

PCI EXPRESS® SERVER-CLASS BACKPLANES

(PICMG[®] 1.3)

No. 87-006706-000 Revision i-X

TECHNICAL REFERENCE

WARRANTY

The following is an abbreviated version of Trenton Technology's warranty policy for PICMG[®] 1.3 products. For a complete warranty statement, contact Trenton or visit our website at www.TrentonTechnology.com.

Trenton PICMG® 1.3 products are warranted against material and manufacturing defects for five years from date of delivery to the original purchaser. Buyer agrees that if this product proves defective Trenton Technology Inc. is only obligated to repair, replace or refund the purchase price of this product at Trenton Technology's discretion. The warranty is void if the product has been subjected to alteration, neglect, misuse or abuse; if any repairs have been attempted by anyone other than Trenton Technology Inc.; or if failure is caused by accident, acts of God, or other causes beyond the control of Trenton Technology Inc. Trenton Technology Inc. reserves the right to make changes or improvements in any product without incurring any obligation to similarly alter products previously purchased.

In no event shall Trenton Technology Inc. be liable for any defect in hardware or software or loss or inadequacy of data of any kind, or for any direct, indirect, incidental or consequential damages arising out of or in connection with the performance or use of the product or information provided. Trenton Technology Inc.'s liability shall in no event exceed the purchase price of the product purchased hereunder. The foregoing limitation of liability shall be equally applicable to any service provided by Trenton Technology Inc.

RETURN POLICY

Products returned for repair must be accompanied by a Return Material Authorization (RMA) number, obtained from Trenton Technology prior to return. Freight on all returned items must be prepaid by the customer, and the customer is responsible for any loss or damage caused by common carrier in transit. Items will be returned from Trenton Technology via Ground, unless prior arrangements are made by the customer for an alternative shipping method

To obtain an RMA number, call us at (800) 875-6031 or (770) 287-3100. We will need the following information:

Return company address and contact Model name and model # from the label on the back of the product Serial number from the label on the back of the product Description of the failure

An RMA number will be issued. Mark the RMA number clearly on the outside of each box, include a failure report for each board and return the product(s) to our Utica, NY facility:

TRENTON Technology Inc. 1001 Broad Street Utica, NY 13501 Attn: Repair Department

Contact Trenton for our complete service and repair policy.

TRADEMARKS

IBM, PC/AT, VGA, EGA, OS/2 and PS/2 are trademarks or registered trademarks of International Business Machines Corp.

Intel is a registered trademark of Intel Corporation.

MS-DOS and Microsoft are registered trademarks of Microsoft Corp.

PICMG, SHB Express and the PICMG logo are trademarks or registered trademarks of the PCI Industrial Computer Manufacturers Group.

All other brand and product names may be trademarks or registered trademarks of their respective companies.

LIABILITY DISCLAIMER

This manual is as complete and factual as possible at the time of printing; however, the information in this manual may have been updated since that time. Trenton Technology Inc. reserves the right to change the functions, features or specifications of their products at any time, without notice.

Copyright © 2008 by Trenton Technology Inc. All rights reserved.

E-mail: Support@TrentonTechnology.com Web: www.TrentonTechnology.com

TRENTON Technology Inc. 2350 Centennial Drive • Gainesville, Georgia 30504

Sales: (800) 875-6031 • Phone: (770) 287-3100 • Fax: (770) 287-3150

Table of Contents

BEFORE YOU BEGINII
INTRODUCTIONII
PCI Express®Links
SHB AND PICMG [®] 1.3 BACKPLANE CONFIGURATIONSII
OPTIONAL I/O CONNECTIONSII
POWER CONNECTIONIII
+12V AUXILIARY POWER CONNECTION III
POWER CAUTIONS III
BACKPLANE HOLE PATTERNSIII
FOR MORE INFORMATION III
CHAPTER 1 - BACKPLANE OVERVIEW 1-4
Introduction
MODELS
FEATURES1-6
CHAPTED A ICA/DOLDEREDENCE A 5
CHAPTER 2 - ISA/PCI REFERENCE2-7
ISA Bus Pin Numbering2-7
ISA BUS PIN ASSIGNMENTS2-7
ISA BUS PIN ASSIGNMENTS2-8
ISA BUS SIGNAL DESCRIPTIONS 2-9
I/O ADDRESS MAP*2-13
INTERRUPT ASSIGNMENTS* 2-13
PCI LOCAL BUS OVERVIEW2-14
PCI LOCAL BUS SIGNAL DEFINITION2-15
PCI LOCAL BUS PIN NUMBERING2-16
PCI LOCAL BUS PIN ASSIGNMENTS2-17
PCLLOCAL BUS SIGNAL DESCRIPTIONS 2-20

	R	
CHAPTER 3	- PCI EXPRESS REFERENCE	3-1
INTRODUCT	ION	3-
PCI Expres	SS [®] LINKS	3-
	ICMG [®] 1.3 Backplane Configurations	
	SS EDGE CONNECTOR PIN ASSIGNMENTS	
	SS SIGNALS OVERVIEW	
	NNECTION	
	PLY AND SHB INTERACTION	
	L CONNECTION CONFIGURATIONS	
CHAPTER 4	- SERVER-CLASS BACKPLANES	4-1
6377-000	BPX3/8	4-
6467-000	BPX3/14	
6510-000	BPX5	
6526-000	BPX3/2	
6571-000	BPX6571	
6610-000	BPX6610	4-5
6620-000	BPX6620	
6719-000	BPX6719	4-7
6806-000	BPX6806	4-83
CHAPTER 5	- MULTIPLE SHB SEGMENT BACKPLAN	NES5-1
6605-000	BP6FS6605	5-
6890-000	BP4FS6890	
CHAPTER 6	- 2U BUTTERFLY BACKPLANES	6-1
6736 000	RDV6736	6

HANDLING PRECAUTIONS

WARNING: This product has components which may be damaged by electrostatic discharge.

