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Improve your Classification & Regression Models
CART DECISION TREES, GRADIENT BOOSTING, AND RANDOM FORESTS



The curse of dimensionality…..
• Very large number of predictors : In this context, traditional statistical 

modeling tools may become less efficient. Risk of having many spurious effects 
wrongly identified as real effects, even when such effects are exclusively 
caused by random fluctuations. 

• Very large sample size (Power vs. Practical significance) : In this context, 
traditional statistical techniques tend to become over-sensitive to small effects 
leading to a very complex final model. Even though some terms are statistically 
significant, most of them may actually have little practical significance..

• Complexity due to Non linear effects, Complex interactions, Missing values 
and Outliers …..
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When should we use Salford Predictive Modeler 
(SPM) ?



Time- and market-tested predictive modeling tools including everything from 
market-leading decision tree and classification engines to advanced interaction 

detection and automation to state-of-the-art machine learning capabilities.
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SPM Software Suite

CART MARS Random 
Forests TreeNet RuleLearner ISLE GPS

Decision trees Nonlinear
regression

Data ensemble 
bagging

Gradient 
boosting

Rule ensemble Model 
compression

Regularized 
regression

Suite of Solutions



Classification And Regression Trees
Breiman, Friedman, Olshen, and Stone (1984)

CART is a decision tree algorithm and can be 
used for both regression and classification 
problems

CART is available exclusively in the SPM®8 
Software Suite and was developed in close 
consultation with the original authors

CART: Introduction



Understanding CART is essential to understanding other 
decision tree-based machine learning algorithms like Stochastic 
Gradient Boosting, Random Forests, MARS regression splines, 
RuleLearner rule ensembles, and ISLE model compression. 

CART & Tree-Based Machine Learning



Main Idea: divide the data (often people say “partition” instead of “divide”) into different regions so 
that the dependent variable (also called the “target variable”) can be predicted more accurately.

Example: classify an observations as either a triangle or a circle

 X2 <= -0.49

Terminal
Node 1

Class = Circle
Class Cases %
Circle 6 100.0

Triangle 0 0.0
W = 6.000

N = 6

 X1 <= 0.24

Terminal
Node 2

Class = Triangle
Class Cases %
Circle 1 14.3

Triangle 6 85.7
W = 7.000

N = 7

 X1 >  0.24

Terminal
Node 3

Class = Circle
Class Cases %
Circle 9 75.0

Triangle 3 25.0
W = 12.000

N = 12

 X2 >  -0.49

Node 2
Class = Triangle

X1 <= 0.24
Class Cases %
Circle 10 52.6

Triangle 9 47.4
W = 19.000

N = 19

Node 1
Class = Triangle

X2 <= -0.49
Class Cases %
Circle 16 64.0

Triangle 9 36.0
W = 25.000

N = 25

CART: Introduction



A tree split occurs when the data are 
partitioned (more on this later). This 
tree has two splits:

1. X2 ≤ -.49
2. X1 ≤ .24      

The node at the top of the tree is called the root node

A node that has no sub-branch 
is a terminal node 

This tree has three terminal nodesA tree node is pure if it contains only
a single class (see Terminal Node 1)

The predicted value in a 
CART tree for classification
is a class prediction or a 
probability

Example: if .2 and 
0 then the predicted 

class is a triangle (the 
probability of a triangle is 
85.7%)

 X2 <= -0.49

Terminal
Node 1

Class = Circle
Class Cases %
Circle 6 100.0

Triangle 0 0.0
W = 6.000

N = 6

 X1 <= 0.24

Terminal
Node 2

Class = Triangle
Class Cases %
Circle 1 14.3

Triangle 6 85.7
W = 7.000

N = 7

 X1 >  0.24

Terminal
Node 3

Class = Circle
Class Cases %
Circle 9 75.0

Triangle 3 25.0
W = 12.000

N = 12

 X2 >  -0.49

Node 2
Class = Triangle

X1 <= 0.24
Class Cases %
Circle 10 52.6

Triangle 9 47.4
W = 19.000

N = 19

Node 1
Class = Triangle

X2 <= -0.49
Class Cases %
Circle 16 64.0

Triangle 9 36.0
W = 25.000

N = 25

Each split divides one node into 
two “child” nodes. This is called a 
binary split. 

