
Minitab®19

Minitab®19

Minitab®19

Minitab®19

python-integration

Minitab®, Minitab Workspace™, Companion by Minitab®, Salford Predictive Modeler®, SPM® and the Minitab® logo
are all registered trademarks of Minitab, LLC, in the United States and other countries. Additional trademarks of Minitab,
LLC can be found at www.minitab.com. All other marks referenced remain the property of their respective owners.

© 2020 Minitab, LLC. All rights reserved.

2

https://www.minitab.com

Contents
Python Integration Guide for Minitab Statistical Software..4

Introduction to using Python with Minitab Statistical Software... 4
Install Python...4
Install mtbpy via PIP..5
Run in an Anaconda environment ..5
Verify the Python installation...5
Run Python scripts in Minitab...6
Run Python scripts from the Minitab interface.. 10

Python API Reference..10
Module: mtbpy...10
Example code that converts Minitab date format to Unix date format... 13

Example of calling a Python script from Minitab...14

3

Python Integration Guide for Minitab
Statistical Software
Learn to bring results from Python into Minitab Statistical Software with the mtbpy package.

Use Python with Minitab Statistical Software
Verify that your Python installation works with Minitab and learn about the different ways that you can run
Python from Minitab.

Python API Reference
Learn about the mtbpy module's classes and methods for Python.

Example of calling a Python script from Minitab
An example of a Python script that uses mtbpy to send a graph and a table from Python to Minitab.

Introduction to using Python with Minitab Statistical
Software
Verify that your Python installation works with Minitab and learn about the different ways that you can run Python
from Minitab.
Minitab Statistical Software integrates with Python, a general-purpose programming language with applications in
data science. To accomplish Python integration, Minitab, LLC. provides the mtbpy library. With this custom library,
you can create tables, graphs, messages, and notes in Python and display them in Minitab. Python integration offers
the flexibility of custom Python code within Minitab's easy-to-use interface, and the results can be saved, stored, and
shared in Minitab Project Files. After you install the mtbpy package, you're ready to run Python code from Minitab.
If you have Python code that you want to access routinely, you can customize Minitab's interface to make the analysis
more accessible through custom buttons or menus.

For more information on Minitab's Python library, including Python code examples, go to Python API Reference on
page 10.

For more information on Python, consult the guidance available at www.python.org.

All the files referenced in this guide are available in this .ZIP file: Datafileref: .

Requirements
• Minitab 19.2020.1 (64-bit) or higher. To check your version of Minitab, choose Help > About Minitab.

• Python 3.6.1 (64-bit) or higher.

Install Python
Typically, the default installation of Python works with Minitab. Minitab supports Python 3.6.1 or higher. Follow the
directions for your operating system at Python's website.

Note For the Window's operating system, select the option Add Python 3.x to PATH during installation. If Python is not in your PATH,
then add Python to your system environment variables. Otherwise, Minitab will not be able to find Python.

4

https://www.python.org/
https://www.python.org/

Install mtbpy via PIP
To use Python with Minitab, install the mtbpy package. The mtbpy package gives you the capability to bring data
from Minitab into Python and to return Python results to Minitab. To install the latest version via PIP, run the
corresponding command for your operating system's terminal:

Windows
python -m pip install mtbpy

MacOS
python3 -m pip install mtbpy

After Python and the mtbpy package are installed, you can use the PYSC command to run Python from Minitab.

Run in an Anaconda environment
To run Minitab in an Anaconda environment, complete the following steps:
1. Open an Anaconda Prompt.

2. (Optional) Activate the Anaconda environment you want to run Minitab in using the command: Activate.

3. Copy the path to Mtb.exe. You can find the path by navigating to the Minitab install location or by copying the
Target from a shortcut to Minitab.
Tip The default Minitab install location on Windows is "C:\Program Files\Minitab\Minitab 19\Mtb.exe".

4. Paste the path into the Anaconda Prompt and press Enter.

Verify the Python installation

Default folders for Python files for Minitab
Typically, Python integration with Minitab is easiest when all of the files that you use are in the default folder location
for Minitab files. If you do not specify a file path when you run Python from within Minitab, Minitab looks for your
Python files in the default folder.