To protect your backplane from electrostatic damage, be sure to observe the following precautions when handling or storing the backplane:

- Keep the backplane in its static-shielded bag until you are ready to perform your installation.
- Handle the backplane by its edges.
- Do not touch the I/O connector pins. Do not apply pressure or attach labels to the backplane.
- Use a grounded wrist strap at your workstation or ground yourself frequently by touching the metal chassis of the system before handling any components. The system must be plugged into an outlet that is connected to an earth ground.
- Use antistatic padding on all work surfaces.
- Avoid static-inducing carpeted areas.

Before You Begin

INTRODUCTION

It is important to be aware of the system considerations listed below before installing your Trenton PCI Express[®] backplane. Overall system performance may be affected by incorrect usage of these features.

PCI Express[®] Links

PCI Express devices with different PCI Express link configurations can establish communication using a process called auto-negotiation or link training. If a board with a higher number of lanes is placed in a slot with a lower number of lanes (e.g., a x16 board in a x16 mechanical slot electrically configured with a x4 PCIe link) or a board with a lower number of lanes is placed into a slot with a higher number of lanes (e.g., a x4 board into a x8 slot), the PCI Express link auto-negotiates down to the lower link rate to establish communication to the system host board (SHB). The mechanical option card slots on Trenton PICMG[®] 1.3 backplanes have PCI Express configuration straps. Some SHB designs may utilize the straps in the PCI Express link width negotiation process.

SHB AND PICMG® 1.3 BACKPLANE CONFIGURATIONS

Trenton's BPX3/8 (6377-xxx), BPX3/14 (6467-xxx), BPX5 (6510-xxx), BPX3/2 (6526-xxx), BPX6571 (6571-xxx) and BPX6620 (6620-xxx), BPX6610 (6610-xxx), BPX6719 (6719-xxx) and BPX6736 (6736-xxx) fall into the server class of PICMG 1.3 compatible backplanes. Server-class backplanes are designed to maximize the number of x4 and x8 PCI Express links between the SHB and the backplane. Some backplanes also support an additional x4 link when using Trenton's IOB31 (6474-000) I/O expansion board on a Trenton server-class SHB. The letter "X" in a Trenton backplane model name indicates a server-class backplane.

NOTE: Server-class SHBs should always be used with server-class PICMG 1.3 backplanes and graphics-class SHBs should always be used with graphics-class PICMG 1.3 backplanes. Combining incompatible SHBs and backplanes will not cause damage to the option cards or SHB, but one or more of the slots may not function and may result in one or more PCI Express option cards on the backplane being non-functional. This is due to the fact that there may not be enough available links to properly connect all of the PCI Express option card slots to the SHB.

OPTIONAL I/O CONNECTIONS

The PICMG 1.3 specification enables SHB vendors to route I/O connections to edge connector C of an SHB. Trenton PICMG 1.3 backplanes support the four USB and two Ethernet connections, but since these connections are optional, not all SHBs support them. In order to take advantage of these I/O features, the SHB in your system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB Express SPS System Host Board PCI Express Specification, PICMG 1.3.

POWER CONNECTION

Trenton's PCI Express backplanes support soft power control signals via the Advanced Configuration and Power Interface (ACPI) as defined in the PICMG 1.3 specification. When soft control signals are implemented, the type of ATX or EPS power supply used in the system and the operating system software will dictate how system power should be connected to the SHB. It is critical that the correct method be used.

+12V AUXILIARY POWER CONNECTION

Trenton PICMG 1.3 backplanes provide one or more +12V power connectors for routing auxiliary power to the SHB's edge connectors, eliminating the need for auxiliary power connections on the system host board. These are 8-pin connectors that can accommodate either a 4-pin or 8-pin power cable connection.

POWER CAUTIONS

CAUTION: Trenton recommends using EPS model power supplies with its PICMG 1.3 backplanes in systems using high-performance, dual-processor SHB Express system host boards.

The power needs of backplane option cards, high-performance processors and other system components may result in drawing 20A of current from the +12V power supply line. If this occurs, hazardous energy (240VA) could exist inside the system chassis. Final system/equipment suppliers must provide protection to service personnel from these potentially hazardous energy levels.

Standby voltages may be used in the final system design to enable certain system recovery operations. In this case, the power supply may not completely remove power to the system host board when the power switch is turned off. Caution must be taken to ensure that incoming system power is completely disconnected before removing the system host board.

In some ATX/EPS systems, the power may appear to be off while the 5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the 5VSB power signal; "green" indicates that the 5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

BACKPLANE HOLE PATTERNS

The PICMG 1.3 specification defines recommended backplane sizes and hole patterns. These hole patterns are not the same as motherboard hole patterns. Trenton's backplanes support Trenton's hole patterns for 14-slot (64-bit) and 20-slot (64-bit) backplanes as well as the hole patterns specified for PICMG 1.3 backplanes. The Trenton 14-slot hole pattern on the BPX3/8 backplane is modified slightly to accommodate the backplane's smaller width dimension. The *Backplanes* chapters in the *PCI Express Server-Class Backplanes Manual* contains mechanical dimensions and hole patterns for individual Trenton PCI Express backplanes.

FOR MORE INFORMATION

For more information on any of these features, refer to the appropriate sections of the *PCI Express* Backplanes Technical Reference Manual (#87-006706-000). The latest revision of this manual may be found on Trenton's website - www.TrentonTechnology.com.

iii Trenton Technology Inc.

This page intentionally left blank.

Chapter 1 - Backplane Overview

INTRODUCTION

Trenton PCI Express® backplanes are six-layer or eight-layer backplanes which are PICMG® 1.3 compatible and allow the use of standard PCI Express, PCI-X, PCI or ISA option cards. Types and numbers of option cards supported vary depending on the backplane model.

Each backplane has one PCI Express® slot which accepts an SHB Express™ system host board (SHB). The backplanes have a varying number of PCI Express slots available for use.

NOTE: On some of the backplanes, one of the PCI Express slots connects to a PCI Express expansion slot (PCIeS) on the backplane. In order to use this PCIe slot when you are using a Trenton PCI Express SHB, you must have a Trenton IOB31 (6474-000) I/O expansion board on the SHB. The IOB31 enables communication between the SHB and the PCI Express slot by providing a x1 or x4 PCI Express link to the PCIeS slot, depending on the capabilities of the SHB.