Nodes are the building blocks of 
CART decision trees. There are 
5 nodes in this CART tree.

CART: Terminology



Grow a large tree
This is done for you automatically

All variables are considered at each split in the tree

Each split is made using one variable and a specific 
value or set of values. 

Splits are chosen so as to maximize a splitting criterion 

Grow the tree until either a 
user-specified criterion is met or 
until the tree cannot be grown further

Prune the large tree upward
This is done for you automatically

Use either a test sample or cross validation to prune subtrees

CART: Algorithm



How exactly did we get this tree? X1 X2 SHAPE
2.29 0.18 Triangle
‐1.20 0.75 Triangle
‐0.69 0.59 Triangle
‐0.41 ‐0.98 Circle
‐0.97 ‐0.28 Circle
‐0.95 ‐0.87 Circle
0.75 0.72 Triangle
‐0.12 0.11 Triangle
0.15 ‐0.08 Triangle
2.19 ‐0.42 Triangle
0.36 ‐0.56 Circle
2.72 1.00 Circle
2.28 ‐1.11 Circle
0.32 ‐0.14 Circle
1.90 0.31 Circle
0.47 1.22 Circle
‐0.89 ‐0.70 Circle
‐0.31 ‐0.29 Triangle
0.00 ‐1.31 Circle
0.99 ‐0.39 Circle
0.84 ‐0.40 Circle
0.71 1.35 Circle
1.31 0.59 Circle
‐1.39 0.10 Triangle
1.27 0.93 Circle

 X2 <= -0.49

Terminal
Node 1

Class = Circle
Class Cases %
Circle 6 100.0

Triangle 0 0.0
W = 6.00

N = 6

 X1 <= 0.23

Terminal
Node 2

Class = Triangle
Class Cases %
Circle 1 14.3

Triangle 6 85.7
W = 7.00

N = 7

 X1 >  0.23

Terminal
Node 3

Class = Circle
Class Cases %
Circle 9 75.0

Triangle 3 25.0
W = 12.00

N = 12

 X2 >  -0.49

Node 2
Class = Circle

X1 <= 0.23
Class Cases %
Circle 10 52.6

Triangle 9 47.4
W = 19.00

N = 19

Node 1
Class = Circle

X2 <= -0.49
Class Cases %
Circle 16 64.0

Triangle 9 36.0
W = 25.00

N = 25

CART: Splitting Process



Step 1: Find the best split point for the variable 
 Sort the variable 
 Compute the split improvement

for each possible split point.
 Best split for :

 ≤ 1.08

SHAPE X1 X2
Triangle 2.29 0.18
Triangle ‐1.20 0.75
Triangle ‐0.69 0.59
Circle ‐0.41 ‐0.98
Circle ‐0.97 ‐0.28
Circle ‐0.95 ‐0.87

Triangle 0.75 0.72
Triangle ‐0.12 0.11
Triangle 0.15 ‐0.08
Triangle 2.19 ‐0.42
Circle 0.36 ‐0.56
Circle 2.72 1.00
Circle 2.28 ‐1.11
Circle 0.32 ‐0.14
Circle 1.90 0.31
Circle 0.47 1.22
Circle ‐0.89 ‐0.70

Triangle ‐0.31 ‐0.29
Circle 0.00 ‐1.31
Circle 0.99 ‐0.39
Circle 0.84 ‐0.40
Circle 0.71 1.35
Circle 1.31 0.59

Triangle ‐1.39 0.10
Circle 1.27 0.93

SHAPE X1 X2
Triangle ‐1.39 0.10
Triangle ‐1.20 0.75
Circle ‐0.97 ‐0.28
Circle ‐0.95 ‐0.87
Circle ‐0.89 ‐0.70

Triangle ‐0.69 0.59
Circle ‐0.41 ‐0.98

Triangle ‐0.31 ‐0.29
Triangle ‐0.12 0.11
Circle 0.00 ‐1.31

Triangle 0.15 ‐0.08
Circle 0.32 ‐0.14
Circle 0.36 ‐0.56
Circle 0.47 1.22
Circle 0.71 1.35

Triangle 0.75 0.72
Circle 0.84 ‐0.40
Circle 0.99 ‐0.39
Circle 1.27 0.93
Circle 1.31 0.59
Circle 1.90 0.31