Windows
The default location is the "My Documents" folder.

MacOS
The default location is the "Documents" folder.

In the Windows operating system, if your Python file is in the default folder and you receive the error File not found:,
check the default file location in your Minitab settings. To view or change the default file location in Minitab, choose
File > Options > General > Default file location.

Run a test file
Use the following file to perform the steps in this section:

DescriptionFile

A sample Python script that is used throughout this guide. For this section, you run the script
without arguments. When the script runs successfully, the result is the message "Minitab
successfully located your Python installation."

Datafileref:

5

Put Datafileref: in Minitab's folder for Python scripts. The default folder location depends on your operating system.

After you save the file, run the following command in the Command Line pane in Minitab:
PYSC "test.py"

Important If the Minitab Command Line is not visible, choose View > Command Line/History.

If Python successfully works with Minitab, you will see the following output in Minitab:
Python Script

These results are from external software.

Minitab successfully located your Python installation.

Run Python scripts in Minitab
You can run Python scripts from Minitab in three ways:

• Run the PYSC command in the Command Line pane.

• Run a Minitab exec that includes the PYSC command.

• Customize the Minitab interface to run a Minitab exec that includes the PYSC command.

Command Line pane
You can run the PYSC command in the Command Line pane. For general information about the Command Line pane,
go to Command Line/History pane. For general information about using session commands, go to Session Command
help.

PYSC ["filename.py"] ["Args"...]
Runs the Python script that you specify.

The default file extension for Python scripts is .PY. If the file extension is .PY, you do not need to type the file
extension.

The optional argument Args allows you to pass arguments to the Python script through sys.argv[1:]. Args
can be any text values separated by a space. Enclose arguments in quotation marks. The default value is None,
which means that the script does not receive any arguments.

6

/minitab-environment/interface/interface-components/command-line-history-pane/
/media/pdfs/notranslate/session_commands.pdf
/media/pdfs/notranslate/session_commands.pdf

In general, you use arguments to bring data from Minitab into Python. You can enter arguments in several ways.
For example, you can use arguments that are identifiers for columns, matrices, or constants:

UsageValue in PythonMinitab Session
Command

Use the following function to retrieve the column:
mtbpy.mtb_instance().get_column(sys.argv[1:][0])

"C1"PYSC "test.py"
"C1"

Use the following function to retrieve the matrix:
mtbpy.mtb_instance().get_matrix(sys.argv[1:][0])

"M1"PYSC "test.py"
"M1"

Use the following function to retrieve the constant:
mtbpy.mtb_instance().get_constant(sys.argv[1:][0])

"K1"PYSC "test.py"
"K1"

You can also use arguments that are the names of columns, matrices, or constants in Minitab:

UsageValue in PythonMinitab Session
Command

Use the following function to retrieve the column:
mtbpy.mtb_instance().get_column(sys.argv[1:][0])

"My Column"PYSC "test.py" "My
Column"

Use the following function to retrieve the matrix:
mtbpy.mtb_instance().get_matrix(sys.argv[1:][0])

"My Matrix"PYSC "test.py" "My
Matrix"

Use the following function to retrieve the constant:
mtbpy.mtb_instance().get_constant(sys.argv[1:][0])

"My Constant"PYSC "test.py" "My
Constant"

You can also specify arguments to pass text to use in your Python code. You can pass text directly or in a constant.

UsageValue in PythonMinitab Session
Command

This case passed a value that cannot be used with an mtbpy
'get' command. However, Args are not limited to only passing
columns, matrices, and constants.

"Text not Stored"PYSC "test.py"
"Text not Stored"

This case highlights that, although PYSC does not accept
arguments that are not text values, you can pass a constant
to PYSC as long as the constant is defined as a text value.