Refer to the backplane descriptions in the following chapters of this manual for more information about a specific backplane.

MODELS

NOTE: In the chart below, the descriptions of the PCI Express slots include the electrical link rate of the slots, not the mechanical size.

Model # Server-Class Ba	Model Name	<u>Description</u>
6377-000	BPX3/8	1 SHB Slot, 2 x8 PCI Express, 4 PCI-X 64-bit/66MHz, 4 PCI 64-bit/33MHz
6467-000	BPX3/14	1 SHB Slot, 1 x4 PCI Express, 1 x4 PCI Express via a PCIe Expansion Slot, 2 PCI-X 64-bit/133MHz, 12 PCI-X 64-bit/100MHz
6510-000	BPX5	1 SHB Slot, 2 x8 PCI Express, 1 x4 PCI Express, 1 x4 PCI Express via a PCIe Expansion Slot
6526-000	BPX3/2	1 SHB Slot, 2 x8 PCI Express, 2 PCI-X 64-bit/133MHz

MODELS (CONTINUED)

Model #	Model Name	<u>Description</u>					
Server-Class Backplanes (continued):							
6571-000	BPX6571	1 SHB Slot,					
		1 x8 PCI Express,					
		1 x4 PCI Express,					
		16 PCI-X 64-bit/66MHz					
6610-000	BPX6610	1 SHB Slot					
		2 x8 PCI Express,					
		4 x4 PCI Express,					
		2 PCI-X 64-bit/100MHz					
		4 PCI-X 64-bit/66MHz					
6620-000	BPX6620	1 SHB Slot,					
		1 x8 PCI Express,					
		1 x4 PCI Express via a PCIe Expansion Slot,					
		2 PCI-X 64-bit/133MHz,					
		8 PCI-X 64-bit/100MHz					
6719-000	BPX6719	1 SHB Slot,					

1-5 Trenton Technology Inc.

2 x8 PCI Express,

1 x4 PCI Express via a PCIe Expansion Slot,

1 PCI-X 64-bit/133MHz, 2 PCI-X 64-bit/100MHz

6806-000 BPX6806 1 SHB Slot,

1 x4 PCI Express,

1 x4 PCI Express via a PCIe Expansion Slot, 12 x4 PCI Expresss via PCIe Fan Out Switch, 4 x8 PCI Express via PCIe Fan Out Switch

Mutilple SHB-Class Backplanes

6605-000 BP6FS6605 6 SHB Slot,

6 x16 PCI Express, 3 x4 PCI Express

2U Butterfly-Class Backplanes

6736-000 BGX6736 1 SHB Slot,

2 x8 PCI Express, 2 x1 PCI Express

FEATURES

Six-layer or eight-layer printed circuit board

• High noise immunity construction

• Accept system host boards (SHBs) which are PCI Industrial Computer Manufacturers Group (PICMG®) 1.3 compatible

Allow use of standard PCI Express, PCI-X, PCI or ISA option cards, depending on model

Multiple power supply connectors, depending on model

Chapter 2 - ISA/PCI Reference

ISA BUS PIN NUMBERING

62-pin ISA Bus Connector

Component Side of Board

36-pin ISA Bus Connector

ISA BUS PIN ASSIGNMENTS

The following tables summarize pin assignments for the Industry Standard Architecture (ISA) Bus connectors.

I/O Pin	Signal Name	I/O	I/O Pin	Signal Name	I/O
A1	IOCHK#	l	B1	Gnd	Ground
A2	D7	I/O	B2	RESDRV	0
A3	D6	I/O	B3	+5V	Power
A4	D5	I/O	B4	IRQ9	I
A5	D4	I/O	B5	-5V	Power
A6	D3	I/O	B6	DRQ2	I
A7	D2	I/O	B7	-12V	Power
A8	D1	I/O	B8	NOWS#	I
A9	D0	I/O	B9	+12V	Power
A10	CHRDY	1	B10	Gnd	Ground
A11	AEN	0	B11	SMWTC#	Ο
A12	SA19	I/O	B12	SMRDC#	0
A13	SA18	I/O	B13	IOWC#	I/O
A14	SA17	I/O	B14	IORC#	I/O
A15	SA16	I/O	B15	DAK3#	0
A16	SA15	I/O	B16	DRQ3	I
A17	SA14	I/O	B17	DAK1#	0
A18	SA13	I/O	B18	DRQ1	I
A19	SA12	I/O	B19	REFRESH#	I/O
A20	SA11	I/O	B20	BCLK	0
A21	SA10	I/O	B21	IRQ7	I
A22	SA9	I/O	B22	IRQ6	I
A23	SA8	I/O	B23	IRQ5	I
A24	SA7	I/O	B24	IRQ4	I
A25	SA6	I/O	B25	IRQ3	I
A26	SA5	I/O	B26	DAK2#	0
A27	SA4	I/O	B27	T-C	Ο
A28	SA3	I/O	B28	BALE	Ο
A29	SA2	I/O	B29	+5V	Power
A30	SA1	I/O	B30	OSC	0
A31	SA0	I/O	B31	Gnd	Ground

I/O Pin	Signal Name	I/O	I/O Pin	Signal Name	I/O
C1	SBHE#	I/O	D1	M16#	ı
C2	LA23	I/O	D2	IO16#	1
C3	LA22	I/O	D3	IRQ10	1
C4	LA21	I/O	D4	IRQ11	ı
C5	LA20	I/O	D5	IRQ12	1
C6	LA19	I/O	D6	IRQ15	1
C7	LA18	I/O	D7	IRQ14	1
C8	LA17	I/O	D8	DAK0#	0
C9	MRDC#	I/O	D9	DRQ0	1
C10	MWTC#	I/O	D10	DAK5#	0
C11	D8	I/O	D11	DRQ5	1
C12	D9	I/O	D12	DAK6#	0
C13	D10	I/O	D13	DRQ6	1
C14	D11	I/O	D14	DAK7#	0
C15	D12	I/O	D15	DRQ7	1
C16	D13	I/O	D16	+5V	Power
C17	D14	I/O	D17	Master16#	1
C18	D15	I/O	D18	Gnd	Ground

ISA BUS SIGNAL DESCRIPTIONS

The following is a description of the ISA Bus signals. All signal lines are TTL- compatible.