Triangle 2.19 ‐0.42
Circle 2.28 ‐1.11

Triangle 2.29 0.18
Circle 2.72 1.00

SHAPE X1 X2
Triangle ‐1.39 0.10
Triangle ‐1.20 0.75

 X1 <= -1.08

Terminal
Node 1

Class = Triangle
Class Cases %
Circle 0 0.0

Triangle 2 100.0
W = 2.000

N = 2

 X1 >  -1.08

Terminal
Node 2

Class = Circle
Class Cases %
Circle 16 69.6

Triangle 7 30.4
W = 23.000

N = 23

Node 1
Class = Circle

X1 <= -1.08
Class Cases %
Circle 16 64.0

Triangle 9 36.0
W = 25.000

N = 25

SHAPE X1 X2
Circle ‐0.97 ‐0.28
Circle ‐0.95 ‐0.87
Circle ‐0.89 ‐0.70

Triangle ‐0.69 0.59
Circle ‐0.41 ‐0.98

Triangle ‐0.31 ‐0.29
Triangle ‐0.12 0.11
Circle 0.00 ‐1.31

Triangle 0.15 ‐0.08
Circle 0.32 ‐0.14
Circle 0.36 ‐0.56
Circle 0.47 1.22
Circle 0.71 1.35

Triangle 0.75 0.72
Circle 0.84 ‐0.40
Circle 0.99 ‐0.39
Circle 1.27 0.93
Circle 1.31 0.59
Circle 1.90 0.31

Triangle 2.19 ‐0.42
Circle 2.28 ‐1.11

Triangle 2.29 0.18
Circle 2.72 1.00

The split improvement is a 
measure of how much the split 
separates the target variable 
classes (i.e. triangles and 
circles).

CART: Splitting Process



So how do we get to our final tree?

 X2 <= -0.49

Terminal
Node 1

Class = Circle
Class Cases %
Circle 6 100.0

Triangle 0 0.0
W = 6.000

N = 6

 X2 >  -0.49

Terminal
Node 2

Class = Circle
Class Cases %
Circle 10 52.6

Triangle 9 47.4
W = 19.000

N = 19

Node 1
Class = Circle

X2 <= -0.49
Class Cases %
Circle 16 64.0

Triangle 9 36.0
W = 25.000

N = 25

 X2 <= -0.49

Terminal
Node 1

Class = Circle
Class Cases %
Circle 6 100.0

Triangle 0 0.0
W = 6.00

N = 6

 X1 <= 0.23

Terminal
Node 2

Class = Triangle
Class Cases %
Circle 1 14.3

Triangle 6 85.7
W = 7.00

N = 7

 X1 >  0.23

Terminal
Node 3

Class = Circle
Class Cases %
Circle 9 75.0

Triangle 3 25.0
W = 12.00

N = 12

 X2 >  -0.49

Node 2
Class = Circle

X1 <= 0.23
Class Cases %
Circle 10 52.6

Triangle 9 47.4
W = 19.00

N = 19

Node 1
Class = Circle

X2 <= -0.49
Class Cases %
Circle 16 64.0

Triangle 9 36.0
W = 25.00

N = 25

CART: Splitting Procedure



Nonlinear functions (and linear) are approximated via step functions, so in practice you do not need to 
worry about adding terms like 	 	 to capture nonlinear relationships. The picture below is the 
CART fit to 	 + noise. CART modeled this data automatically. No data pre-processing. Just CART.

CART: Automatic Nonlinear Modeling



Two types of outliers are
1. Outliers in the target variable (i.e. “Y”)
2. Outliers in the predictor variable (i.e. “x”)

CART is more sensitive to outliers with 
respect to the target variable
1. More severe in a regression context 

than a classification context
2. CART may treat target variable outliers 

by isolating them in small terminal 
nodes which can limit their effect 

Reference: Pages 197-200 and 253 in 
Breiman, Friedman, Olshen, and Stone (1984)

Y

Here the target outliers are 
isolated in terminal node 1

 X1 <= 177.00

Terminal
Node 1

STD =  9.049
Avg =  70.937

W = 2.000
N = 2

 X1 >  177.00

Terminal
Node 2

STD =  5.700
Avg =  42.150
W = 14.000

N = 14

Node 1
X1 <= 177.00
STD =  11.371
Avg =  45.748
W = 16.000

N = 16

CART: Outliers in the Target Variable



CART is more robust to outliers in the predictor variables partly due to nature of the splitting process