"Text in Constant"LET K1 = "Text in
Constant"
PYSC "test.py" K1

When you pass more than one argument, you can access the arguments in order from the list of arguments:

UsageValue in PythonMinitab Session
Command

This case is an example of passing multiple Args, where you
would access them by using the following functions in Python:
mtbpy.mtb_instance().get_column(sys.argv[1:][0])
mtbpy.mtb_instance().get_column(sys.argv[1:][1])
mtbpy.mtb_instance().get_matrix(sys.argv[1:][2])
mtbpy.mtb_instance().get_constant(sys.argv[1:][3])
int(sys.argv[1:][4])

"C1"
"C2"
"M1"
"K3"
"10"

PYSC "test.py"
"C1" "C2" "M1"
"K3" "10"

Use the following file to see output from the example text for the following subcommands. Make sure that the
test.py file is in Minitab's folder for Python scripts.

DescriptionFile

A sample Python script that is used throughout this guide. When you pass arguments to the
script, the results include a list of the values of the arguments. When you run the script with the

Datafileref:

7

DescriptionFile

argument "ArgToBePrintedToStdErr", the script writes the name of the argument to the stderr
file. When you run the script with the argument "ArgToBePrintedToStdOut", the script writes
the name of the argument to the stdout file. Use the subcommands that follow to control
whether the contents of these files appear in Minitab's Output pane.

NOSERR
Specifies to not display text from the standard error (stderr) console output in the Output pane in Minitab.
The stderr console output is where you see Python error messages when you run your code in a Python
integrated development environment, although you can use Python to put other results in the stderr file.
For example, by default:
PYSC "test.py" "ArgToBePrintedToStdErr".

Produces the following results that include the stderr console output:
Python Script

These results are from external software.

The following arguments were passed to Python:
['ArgToBePrintedToStdErr']

Python standard error

The following arguments were printed to Stderr: 'ArgToBePrintedToStdErr'

The following session commands exclude the stderr console output:
PYSC "test.py" "ArgToBePrintedToStdErr";
NOSERR.

The session commands produce the following results:
Python Script

These results are from external software.

The following arguments were passed to Python:
['ArgToBePrintedToStdErr']

SOUT
Specifies to display text from the standard console output (stdout) in the Output pane in Minitab. The
stdout is where you would see the results of commands like print() in a Python integrated development
environment. For example, by default:
PYSC "test.py" "ArgToBePrintedToStdOut".

Produces the following results that exclude the stdout:
Python Script

These results are from external software.

The following arguments were passed to Python:
['ArgToBePrintedToStdOut']

The following session commands include the stdout:
PYSC "test.py" "ArgToBePrintedToStdOut";
SOUT.

The session commands produce the following results:
Python Script

8

These results are from external software.

The following arguments were passed to Python:
['ArgToBePrintedToStdOut']

Python standard output

The following arguments were printed to Stdout: 'ArgToBePrintedToStdOut'

Minitab exec file
Use the following file to perform the steps in this section:

DescriptionFile

A sample Python script that is used throughout this guide. When you pass arguments
to the script, the results include a list of the values of the arguments.

Datafileref:

A sample Minitab exec file that includes the session commands to run the test.py script
with 2 arguments.

Datafileref:

Execs are text files that contain Minitab session commands. You can include the PYSC command that runs Python in
a Minitab exec. With exec files, you can easily run commands without re-typing them, and you can assign the exec to
a custom button in Minitab. For more information about Minitab execs, go to Minitab Macros Help. To run an exec,
choose File > Run an Exec.

Suppose you create the exec Datafileref: . The exec file contains the following Minitab command:
PYSC "test.py" "Arg1" "Arg2"

To run the Python script with the exec, use the following steps:

1. Choose File > Run an Exec.

2. Click Select File.

3. Select PYEXEC.MTB.

4. Click Open.

The script displays the values of the arguments in Minitab, and the exec produces the following results:
Python Script

These results are from external software.

The following arguments were passed to Python:
['Arg1', 'Arg2']

Stop the PYSC command
You can stop a Python script and keep Minitab open, which prevents the loss of any edits to your Minitab project
since your last save. The method to stop a Python script depends on your operating system.

Windows
Press Ctrl + Alt + Delete to open the Windows Task Manager. Then, end the Python process.