AEN (O)

Address Enable (AEN) is used to degate the microprocessor and other devices from the I/O channel to allow DMA transfers to take place. When this line is active, the DMA controller has control of the address bus, the data-bus Read command lines (memory and I/O), and the Write command lines (memory and I/O).

BALE (O) (Buffered)

Address Latch Enable (BALE) is provided by the bus controller and is used on the system board to latch valid addresses and memory decodes from the microprocessor. It is available to the I/O channel as an indicator of a valid microprocessor or DMA address (when used with AEN). Microprocessor addresses SA[19::0] are latched with the falling edge of BALE. BALE is forced high during DMA cycles.

BCLK (O)

BCLK is the system clock. The clock has a 50% duty cycle. This signal should only be used for synchronization. It is not intended for uses requiring a fixed frequency.

CHRDY (I)

I/O Channel Ready (CHRDY) is pulled low (not ready) by a memory or I/O device to lengthen I/O or memory cycles. Any slow device using this line should drive it low immediately upon detecting its valid address and a Read or Write command. Machine cycles are extended by an integral number of clock cycles. This signal should be held low for no more than 2.5 microseconds.

D[15::0] (I/O)

Data signals D[15::0] provide bus bits 15 through 0 for the microprocessor, memory, and I/O devices. D15 is the most-significant bit and D0 is the least-significant bit. All 8-bit devices on the I/O channel should use D[7::0] for communications to the microprocessor. The 16-bit devices will use D[15::0]. To support 8-bit devices, the data on D[15::8] will be gated to D[7::0] during 8-bit transfers to these devices. 16-bit microprocessor transfers to 8-bit devices will be converted to two 8-bit transfers.

DAK[7::5]#, DAK[3::0]# (O)

DMA Acknowledge DAK[7::5]# and DAK[3::0]# are used to acknowledge DMA requests DRQ[7::5] and DRQ[3::0]. They are active low.

DRQ[7::5], DRQ[3::0] (I)

DMA Requests DRQ[7::5] and DRQ[3::0] are asynchronous channel requests used by peripheral devices and the I/O channel microprocessors to gain DMA service (or control of the system). They are prioritized, with DRQ0 having the highest priority and DRQ7 having the lowest. A request is generated by bringing a DRQ line to an active level. A DRQ line must be held high until the corresponding DMA Request Acknowledge (DAK) line goes active. DRQ[3::0] will perform 8-bit DMA transfers; DRQ[7::5] will perform 16-bit transfers.

2-9 Trenton Technology Inc.

IO16# (I)

I/O 16-bit Chip Select (IO16#) signals the system board that the present data transfer is a 16-bit, 1 wait-state, I/O cycle. It is derived from an address decode. IO16# is active low and should be driven with an open collector or tri-state driver capable of sinking 20 mAmps.

IOCHK# (I)

I/O Channel Check (IOCHK#) provides the system board with parity (error) information about memory or devices on the I/O channel. When this signal is active, it indicates an uncorrectable system error.

IORC# (I/O)

I/O Read (IORC#) instructs an I/O device to drive its data onto the data bus. It may be driven by the system microprocessor or DMA controller, or by a microprocessor or DMA controller resident on the I/O channel. This signal is active low.

IOWC# (I/O)

I/O Write (IOWC#) instructs an I/O device to read the data on the data bus. It may be driven by any microprocessor or DMA controller in the system. This signal is active low.

IRQ[15::14], IRQ[12::9], IRQ[7::3] (I)

Interrupt Requests IRQ[15::14], IRQ[12::9] and IRQ[7::3] are used to signal the microprocessor that an I/O device needs attention. The interrupt requests are prioritized, with IRQ[15::14] and IRQ[12::9] having the highest priority (IRQ9 is the highest) and IRQ[7::3] having the lowest priority (IRQ7 is the lowest). An interrupt request is generated when an IRQ line is raised from low to high. The line must be held high until the microprocessor acknowledges the interrupt request (Interrupt Service routine).

LA[23::17] (I/O)

These signals (unlatched) are used to address memory and I/O devices within the system. They give the system up to 16MB of addressability. These signals are valid when BALE is high. LA[23::17] are not latched during microprocessor cycles and therefore do not stay valid for the whole cycle. Their purpose is to generate memory decodes for 1 wait-state memory cycles. These decodes should be latched by I/O adapters on the falling edge of BALE. These signals also may be driven by other microprocessors or DMA controllers that reside on the I/O channel.

M16# (I)

M16# Chip Select signals the system board if the present data transfer is a 1 < N > wait-state, 16- bit, memory cycle. It must be derived from the decode of LA[23::17]. M16# should be driven with an open collector or tri-state driver capable of sinking 20 mAmps.

Master16# (I)

Master16# is used with a DRQ line to gain control of the system. A processor or DMA controller on the I/O channel may issue a DRQ to a DMA channel in cascade mode and receive a DAK#. Upon receiving the DAK#, an I/O microprocessor may pull Master16# low, which will allow it to control the system address, data, and control lines (a condition known as tri-state). After Master16# is low, the I/O microprocessor must wait one system clock period before driving the address and data lines, and two clock periods before issuing a Read or Write command. If this signal is held low for more than 15<N>microseconds, system memory may be lost because of a lack of refresh.

NOWS# (I)

The No Wait State (NOWS#) signal tells the microprocessor that it can complete the present bus cycle without inserting any additional wait cycles. In order to run a memory cycle to a 16-bit device without wait cycles, NOWS# is derived from an address decode gated with a Read or Write command. In order to run a memory cycle to an 8-bit device with a minimum of two wait states, NOWS# should be driven active on system clock after the Read or Write command is active gated with the address decode for the device. Memory Read and Write commands to a 8-bit device are active on the falling edge of the system clock. NOWS# is active low and should be driven with an open collector or tri-state driver capable of sinking 20 mAmps.

