
RETHINKING MOBILE TRUST

2Rethinking mobile trust

As smartphones have evolved from consumer
novelties into essential tools for living and working,
hackers have turned these devices into key
targets of attack. In turn, makers of smartphones
have implemented new ways of establishing

and maintaining trust at the hardware level. But
inherent limitations in the mobile architectures of
these devices – especially in a world of chip-based
attacks – mean that organizations must find new
ways of building mobile trust.

HARNESSING THE MOBILE ECOSYSTEM

The creation of a smartphone is a delicate
balancing act between a multitude of parties from
across the globe, each responsible for its own
sliver of functionality:

• A software engineering team develops the
operating system (OS).

• A semiconductor manufacturer designs and
fabricates the system on a chip (SoC).

• Hundreds of suppliers provide the hardware
components for the printed circuit board
assembly (PCBA).

• An electronics manufacturer assembles
the device.

• A cellular provider establishes carrier settings.

• Millions of developers create apps for the
public app store.

The end result is a complex mobile ecosystem,
with each piece bringing its own exposure.
Smartphones give threat actors a variety of entry
points, from SMS phishing attacks to malicious

apps. From there, any vulnerability in any
component at any layer of the stack can potentially
be exploited, from the individual apps at the top to
the chips at the bottom. The lower in the stack a
hacker is able to go, the more control is given over
the rest of the mobile device.

Indeed, real-world examples abound of
smartphones being attacked at every layer.
As mobile devices have surpassed traditional
computers as the dominant mode of computing,
malicious actors have increasingly focused their
efforts on these devices. The smartphone’s huge
attack surface – exacerbated by issues like poor
implementations, insufficient security mitigations,
fragmented responsibilities, supply-chain issues
and delayed patching – gives hackers virtually
unlimited ways to gain illicit access. From there,
hackers can use tools like rootkits and remote
access Trojans (RATs) to control these devices
and siphon their data.

3Rethinking mobile trust

POTENTIAL SMARTPHONE VULNERABILITIES

APPS
Components
• Third-party libraries

• Data

• Permissions

• Exposed services

Key threats
• Poor authentication practices

• Multi-stage malware delivery

OPERATING SYSTEM
Components
• App sandbox

• Kernel

• Media services

• Runtime environment

Key threats
• Unpatched OS vulnerabilities

• Rootkits

FIRMWARE
Components
• Initialization code

• Bootloader

• Device drivers

Key threats
• Firmware bugs

• Supply-chain attacks

HARDWARE
Components
• Applicator processor and memory

• Baseband processor and memory

• Security module

• Subscriber identity module (SIM) card

• Peripherals

Key threats
• Speculative execution vulnerabilities

• Physical memory defects

4Rethinking mobile trust

BUILDING TRUST AT THE HARDWARE LEVEL

With so many opportunities for exploitation,
smartphone makers have started building trust
into the hardware at the very foundation of these
devices through the use of a hardware root
of trust and a trusted execution environment.
Hardware-based trust is designed to enable
confidence in every other layer of the stack
by providing a degree of assurance that
the smartphone’s foundation hasn’t been
compromised by low-level attacks.

Hardware root of trust

A hardware root of trust (HRoT) is a set of security
primitives – typically initialization code stored in
read-only memory (ROM) and a unique public
key based on the device’s hardware identifier
– providing a hardware-based, unalterable,
cryptographically secure basis of trust to be
leveraged by the rest of the device. Given its
importance, an HRoT is typically safeguarded
through trusted supply-chain processes and
tamper protections.

The chain of trust manifests itself in the startup
process, where security checks at each step in the
process – stemming from the HRoT – validate the
relying code.

After successfully booting, the HRoT may be
leveraged to validate software/firmware during
runtime. Tasks may include verifying the digital
signatures associated with software (and creating
assertions based on the results), measuring the
integrity of software, managing software
updates and more.

CHAIN OF TRUST

POWER ON
When the user powers on the smartphone,
the application processor immediately
executes the initialization code stored in
read-only memory (ROM).

INITIALIZATION CODE
(HARDWARE)
The initialization code, laid down in
silicon during chip fabrication, uses the
device’s protected public key to verify
that the bootloader is signed by the
manufacturer before allowing it to load.

BOOTLOADER
(FIRMWARE)
The bootloader cryptographically validates
that each piece of firmware has been
digitally signed (and is therefore unmodified
by any low-level malware below the
operating system, like rootkits). When
finished, the bootloader verifies and runs
the operating system (OS) kernel.

KERNEL
(OPERATING SYSTEM)
The operating system ensures that all
apps are digitally signed before allowing
the user to run them.

APPS

5Rethinking mobile trust

TRUSTED EXECUTION ENVIRONMENT

A trusted execution environment (TEE) is an isolated execution environment that runs
independently of the main, user-facing OS. Within a TEE, security-critical capabilities – such
as storing cryptographic keys or running sensitive processes – are performed. Approaches for
establishing a TEE vary between platforms and even within the same platform.