9

/media/pdfs/notranslate/Minitab_Macros.pdf

MacOS
Press Command + Option + Esc to open the Force Quit window. Then, end the Python application.

Run Python scripts from the Minitab interface
If you have a Minitab exec file, you can create a custom button or menu that runs the exec. For general information
on how to customize the interface in Minitab, go to Customize menus, toolbars and shortcut keys.

You can use the following steps to create a custom button that runs an exec:
1. Choose View > Customize.

2. Click the Tools tab.

3. On the Tools tab, click the New (Insert) button .

4. Type a name for the command, then press the Enter key.

5. Click the Open button .

6. From the file type drop-down list, select All Files (*.*).

7. Browse to and select an exec file.

8. Click Open.

9. Choose View > Customize again.

10. On the Commands tab, under Categories, select Tools.

11. While the Customize dialog box is open, drag the new command to where you want it to appear on the Minitab
menu or toolbar.

12. Click Close.

In addition to customizing Minitab's interface, you can use a COM-compliant language to create custom dialog boxes
and analyses. For information on how to customize Minitab through COM, go to Minitab Automation.

Python API Reference
Documentation for the mtbpy module's classes and methods for Python.
To accomplish Python integration with Minitab Statistical Software, Minitab, LLC. provides the mtbpy library. The
following descriptions of the classes and methods from the mtbpy module prepare you to write Python code that
integrates with Minitab.

For information on how to install Minitab's Python library and how to run Python from Minitab, go to Introduction
to using Python with Minitab Statistical Software on page 4.

For more information on Python, consult the guidance available at www.python.org.

Module: mtbpy

Class: mtb_instance
The following are the methods for the mtb_instance class.

10

/minitab-environment/interface/customize-the-interface/customize-menus-toolbars-and-shortcut-keys/
/media/pdfs/notranslate/Minitab_Automation.pdf
https://www.python.org/

get_column

Retrieves a column from a Minitab worksheet to use in Python.

column_name: string
Specifies the column to retrieve. You can specify either the column number (for example, "C1") or
the column name (for example, "My Column").

Return value
Returns the column of data from the active worksheet as a Python list. The list can contain either text or
numeric values.

Example
from mtbpy import mtbpy

column1 = mtbpy.mtb_instance().get_column("C1")
column2 = mtbpy.mtb_instance().get_column("My Column")

get_constant

Retrieves a constant from a Minitab worksheet to use in Python.

constant_name: string
Specifies the constant to retrieve. You can specify either the constant number (for example, "K1") or
the constant name (for example, "My Constant").

Return value
Returns a constant that can be either a text or numeric value.

Example
from mtbpy import mtbpy

constant1 = mtbpy.mtb_instance().get_constant("K1")
constant2 = mtbpy.mtb_instance().get_constant("My Constant")

get_matrix

Retrieves a matrix from a Minitab worksheet to use in Python.

matrix_name: string
Specifies the matrix to retrieve. You can specify either the matrix number (for example, "M1") or the
matrix name (for example, "My Matrix").

Return value
Returns the columns of data from the matrix as a Python list of lists.

Example
from mtbpy import mtbpy

matrix1 = mtbpy.mtb_instance().get_matrix("M1")
matrix2 = mtbpy.mtb_instance().get_matrix("My Matrix")

11

add_message

Appends a message to the Minitab Output pane.

message: string
Specifies the message to display.

Return value
None

Example
from mtbpy import mtbpy

mtbpy.mtb_instance().add_message("This is a message.")

set_note

Sets a note at the top of the Minitab Output pane.

message: string
Specifies the text to display.

Return value
None

Example
from mtbpy import mtbpy

mtbpy.mtb_instance().set_note("The output contains one note.")

add_image

Appends an image to the Minitab Output pane when you have a supported image file.

path: string
Specifies the path to the image.