OSC (O)

Oscillator (OSC) is a high-speed clock with a 70-nanosecond period (14.31818 MHz). This signal is not synchronous with the system clock. It has a 50% duty cycle.

REFRESH# (I/O)

The REFRESH# signal is used to indicate a refresh cycle and can be driven by a microprocessor on the I/O channel.

RESDRV (O)

Reset Drive (RESDRV) is used to reset or initialize system logic at power-up time or during a low line-voltage outage. This signal is active high.

SA[19::0] (I/O)

Address bits SA[19::0] are used to address memory and I/O devices within the system. These twenty address lines, in addition to LA[23::17], allow access of up to 16MB of memory. SA[19::0] are gated on the system bus when BALE is high and are latched on the falling edge of BALE. These signals are generated by the microprocessor or DMA Controller. They also may be driven by other microprocessors or DMA controllers that reside on the I/O channel.

SBHE# (I/O)

System Bus High Enable (SBHE#) indicates a transfer of data on the upper byte of the data bus, D[15::8]. 16-bit devices use SBHE# to condition data bus buffers tied to D[15::8].

SMRDC# (O), MRDC# (I/O)

These signals instruct the memory devices to drive data onto the data bus. SMRDC# is active only when the memory decode is within the low 1MB of memory space. MRDC# is active on all memory read cycles. MRDC# may be driven by any microprocessor or DMA controller in the system. SMRDC is derived from MRDC# and the decode of the low 1MB of memory. When a microprocessor on the I/O channel wishes to drive MRDC#, it must have the address lines valid on the bus for one system clock period before driving MRDC# active. Both signals are active low.

SMWTC# (O), MWTC# (I/O)

These signals instruct the memory devices to store the data present on the data bus. SMWTC# is active only when the memory decode is within the low 1MB of the memory space. MWTC# is active on all memory write cycles. MWTC# may be driven by any microprocessor or DMA controller in the system. SMWTC# is derived from MWTC# and the decode of the low 1MB of memory. When a microprocessor on the I/O channel wishes to drive MWTC#, it must have the address lines valid on the bus for one system clock period before driving MWTC# active. Both signals are active low.

2-11 Trenton Technology Inc.

T-C (O)

Terminal Count (T-C) provides a pulse when the terminal count for any DMA channel is reached.

I/O ADDRESS MAP*

Hex Range	Device
000-01F	DMA Controller 1
020-03F	Interrupt Controller 1, Master
040-05F	Timer
060-06F	8042 (Keyboard)
070-07F	Real-time Clock, NMI (non-maskable interrupt) Mask
080-09F	DMA Page Register
0A0-0BF	Interrupt Controller 2
0C0-0DF	DMA Controller 2
0F0	Clear Math Coprocessor Busy
0F1	Reset Math Coprocessor
0F8-0FF	Math Coprocessor
1F0-1F8	Fixed Disk
200-207	Game I/O
278-27F	Parallel Printer Port 2
2F8-2FF	Serial Port 2
300-31F	Prototype Card
360-36F	Reserved
378-37F	Parallel Printer Port 1
380-38F	SDLC, Bisynchronous 2
3A0-3AF	Bisynchronous 1
3B0-3BF	Monochrome Display and Printer Adapter
3C0-3CF	Reserved
3D0-3DF	Color/Graphics Monitor Adapter
3F0-3F7	Diskette Controller
3F8-3FF	Serial Port 1

INTERRUPT ASSIGNMENTS*

Interrupt	Description
IRQ0	Timer Output 0
IRQ1	Keyboard (Output Buffer Full)
IRQ2	Interrupt 8 through 15
IRQ3	Serial Port 2
IRQ4	Serial Port 1
IRQ5	Parallel Port 2
IRQ6	Diskette Controller
IRQ7	Parallel Port 1
IRQ8	Real-time Clock Interrupt
IRQ9	Software Redirected to INT 0AH (IRQ2)
IRQ10	Unassigned
IRQ11	Unassigned
IRQ12	Unassigned
IRQ13	Coprocessor
IRQ14	Fixed Disk Controller
IRQ15	Unassigned

^{*} These are typical parameters, which may not reflect your current system.

2-13 Trenton Technology Inc.

PCI Local Bus Overview

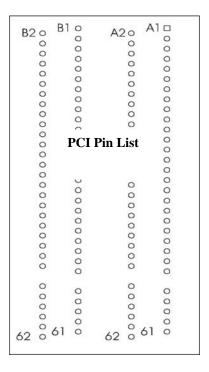
The PCI (Peripheral Component Interconnect) Local Bus is a high performance, 32-bit or 64-bit bus with multiplexed address and data lines. It is intended for use as an interconnect mechanism between highly integrated peripheral controller components, peripheral add-in boards and processor/memory systems.

The "local bus" moves peripheral functions with high bandwidth requirements closer to the system's processor bus and can produce substantial performance gains with graphical user interfaces (GUIs) and other high bandwidth functions (i.e., full motion video, SCSI, LANs, etc.).

The PCI Local Bus accommodates future system requirements and is applicable across multiple platforms and architectures.

The PCI component and add-in card interface is processor independent, enabling an efficient transition to future processor generations, by bridges or by direct integration, and use with multiple processor architectures. Processor independence allows the PCI Local Bus to be optimized for I/O functions, enables concurrent operation of the local bus with the processor/memory subsystem, and accommodates multiple high performance peripherals in addition to graphics. Movement to enhanced video and multimedia displays and other high bandwidth I/O will continue to increase local bus bandwidth requirements. A transparent 64-bit extension of the 32-bit data and address buses is defined, doubling the bus bandwidth and offering forward and backward compatibility of 32-bit (132MB/s peak) and 64-bit (264MB/s peak) PCI Local Bus peripherals.

PCI Local Bus Signal Definition


The PCI interface requires a minimum of 47 pins for a target-only device and 49 pins for a master to handle data and addressing, interface control, arbitration and system functions. The diagram below shows the pins in functional groups, with required pins on the left side and optional pins on the right side.