Android
Most Android smartphones
offer some version of ARM’s
TrustZone technology,
typically the Qualcomm Secure
Execution Environment (QSEE)
or Trustonic’s Kinibi. TrustZone
consists of two virtual
processors: a “secure” world
for the security subsystem
and a “non-secure” world for
everything else. Both virtual
worlds typically run from the
core processor, with hardware
logic providing the separation
between them. While
implementations of TrustZone
vary widely between different
Android devices, the secure
world is usually used to protect
cryptographic keys and
authentication mechanisms.

iPhone
Since 2013, Apple has included
the Secure Enclave in all of
its smartphones. The Secure
Enclave is a coprocessor
that’s isolated from the main
processor (but located on
the same SoC), booting
separately from the rest of the
device and running its own
microkernel. The main purpose
of the coprocessor is to
generate the device’s Unique
ID (UID) number and keep it
segregated from the rest of
iOS. Private keys are created,
stored and used in Secure
Enclave; other functions
never handle these keys, only
receiving the output of the
cryptographic operations.

6Rethinking mobile trust

THE LIMITATIONS OF SMARTPHONE TRUST

Shared processing
Despite the advances in hardware-based trust
from smartphone vendors, mobile devices are still
multi-purpose consumer products at the end of the
day. Most vendors have a mandate to fit as many
components as possible into the thinnest form
factor while keeping the end product affordable
for most consumers. In practice, this means that
critical security functions – like an HRoT and TEE
– are relegated to the same application processor
or SoC running non-secure software, including the
user’s myriad apps. Given the host of vulnerabilities
affecting any smartphone at any time, attackers
have a plethora of tools available to exploit these
critical functions.

While vulnerabilities affecting the initialization
code and bootloader have been exceedingly rare,
exploits targeting various TEEs have successfully
leveraged vendors’ lack of mitigations. There
have been numerous TEE exploits published,
perhaps the most popular of which is the May 2016
discovery of a TEE vulnerability affecting about
60% of all Android smartphones. A flaw in the
secure world’s OS running on Qualcomm’s QSEE
allows an attacker running code in the non-secure
world to exploit an application within the TEE,
eventually gaining complete control over the
entire device.

Chip-based vulnerabilities
As if smartphone vulnerabilities in the upper layers
of the stack weren’t bad enough, an emerging
series of chip-based vulnerabilities affecting nearly
every type of processor in every commercial
device are poised to shatter existing security
models at their core. These types of vulnerabilities
threaten the isolation of hardware-based security
measures, essentially putting control of the entire
device in play. Chip-based vulnerabilities are
particularly worrisome because they’re virtually
impossible to detect with existing solutions and
because remediation often requires changes to the
affected hardware.

Since the public disclosures of Meltdown and
Spectre in January 2018, security researchers have
placed more focus on these types of vulnerabilities,
leading to regular discoveries of new chip flaws
and variants of existing flaws. It’s likely that
these discoveries will continue for years to come,
especially considering the lengthy development
cycle for new chip architectures.

Speculative execution

Flaws in a processor’s speculative
execution – in which tasks are
performed based on anticipated
results as a way of preventing
delays – allow a rogue process to
access the memory of apps and
the OS.

Examples:
Meltdown (revealed January 2018)
BranchScope (revealed March 2018)

Physical memory defects

Variations of the Rowhammer
attack – whereby bits can be
flipped by accessing specific
memory blocks inside a chip
thousands of times per second –
enable an attacker to alter crucial
pieces of data.

Examples:
Drammer (revealed October 2016)
GLitch (revealed May 2018)

Firmware bugs

Flaws in the design and
implementation of the firmware
that is shipped with chipsets –
typically errors in the code or
a lack of security mitigations
– provide an entry point for attack
and privilege escalation.

Examples:
QuadRooter (revealed August 2016)
Broadpwn (revealed July 2017)

MAJOR TYPES OF CHIP-BASED VULNERABILITIES

© 2018 PPIP LLC. All rights reserved. PRIVORO and the PRIVORO DOG LOGO are trademarks of PPIP LLC, registered in the U.S. and other countries. PVO-CON-J005-V01

7Rethinking mobile trust

CLOSING THE MOBILE HARDWARE GAP

The looming wave of chip-based attacks puts
enterprises and government agencies in a
tricky situation, forced to decide whether the
productivity gains enabled by smartphones are
worth the countless risks of continued use.

The Privoro platform provides organizations with
an alternative for trusted mobile computing: the
SafeCase. An external, high-security source of
trust, the SafeCase surrounds – but is functionally
independent of – a user’s mobile device. Like
modern smartphones, the SafeCase has its own
HRoT. Unlike smartphones, however, SafeCase

has a number of architectural features that
protect it from the threat of known and unknown
chip-based vulnerabilities, including a closed-loop
communication paradigm and a restricted
processing schema that only allows interaction with
approved, vetted and signed software. Security is
central to every aspect of the case’s design and
manufacturing, with embedded protections for
the supply chain, the provisioning process and the
hardware around the chip itself. Even when the
smartphone has been compromised, the SafeCase
builds a baseline of trust for the broader system
upon which secure services can be built.