Return value
None

Example
from mtbpy import mtbpy
import numpy as np
import matplotlib.pyplot as plt

N_points = 1000
n_bins = 50
x = np.random.randn(N_points)
y = .4 * x + np.random.randn(N_points) + 5
fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True)
axs[0].hist(x, bins=n_bins)
axs[1].hist(y, bins=n_bins)
fig.savefig("histogram.png")
mtbpy.mtb_instance().add_image("histogram.png")

12

add_image_bytes

Appends an image to the Minitab Output pane when you have a bytes object.

data: bytes
Specifies the bytes of data for an image. For example, you can enter a bytes array as the parameter.

Return value
None

Example
from mtbpy import mtbpy

image_data =
b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\t\x00\x00\x00\t\x08\x02\x00\x00\x00o\xf3\x91G\x00\x00\x00\x01sRGB\x00\xae\xce\x1c\xe9\x00\x00\x00\x04gAMA\x00\x00\xb1\x8f\x0b\xfca\x05\x00\x00\x00\tpHYs\x00\x00\x0e\xc3\x00\x00\x0e\xc3\x01\xc7o\xa8d\x00\x00\x00"IDAT\x18Wc\xd8a\xbb\x8b\x81\x01\'I\xba\x04\x01i\x9c\x12\x04\xa4qJ\x10\x90\xc6)\xb1\xc3v\x17\x00\xfc\x0bE\x08o,\xff\xe2\x00\x00\x00\x00IEND\xaeB`\x82'
mtbpy.mtb_instance().add_image_bytes(image_data)

add_table

Appends a table to the Minitab Output pane.

columns: list of lists
Specifies the columns of data for the table as a list of lists.

headers: list (Optional)
Specifies the column headers for the table. The default headers is an empty list.

title: string (Optional)
Specifies the title for the table. The default title is "".

footnote: string (Optional)
Specifies the footnote under the table. The default footnote is "".

Return value
None

Example
from mtbpy import mtbpy

mytitle = "My table title"
myheaders = ["Header for column 1", "Header for column 2"]
mycolumns = [[1,1,1],[2,2,2]]
myfootnote = "My footnote for the table."
mtbpy.mtb_instance().add_table(columns=mycolumns, headers=myheaders, title=mytitle,
footnote=myfootnote)

Example code that converts Minitab date format to Unix date
format
By default, Minitab uses a different datetime format than Python. To convert from the Minitab datetime format
to the Unix datetime format, use the following code:
from datetime import datetime, timedelta

def minitab_to_unix_datetime(pOrdinal, pEpoch0=datetime(1899, 12, 30)):
return(pEpoch0 + timedelta(days=pOrdinal))

13

Example of calling a Python script from Minitab
A marketing firm is hired to create a campaign for a new coffee blend. As part of their research, the team collects data
from online reviews that include the word "coffee". To visualize the most popular words used in the reviews, the team
wants to create a word cloud and add it to a Minitab project.

The example Python script opens a .TXT file that contains the coffee reviews. The script counts the words and creates
a word cloud and table of frequencies. Then the script sends the word cloud image and the table to the Minitab Output
pane.

All the files referenced in this guide are available in this .ZIP file: Datafileref: .

Use the following files to perform the steps in this section:

DescriptionFile

A Python script that takes data from comments in the file coffee_reviews.txt and
displays the most frequent words in a word cloud and table.

Datafileref:

A data file that contains a column of customer reviews of coffee.Datafileref:

An image file that the Python package wordcloud uses to create the shape of the
word cloud.

Datafileref:

The Python script in the below example requires the following Python modules:

mtbpy
The Python module that integrates Minitab and Python. In the example, functions from this module send
Python results to Minitab.

numpy
A Python module that has various applications for scientific computing. In this example, functions from this
module create a data array.

wordcloud
A Python module that creates word clouds.

You can install the modules with pip. For example, the following command works for a typical installation of Python:
pip install mtbpy numpy wordcloud

1. Save the Python script file, Datafileref: , to your Minitab file location.
Tip To change the Minitab file location in the Microsoft Windows version of Minitab, choose File > Options > General > Default
file location.

