip.com

 PowerArchiver - www.powerarchiver.com

 WinRAR – www.rarlab.com

 Format supports:
 Multi-disk spanning, encryption and SFX

GZip file format

 Most common archive file format in use today (on Unix)

 Gzip was created by Jean-Loup Gailly and Mark Adler in 1992

 Format is fully documented in RFC 1952 (few pages from 1996)

 The Gzip format is now supported by many software utilities :

 WinZIP (most popular ZIP archiver program) – www.winzip.com

 PowerArchiver - www.powerarchiver.com

 WinRAR – www.rarlab.com

 7ZIP - www.7-zip.org

 Format supports:
 Single file compression (commonly used with TAR)

 Uses DEFLATE compression algorithm

File format malformations
 All files present on any system are binary files

 Malformation goals:
 Steganography

 Hide file(s) or any other message from view

 Steganography process must be reversible

 Vulnerability exploiting

 Don’t hide anything but break archive processors

 Fuzzing doesn’t apply to this scenario

Hex Editor

File format malformations

 Malformation is achieved by:

 In-depth knowledge of file format specification

 Loose use of file format specification

 Usage of rarely used file fields

 “Weird” file hybrid method

 Try-and-error method

 Steganography is achieved by:

 All of the above

 Injecting data

Previous work…

 Archive malformation tests

 Last set of tests performed in 2004 by iDefense

 Implications:

 “The vulnerability was caused by the fact that some archive
compression/decompression software (including WinZip)
incorrectly handles compressed files with deliberately
damaged header fields, thus, in-fact, allowing creation of
the damaged archive files, that could be automatically
repaired on the victims computer without notifying the user.”
- ESET

ReversingLabs|Testing

 ReversingLabs archive inspection tests:

1. File format identification

 Optimization: Fastest and most accurate methods

2. File format validation

 Package validation: Archive data corruption

 Vulnerabilities

3. Steganography

 Interesting data detection

 Data self-destruction?

ReversingLabs|Results

 ReversingLabs archive inspection test results:

 Steganography standpoint:

 Multiple ways to hide file(s) and data in all formats

 Vulnerability standpoint:

 High probability of malware detection evasion

 Anti-Malware scanners

 15 reported vulnerabilities (more pending)

 Gateway scanners

 IPS appliances

Low impact on
protected endpoints

Archive steganography|ZIP

 Steganography is achieved by:

 Compressed file name modification (NULL byte)

 Changes to internal ZIP structures

 Number of packed files decrementing

 Data camouflage by extra fields utilization

 Moving the central directory

 Injecting data

Archive steganography|ZIP

 Steganography implications:

 Data can be hidden in ZIP archives

 Data can also be hidden in OOXML file format

 Data self-destruction:

 Steganography data can be removed by user actions

Archive steganography|ZIP

 Steganography implementations:

 Zipped Steganography by Corinna John (CPOL)

 Can hide multiple files which are stored before central dir

 Can encrypt the hidden files with a password

 ZJMask by Vincent Chu (freeware)

 Can hide only one file and it is pre-pended to the archive

 Can encrypt the hidden file with a password

Archive vulnerabilities|ZIP

 Discovered vulnerabilities:

 RLC_VSA_001 – Extensive header modification

 Vulnerability:

 Reversible steganography implementation

 Central ZIP directory fields used to store information

 Intentionally damaged local ZIP directory

 Replaced file name first letter with zero

 Implication:

 Some scanners stopped scanning on hidden file

Archive vulnerabilities|ZIP

 Discovered vulnerabilities:

 RLC_VSA_002 – Password only for the first file

 Implication:

 Some scanners stopped scanning at that point
assuming that the whole archive was password
protected

Archive vulnerabilities|ZIP

 Discovered vulnerabilities:

 RLC_VSA_006 – ZIP appended to ZIP SFX

 Vulnerability:

 File is compressed and converted to ZIP SFX

 Another ZIP file is appended and aligned to it

 Implication:

 Some scanners inspected only appended file

Archive vulnerabilities|ZIP

 Discovered vulnerabilities:

 RLC_VSA_011 – Utilization of extra field

 Vulnerability:

 Use of documented extra ZIP fields (2 variations)

 Improper use but still format valid

 Implication:

 Some scanners stopped processing when they found
extra fields in the central ZIP directory

Archive vulnerabilities|ZIP

 Discovered vulnerabilities:

 RLC_VSA_012 – Fake ZIP64 archive

 Vulnerability:

 Appended following data to central directory:

 Zip64 End of central directory record structure

 Zip64 End of central directory locator structure

 Implications:

 Some scanners failed to scan the archive because it
was identified as ZIP64 format which wasn’t supported
by the vendor

Archive vulnerabilities|ZIP

 Discovered vulnerabilities:

 RLC_VSA_013 – File “realigned” to 0x40

 Vulnerability:

 Pre-pended 0x40 NULL bytes to ZIP archive

 Even though archive is invalid it is extracted generically
via local ZIP directory data

 Implications:

 Some scanners identified the file as broken and their
generic scanners failed to detect local ZIP directory

Archive vulnerabilities|ZIP

 Discovered vulnerabilities:

 RLC_VSA_014 – Utilization of FileComment field

 Vulnerability:

 Use of documented ZIP comment fields

 Implication:

 Some scanners stopped processing when they found
extra comment field in the central ZIP directory

Archive vulnerabilities|ZIP

 Discovered vulnerabilities:

 RLC_VSA_015 – Bad compression algorithm

 Vulnerability:

 Specially crafted ZipX file to which the additional file is
added by any archiver program other than WinZIP

 Utilization of new JPEG compression algorithm

 Implications:

 Some scanners didn’t process the whole archive when
the unsupported compression algorithm was found

Archive vulnerabilities|RAR

 Discovered vulnerabilities:

 RLC_VSA_003 – HEAD_FLAGS tampering

 Vulnerability:

 First RAR file block is declared as “temporary” block

 Implications:

 Some scanners failed to identify and/or decompress
files whose first block was a temporary block

 Side-effect: File which has a temporary header block is
write protected. Adding files to such archive corrupts
it.

Archive vulnerabilities|RAR

 Discovered vulnerabilities:

 RLC_VSA_005 – Password only for the first file

 Implication:

 Some scanners stopped scanning at that point
assuming that the whole archive was password
protected

Archive vulnerabilities|RAR

 Discovered vulnerabilities:

 RLC_VSA_008 – Bad extract version requirements

 Vulnerability:

 RAR decompression algorithm requirements set to
version 25.0 (which doesn’t exist)

 Implications:

 Some scanners failed to process the whole archive and
stopped at file whose extract requirements weren’t
meet

Archive vulnerabilities|CAB

 Discovered vulnerabilities:

 RLC_VSA_004 – Incorrect decompressed size

 Vulnerability:

 Modification of the uncompressed size field

 Effectively an archive bomb and detected as such by
some scanners

 Implications:

 Extraction of such archive took large amount of time
as some scanners tried to allocate the whole 4GB file
first. Some skipped over the file due to its size.

Archive vulnerabilities|GZIP

 Discovered vulnerabilities:

 RLC_VSA_007 – Adding documented extra fields

 Vulnerability:

 Manual addition of documented and valid extra fields

 Implications:

 Some scanners failed to locate start of compressed
data and skipped the file inspection

Archive vulnerabilities|7Zip

 Discovered vulnerabilities:

 RLC_VSA_009 – Incorrect start header CRC

 Vulnerability:

 Checksum of the first block set to 0xFFFFFFFF

 Implications:

 Some scanners failed to scan archives with invalid
header checksum

Archive vulnerabilities|7Zip

 Discovered vulnerabilities:

 RLC_VSA_010 – Null out first header block

 Vulnerability:

 Resetting the following values in first header block:

 StartHeaderCRC, NextHeaderOffset, NextHeaderSize and
NextHeaderCRC to NULL

 Implications:

 Some scanners failed to scan archives this specific but
format valid archive header

Test|Conclusions

 ReversingLabs archive inspection test conclusions:

1. Files could still be malformed to carry hidden payload

2. Malformed files can be automatically fixed which
making them valid on endpoint PCs

3. Files could be “malformed” to carry stegano content

4. Content hidden by steganography principles can have
a self-destruct button

DEMO|Steganography

 Demonstration #1:

 Hex editing:

 Hiding existing file(s) inside ZIP archive

 Inserting hidden message into ZIP archive

 Inventing file formats

 Tool:

 ZIPInsider

NyxEngine

NyxEngine|Introduction

 Introduction to the NyxEngine
 Who is Nyx?

 What does it do?
 Does archive pre-processing

 Inspects archive for viable hidden data

 Recovers broken and/or hidden files

 Acts like an exploit shield

 How can I use it?
 Nyx is a free library and it comes with its SDK

 NyxConsole, example of SDK implementation

 Plugin for TotalCommander and PowerArchiver

NyxEngine|Functionality

 NyxEngine functional groups:
 Archive identification
 Supports: ZIP, RAR, CAB and GZIP

 Packed content browsing
 Transverse the packed content one file at the time

 Retrieve information about packed content

 Extract selected file slice

 Archive validation
 Checks if the archive is corrupted beyond recovering

 Archive inspection
 Search for steganography content

 Recover salvageable corrupted content

NyxEngine|Exploit shield

 NyxEngine exploit shield

 Archive pre-processing protects from:

 Stored file name length and content

 Suspicious compression ratio (archive bombs)

 Extract algorithm requirements

 Checksum tampering

 Multi-disk tampering

 File entry duplication

 … and other miscellaneous header data checks

 Description & ReversingLabs VSA for every exploit

NyxEngine|DEMO

 NyxEngine demo

 NyxConsole tested on ReversingLabs VSA

 NyxConsole tested on ZIP stegano solutions

 NyxEngine corrupted file recovery

Questions?
(What Would You Like to Know)