Required Pins:		Optional Pins:
Address & Data: AD[31::00]		64-bit Extension AD[63::32]
C/BE[3::0]#	PCI	C/BE[7::4]#
PAR	Compliant Device	PAR64 REQ64#
Interface Control:		ACK64#
FRAME# TRDY# IRDY# STOP# DEVSEL# IDSEL		Interface Control: LOCK# INTA# INTB# INTC# INTD#
Error Reporting: PERR# SERR#		Cache Support: SBO# SDONE
Arbitration (masters only): REQ# GNT# System: CLK RST#		JTAG (IEEE 1149.1): TDI TDO TCK TMS TRST#
		I

2-15 Trenton Technology Inc.

PCI Local Bus Pin Numbering

Component Side of Board

5-volt/32-bit PCI Connector

PCI LOCAL BUS PIN ASSIGNMENTS

The PCI Local Bus pin assignments shown below are for the PCI option slots on the backplane.

The PCI Local Bus specifies both 5-volt and 3.3-volt signaling environments. The following bus pin assignments are for the 5-volt connector. The 3.3-volt connector bus pin assignments are the same with the following exceptions:

- * The pins noted as +V (I/O) are +5 volts or +3.3 volts, depending on which connector is being used.
- † Pins B12, B13, A12 and A13 are Gnd (ground) on the 5-volt connector, but are Connector Keys on the 3.3-volt connector.
- †† Pin B49 is Gnd (ground) on the 5-volt connector, but is M66EN on the 3.3- volt connector.
- ††† Pins B50, B51, A50 and A51 are Connectors Keys on the 5-volt connector, but are Gnd (ground) on the 3.3-volt connector.

I/O Pin	Signal Name	I/O Pin	Signal Name	
B1	-12V	A1	TRST#	32-bit connecto
B2	TCK	A2	+12V	
В3	Gnd	A3	TMS	
B4	TDO	A4	TDI	
B5	+5V	A5	+5V	
B6	+5V	A6	INTA#	
B7	INTB#	A7	INTC#	
B8	INTD#	A8	+5V	
B9	PRSNT1#	A9	Reserved	
B10	Reserved	A10	+V (I/O) *	
B11	PRSNT2#	A11	Reserved	
B12	Gnd	A12	Gnd	3.3-Volt Key
B13	Gnd	A13	Gnd	3.3-Volt Key
B14	Reserved	A14	Reserved	
B15	Gnd	A15	RST#	
B16	CLK	A16	+V (I/O) *	
B17	Gnd	A17	GNT#	
B18	REQ#	A18	Gnd	
B19	+V (I/O) *	A19	Reserved	
B20	AD31	A20	AD30	
B21	AD29	A21	+3.3V	
B22	Gnd	A22	AD28	
B23	AD27	A23	AD26	
B24	AD25	A24	Gnd	
B25	+3.3V	A25	AD24	
B26	C/BE3#	A26	IDSEL	
B27	AD23	A27	+3.3V	
B28	Gnd	A28	AD22	
B29	AD21	A29	AD20	
B30	AD19	A30	Gnd	
B31	+3.3V	A31	AD18	
B32	AD17	A32	AD16	
B33	C/BE2#	A33	+3.3V	
B34	Gnd	A34	FRAME#	
B35	IRDY#	A35	Gnd	

2-17 Trenton Technology Inc.

PCI LOCAL BUS PIN ASSIGNMENTS (CONTINUED)

I/O Pin	Signal Name	I/O Pin	Signal Name	
B36	+3.3V	A36	TRDY#	
B37	DEVSEL#	A37	Gnd	
B38	Gnd	A38	STOP#	
B39	LOCK#	A39	+3.3V	
B40	PERR#	A40	SDONE	
B41	+3.3V	A41	SBO#	
B42	SERR#	A42	Gnd	
B43	+3.3V	A43	PAR	
B44	C/BE1#	A44	AD15	
B45	AD14	A45	+3.3V	
B46	Gnd	A46	AD13	
B47	AD12	A47	AD11	
B48	AD10	A48	Gnd	
B49	Gnd	A49	AD9	
B50	Connector Key	A50	Connector Key	5-volt key
B51	Connector Key	A51	Connector Key	5-volt key
B52	AD8	A52	C/BE0#	
B53	AD7	A53	+3.3V	
B54	+3.3V	A54	AD6	
B55	AD5	A55	AD4	
B56	AD3	A56	Gnd	
B57	Gnd	A57	AD2	
B58	AD1	A58	AD0	
B59	+V (I/O) *	A59	+V (I/O) *	
B60	ACK64#	A60	REQ64#	
B61	+5V	A61	+5V	
B62	+5V	A62	+5V	32-bit connector end

PCI LOCAL BUS PIN ASSIGNMENTS (CONTINUED)The following pin assignments apply only to backplanes with 64-bit PCI option slots.

I/O Pin	Signal Name		I/O Pin	Signal Name	
	Connector Key	1		Connector Key	64-bit spacer
	Connector Key			Connector Key	64-bit spacer
B63	Reserved		A63	Gnd	64-bit connector start
B64	Gnd		A64	C/BE7#	
B65	C/BE6#		A65	C/BE5#	
B66	C/BE4#		A66	+V (I/O) *	
B67	Gnd		A67	PAR64	
B68	AD63		A68	AD62	
B69	AD61		A69	Gnd	
B70	+V (I/O) *		A70	AD60	
B71	AD59		A71	AD58	
B72	AD57		A72	Gnd	
B73	Gnd		A73	AD56	
B74	AD55		A74	AD54	
B75	AD53		A75	+V (I/O) *	
B76	Gnd		A76	AD52	
B77	AD51		A77	AD50	
B78	AD49		A78	Gnd	
B79	+V (I/O) *		A79	AD48	
B80	AD47		A80	AD46	
B81	AD45		A81	Gnd	
B82	Gnd		A82	AD44	
B83	AD43		A83	AD42	
B84	AD41		A84	+V (I/O) *	
B85	Gnd		A85	AD40	
B86	AD39		A86	AD38	
B87	AD37		A87	Gnd	
B88	+V (I/O) *		A88	AD36	
B89	AD35		A89	AD34	
B90	AD33		A90	Gnd	
B91	Gnd		A91	AD32	
B92	Reserved		A92	Reserved	
B93	Reserved		A93	Gnd	
B94	Gnd] L	A94	Reserved	64-bit connector end

2-19 Trenton Technology Inc.