2. Save the .PNG file, Datafileref: , to your Minitab file location.
3. Save the .TXT file, Datafileref: , to your Minitab file location.
4. In the Minitab Command Line pane, enter PYSC "example.py".
5. Click Run.

Example.py
from wordcloud import WordCloud, STOPWORDS
import numpy as np
from PIL import Image
from mtbpy import mtbpy

Set the maximum number of words for the word cloud.
nWords = 150

Open and read the dataset into a variable.

14

dataset = open("coffee_reviews.txt", "r", encoding="utf8").read()

Change all the characters in the dataset to lowercase.
dataset = dataset.lower()

Open and read the mask image into a numpy array.
maskArray = np.array(Image.open("cloud.png"))

Specify the properties of the word cloud.
cloud = WordCloud(background_color = "white", max_words = nWords, mask = maskArray,
stopwords = set(STOPWORDS))

Generate the word cloud.
cloud.generate(dataset)

Save the word cloud to a png file.
cloud.to_file("word_cloud.png")

Send the png file to the Minitab Output pane.
mtbpy.mtb_instance().add_image("word_cloud.png")

Initialize the arrays to store words and their frequencies in a table.
words = []
freqs = []

Begin a loop to count the words in the word cloud frequency dictionary.
for word in cloud.words_:

Append the word to the list of words for the table.
words.append(word)
Append the frequency of the word to the list of frequencies for the table.
freqs.append(int(cloud.words_[word]*4716))

Send the table to the Minitab Output pane.
mtbpy.mtb_instance().add_table(columns=[words, freqs], headers=["Word", "Frequency"],
title="Word Cloud Data", footnote="{0} words are in this table".format(nWords))

Results
Python Script

These results are from external software.

15

Word Cloud Data

Word Frequency
coffee 4716
cup 1439
flavor 1374
taste 1149
one 1048
good 1043
love 884
make 858
tea 833
great 798
use 701
drink 641
cup coffee 566
tried 563
product 558
amazon 548
will 521
morning 506
now 486

16

really 478
price 466
much 441
best 431
strong 428
time 428
found 426
buy 409
little 408
pod 401
well 396
even 388
brand 386
keurig 364
find 356
blend 349
brew 344
try 343
enjoy 341
drinking 339
starbuck 339
work 331
day 331
sugar 319
nice 318
perfect 316
always 314
delicious 311
way 306
order 306
want 291
better 288
say 276
used 274
go 271
two 268
favorite 266
made 264
pack 259
box 259
think 258
without 254
first 254
smooth 253
bag 253
come 253
flavored coffee 251
excellent 249
chocolate 249
bought 248
know 246
decaf 244
need 244
water 238
wonderful 234
still 233
got 233
lot 228
never 224
espresso 223

17

rich 214
love coffee 213
store 211
coffee maker 211
bitter 208
add 208
ordered 203
keep 201
sweet 201
give 198
right 198
using 196
milk 188
home 186
bold 186
thing 186
green mountain 184
year 183
vanilla 183
many 181
bean 179
machine 178
caffeine 178
bit 176
prefer 176
put 176
coffee drinker 173
fresh 171
may 169
smell 166
take 164
buying 164
husband 164
people 161
enough 159
us 159
actually 158
new 158
cookie 154
dark roast 154
package 153
hazelnut 151
purchased 151
purchase 151
review 151
strong coffee 146
dark 144
far 144
see 144
calorie 144
back 143
small 143
organic 141
feel 139
highly recommend 139
another 138
best coffee 138
every 136
thought 136
seem 136

18

almost 136
sure 134
aroma 134
trying 134
packet 134
french roast 134
expensive 133
less 133
especially 133
latte 133
thank 133

150 rows are in this table

19

	Contents
	Python Integration Guide for Minitab Statistical Software
	Introduction to using Python with Minitab Statistical Software
	Install Python
	Install mtbpy via PIP
	Run in an Anaconda environment
	Verify the Python installation
	Run Python scripts in Minitab
	Run Python scripts from the Minitab interface

	Python API Reference
	Module: mtbpy
	Example code that converts Minitab date format to Unix date format

	Example of calling a Python script from Minitab