Reference: Pages 197-200 and 253 in Breiman, Friedman, Olshen, and Stone (1984)

Y

 X1 <= 177.00

Terminal
Node 1

STD =  8.532
Avg =  73.957

W = 3.000
N = 3

 X1 >  177.00

Terminal
Node 2

STD =  5.700
Avg =  42.149
W = 14.000

N = 14

Node 1
X1 <= 177.00
STD =  13.661
Avg =  47.762
W = 17.000

N = 17

 X1 <= 177.00

Terminal
Node 1

STD =  9.049
Avg =  70.937

W = 2.000
N = 2

 X1 >  177.00

Terminal
Node 2

STD =  5.700
Avg =  42.150
W = 14.000

N = 14

Node 1
X1 <= 177.00
STD =  11.371
Avg =  45.748
W = 16.000

N = 16

CART: Outliers in the Predictor Variables



This automate automatically tries all six alternative splitting rules.
According to the output above, Entropy, Gini and Sym. 
Gini splitting rules resulted to be the most accurate models on the given data.

CART: Rules Automate



MARS- Multivariate Adaptive Regression Splines

Creator: Jerome Friedman 
Co-Created CART decision trees, created gradient boosting, and Co-Created 
RuleLearner rule ensembles and ISLE® Model Compression

Primary References:
1. Multivariate Adaptive Regression Splines (Friedman, 1991)
2. Fast MARS (Friedman, 1993) 
3. Estimating Functions of Mixed Ordinal and Categorical Variables 

Using Adaptive Splines (Friedman, 1991)
4. Recursive Partitioning (Zhang and Singer, 2010; see Chapter 10)

Introduction to MARS



A MARS model is a 
regression model 
that is automatically 
constructed using 
an adaptive spline 
algorithm

17.06	 5.47max 0, 2 7.85max 0, 2 4.41max 0, 3 4.72max 0, 3 2.02max 0, 1 2.77max	 0, 1

Introduction to MARS



The transformed terms used in a MARS model are 
referred to as “basis functions” 

In MARS, basis functions are added to the model 
in pairs and take the following form

1. max(0, X-K)
2. max(0, K-X)

Where X is a predictor variable and K is a “knot”

The basis functions allow MARS to model both 
nonlinear and linear relationships in the data

Nonlinear: MARS places knots that allow the model to “turn” 
when necessary
Linear: MARS places the knot at the minimum value for a 
specific variable

17.06	 5.47max 0, 2 7.85max 0, 2 4.41max 0, 3 4.72max 0, 3 2.02max 0, 1 2.77max	 0, 1

Introduction to MARS Basis Functions



MARS is actually an adaptation of CART that allows for additive terms 
to be entered into the model (this gives MARS an advantage if there 
are additive effects in the data)  

Remember that in order to construct a CART decision tree we have 
two main steps

1. Grow a large tree
2. Prune the large tree 

The process for constructing a MARS model is similar and involves 
two steps:

1. Forward Step (add terms to the model)
2. Backwards Step (delete terms from the model)

Constructing a MARS Model



Main Idea: fit multiple CART trees to independent 
“bootstrap” samples of the data and then combine 
the predictions

Leo Breiman, one of the co-creators of CART, 
also created Random Forests and published a 
paper on this method in 2001

Our RandomForests® software was developed in 
close consultation with Breiman himself

Introduction to Random Forests



A bootstrap sample is a random sample 
conducted with replacement
Steps:

1. Randomly select an observation 
from the original data

2. “Write it down”
3. “Put it back” (i.e. any observation 

can be selected more than once) 

Repeat steps 1-3 N times; N is the number 
of observations in the original sample
FINAL RESULT: One “bootstrap 
sample” with N observations

…

Bootstrap Sample

Original Data

0 48 3

0 48 3

0 37 1

0 37 1
0 37 1
0 . 1

0 . 1

0 24 4

0 24 4

0 37 1

Y X1 X2

What is a bootstrap sample?