PCI Local Bus Signal Descriptions

The PCI Local Bus signals are described below and may be categorized into the following functional groups:

- System Pins
- Address and Data Pins
- Interface Control Pins
- Arbitration Pins (Bus Masters Only)
- Error Reporting Pins
- Interrupt Pins (Optional)
- Cache Support Pins (Optional)
- 64-Bit Bus Extension Pins (Optional)
- JTAG/Boundary Scan Pins (Optional)

A # symbol at the end of a signal name indicates that the active state occurs when the signal is at a low voltage. When the # symbol is absent, the signal is active at a high voltage.

The following are descriptions of the PCI Local Bus signals.

ACK64# (optional)

Acknowledge 64-bit Transfer, when actively driven by the device that has positively decoded its address as the target of the current access, indicates the target is willing to transfer data using 64bits. ACK64# has the same timing as DEVSEL#.

AD[31::00]

Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address phase followed by one or more data phases. During the address phase, AD[31::00] contain a physical address (32 bits). During data phases, AD[07::00] contain the least significant byte (lsb) and AD[31::24] contain the most significant byte (msb).

AD[63::32] (optional)

Address and Data are multiplexed on the same pins and provide 32additional bits. During an address phase (when using the DAC command and when REQ64# is asserted), the upper 32bits of a 64-bit address are transferred; otherwise, these bits are reserved but are stable and indeterminate. During a data phase, an additional 32bits of data are transferred when REQ64# and ACK64# are both asserted.

C/BE[3::0]#

Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of a transaction, these pins define the bus command; during the data phase they are used as byte enables. The byte enables are valid for the entire data phase and determine which byte lanes carry meaningful data. C/BE0# applies to byte0 (lsb) and C/BE3# applies to byte 3 (msb).

C/BE[7::4]# (optional)

Bus Command and Byte Enables are multiplexed on the same pins. During an address phase (when using the DAC command and when REQ64# is asserted), the actual bus command is transferred on C/BE[7::4]#; otherwise, these bits are reserved and indeterminate. During a data phase, C/BE[7::4]# are byte enables indicating which byte lanes carry meaningful data when REQ64# and ACK64# are both asserted. C/BE4# applies to byte4 and C/BE7# applies to byte7.

CLK

Clock provides timing for all transactions on PCI and is an input to every PCI device.

DEVSEL#

Device Select, when actively driven, indicates that the driving device has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on the bus has been selected.

FRAME#

Cycle Frame is an interface control pin which is driven by the current master to indicate the beginning and duration of an access. When FRAME# is asserted, data transfers continue; when it is deasserted, the transaction is in the final data phase.

GNT#

Grant indicates to the agent that access to the bus has been granted. This is a point to point signal. Every master has its own GNT#.

IDSEL

Initialization Device Select is used as a chip select during configuration read and write transactions.

INTA#, INTB#, INTC#, INTD# (optional)

Interrupts on PCI are optional and defined as "level sensitive," asserted low (negative true), using open drain output drivers. PCI defines one interrupt for a single function and up to four interrupt lines for a multi-function device or connector.

Interrupt A is used to request an interrupt. For a single function device, only INTA# may be used, while the other three interrupt lines have no meaning.

Interrupt B, Interrupt C and Interrupt D are used to request additional interrupts and only have meaning on a multifunction device.

IRDY#

Initiator Ready indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. IRDY# is used in conjunction with TRDY#. During a write, IRDY# indicates that valid data is present on AD[31::0]. During a read, it indicates that the master is prepared to accept data.

LOCK#

Lock indicates an operation that may require multiple transactions to complete. When LOCK# is asserted, non-exclusive transactions may proceed to an address that is not currently locked.

2-21 Trenton Technology Inc.

PAR

Parity is even parity across AD[31::00] and C/BE[3::0]#. Parity generation is required by all PCI agents. The master drives PAR for address and write data phases; the target drives PAR for read data phases.

PAR64 (optional)

Parity Upper DWORD is the even parity bit that protects AD[63::32] and C/BE[7::4]#. The master drives PAR64 for address and write data phases; the target drives PAR64 for read data phases.

PERR#

Parity Error is for the reporting of data parity errors during all PCI transactions except a Special Cycle. There are no special conditions when a data parity error may be lost or when reporting of an error may be delayed.

PRSNT1# and PRSNT2#

PRSNT1# and PRSNT2# are related to the connector only, not to other PCI components. They are used for two purposes: indicating that a board is physically present in the slot and providing information about the total power requirements of the board.

REQ#

Request indicates to the arbiter that this agent desires use of the bus. This is a point to point signal. Every master has its own REQ#.

REQ64# (optional)

Request 64-bit Transfer, when actively driven by the current bus master, indicates it desires to transfer data using 64 bits. REQ64# has the same timing as FRAME#. REQ64# has meaning at the end of reset.

RST#

Reset is used to bring PCI-specific registers, sequencers and signals to a consistent state.

SBO# (optional)

Snoop Backoff is an optional cache support pin which indicates a hit to a modified line when asserted. When SBO# is deasserted and SDONE is asserted, it indicates a "clean" snoop result.

SDONE (optional)

Snoop Done is an optional cache support pin which indicates the status of the snoop for the current access. When deasserted, it indicates the result of the snoop is still pending. When asserted, it indicates the snoop is complete.

SERR#

System Error is for reporting address parity errors, data parity errors on the Special Cycle command, or any other system error where the result will be catastrophic. If an agent does not want a non-maskable interrupt (NMI) to be generated, a different reporting mechanism is required.

STOP#

Stop indicates that the current target is requesting the master to stop the current transaction.

TCK (optional)

Test Clock is used to clock state information and test data into and out of the device during operation of the TAP (Test Access Port).

TDI (optional)

Test Data Input is used to serially shift test data and test instructions into the device during TAP (Test Access Port) operation.