Original Data

…..Bootstrap 1 Bootstrap 2 Bootstrap 199 Bootstrap 200

Final Prediction for a New Record: take the average of the 200 individual predictions

10.5 9.8… 10.73 12
200

Predict a New Record : run the record down each tree, each time computing a prediction

1. Draw a bootstrap sample 
2. Fit a large, unpruned,  CART tree to this bootstrap 
sample

‐At each split in the tree consider only k randomly 
selected variables instead of all of them

3. Average the predictions to predict a new record

Repeat Steps 1‐2 at least 200 times

Tree 1: 10.5 Tree 2: 9.8 Tree 199: 10.73 Tree 200: 12…..



When you build a Random Forest model just keep this picture in the 
back of your mind:

The reason is because a Random Forest is really just an average of 
CART trees constructed on bootstrap samples of the original data

…
1 2 3 B

1

CART and Random Forests



Main Idea: iteratively fit CART trees to “generalized residuals” 
(much more on this later) 

Creator: Jerome Friedman 
Friedman also co-created CART decision trees, created MARS 
regression splines, and co-created RuleLearner™ rule ensembles 

The SPM modeling engine that implements the Stochastic 
Gradient Boosting algorithm is called TreeNet 

The TreeNet code was originally written by Friedman himself

Introduction to Stochastic Gradient Boosting



Make an initial prediction 

1. Draw a random sample from the LEARN Data

2. Compute the “generalized residuals” for the records in the sample

3. Fit a CART tree to the generalized residuals for the records in the sample

4. Shrink the updates and add them to the current model to obtain an updated model 

Repeat Steps 1-4 M times

Sample

Gradient Boosting Algorithm Sketch

Sample



1. Draw a random 
sample S from 
the records in the 
learn data

2. Compute the 
generalized residual 

	 for 
the records in S

3. Using  as the 
target variable, fit a 
small, unpruned CART 
tree with J terminal 
nodes using the 
records in S

4.Multiply the predictions from Step 3 by 
the learning rate  = .01 and add them to
the current model  to obtain an 
updated model  .

)+ 

	+ 	 

Sample

‐.3 2 12

‐2 5 1

.3 7 7 Sample

Current Model:  

We use the tree to update the model: 
for the least squares loss function, the updates are 
the target variable average for each terminal node. 
Denote the updates for iteration 3 by 

	 	 	 :

	

Gradient Boosting: Iteration 3 (Least Squares Loss)



When you are fitting gradient boosted trees remember that you 
are sequentially fitting M number of CART trees to generalized 
residuals instead of the original target and that you are shrinking 
the updates by α

Keep this picture in the back of your mind

…1 M

CART and Gradient Boosting



Learning Rate and the Number of Iterations

In gradient boosting the learning rates are set to be smaller. 
Smaller learning rates require more trees (iterations) for the 
model error to converge (“converge” means that the test 
error curve will be flat, that is, no longer decrease)

Intuition: Imagine that you want to walk to the middle of a crater

If you take small strides (i.e. smaller learning rate) then you will need more steps (i.e. more trees= more 
iterations) to get to the bottom of the crater (i.e. converge to the minimum error). 

If you make a mistake (i.e. the model makes an error during one of the iterations) then the error is not as serious because your
stride is smaller (i.e. it is easier for the model to recover in the next iteration) 

If you take larger strides (i.e. larger learning rate) then you will need less steps (i.e. less trees = less 
iterations) to get to the bottom of the crater (i.e. converge to the minimum error)

If you make a mistake (i.e. the model makes an error during one of the iterations) then the error is more serious because your 
stride is larger(i.e. it is not as easy for the model to recover as compared to the situation where the learning rate is smaller)



How does TreeNet model this curve? It makes small improvements 
(i.e. the learning rate is a small number that “shrinks” the model updates) 

Tree 1

Tree 10

Tree 50

Tree 100

Tree 150

Tree 200

Tree 400

Tree 600

Note: Noise ~ N(0,1) 

Tree 600

Gradient Boosting: Least Squares Loss



Use modern regression techniques to post-process a complex TREENET model 
to create a radically simplified version. The post-processed simplified model 
might perform even better than the complex model. 

Extracting a collection of informative rule-sets from the TREENET model : 

Model Compression via Rule Learner



Achieve higher performance compared to the original TreeNet model 
while compressing the model.

Rule Learner