TDO (optional)

Test Data Output is used to serially shift test data and test instructions out of the device during TAP (Test Access Port) operation.

TMS (optional)

Test Mode Select is used to control the state of the TAP (Test Access Port) controller in the device.

TRDY#

Target Ready indicates the target agent's (selected device's) ability to complete the current data phase of the transaction. TRDY# is used in conjunction with IRDY#. During a read, TRDY# indicates that valid data is present on AD[31::00]. During a write, it indicates that the target is prepared to accept data.

TRST# (optional)

Test Reset provides an asynchronous initialization of the TAP controller. This signal is optional in the IEEE Standard Test Access Port and Boundary Scan Architecture.

2-23 Trenton Technology Inc.

This page intentionally left blank.

Chapter 3 - PCI Express® Reference

INTRODUCTION

PCI Express[®] is a high-speed, high-bandwidth interface with multiple channels (lanes) bundled together with each lane using full-duplex, serial data transfers with high clock frequencies.

The PCI Express architecture is based on the conventional PCI addressing model, but improves upon it by providing a high-performance physical interface and enhanced capabilities. Whereas the PCI bus architecture provided parallel communication between a processor board and backplane, the PCI Express protocol provides high-speed serial data transfer, which allows for higher clock speeds. The same data rate is available in both directions simultaneously, effectively reducing bottlenecks between the system host board (SHB) and PCI Express option cards.

PCI Express option cards may require updated device drivers. Most operating systems that support legacy PCI cards will also support PCI Express cards without modification. Because of this design, PCI, PCI-X and PCI Express option cards can co-exist in the same system.

PCI Express connectors have lower pin counts than PCI bus connectors. The PCIe connectors are physically different, based on the number of lanes in the connector.

PCI Express® Links

Several PCI Express channels (lanes) can be bundled for each expansion slot, leaving room for stages of expansion.

A basic PCI Express lane consists of a set of differential signal pairs: one pair for transmission and one pair for reception. A PCI Express link is a collection of one or more PCIe lanes. PCI Express supports scalable link widths in 1-, 4-, 8- and 16-lane configurations, generally referred to as x1, x4, x8 and x16 slots. A x1 ("by 1") slot indicates that the slot has one PCIe lane, which gives it a bandwidth of 250MB/s in each direction. Since devices do not compete for bandwidth, the effective bandwidth, counting bandwidth in both directions, is 500MB/s (full-duplex).

The number and configuration of an SHB's PCI Express links is determined by specific component PCI Express specifications. The bandwidths for the PCIe links are determined by the link width multiplied by 250MB/s and 500MB/s, as follows:

Slot		Full-Duplex		
Size	Bandwidth	Bandwidth		
x1	250MB/s	500MB/s		
x4	1GB/s	2GB/s		
x8	2GB/s	4GB/s		
x16	4GB/s	8GB/s		

Scalability is a core feature of PCI Express. PCI Express interface scalability enables greater system operational flexibility and efficiency.

PCI Express devices with different PCI Express link configurations can establish communication using a process called auto-negotiation or link training. If a board with a higher number of lanes is placed in a slot with a lower number of lanes (e.g., a x16 board in a x1 slot) or a board with a lower number of lanes is placed into a slot with a higher number of lanes (e.g., a x4 board into a x16 slot), the link auto-negotiates down to the lower link rate to establish communication. The mechanical option card slots on Trenton PICMG[®] 1.3 backplanes have PCI Express configuration straps. Some SHB designs may utilize the straps in the PCI Express link width negotiation process.

3-1 Trenton Technology Inc.

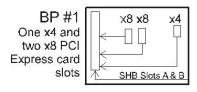
In order to properly support all of the PCI Express option card slots or devices on a PICMG 1.3 backplane, the SHB must provide an adequate number of both PCI Express links and PCI Express reference clocks.

For more information, refer to the PCI Industrial Manufacturers Group's *SHB Express*TM *System Host Board PCI Express Specification, PICMG*[®] 1.3.

SHB AND PICMG® 1.3 BACKPLANE CONFIGURATIONS

The PICMG 1.3 specification enables SHB vendors to provide multiple PCI Express configuration options for edge connectors A and B of a particular SHB. These edge connectors carry the PCI Express links and reference clocks down to the SHB slot on the PICMG 1.3 backplane. The PICMG 1.3 specification states that the SHB must provide as many reference clocks as there are potential PCI Express links on the PICMG 1.3 backplane.

The potential PCI Express link configurations of an SHB fall into two main classifications: server-class and graphics-class. The specific class and PCI Express link configuration of an SHB is determined by the chipset components used on the SHB.

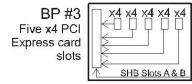

In a server-class configuration, the main goal of the SHB is to route as many high- bandwidth PCI Express links as possible down to the backplane. Typically, these links are a combination of x4 and x8 PCI Express links.

NOTE: Server-class SHBs should always be used with server-class PICMG 1.3 backplanes. Combining incompatible SHBs and backplanes will not cause damage to the option cards or SHB, but one or more of the slots may not function and may result in one or more PCI Express option cards on the backplane being non-functional. This is due to the fact that there may not be enough available links to properly connect all of the PCI Express option card slots to the SHB. Precautions have been engineered into the PICMG 1.3 specification to prevent either SHB or backplane damage if this functionality mismatch occurs.

The figures below show some typical SHB and backplane combinations that would result in all of the PCI Express slots successfully establishing communication with the SHB host device.

Server-Class SHB:

PCI Express™ Edge Connectors A & B: One x4 and two x8 PCI Express™ Links with five reference clocks



BP #2
One x16 *, one x8
and one x4 PCI
Express card
slot

X16 x8 x2
(x8)

X16 x8 x2
(x8)

SHB Slots A & B

* x16 slot is x16 mech./x8 elec.

PCI Express link configuration straps for each PCI Express option card slot on a PICMG 1.3 backplane are required as part of the PICMG 1.3 SHB Express specification. These configuration straps may be used to alert the SHB as to the specific link configuration expected on each PCI Express option card slot. PCI Express communication between the SHB and option card slots is successful only when there are enough available PCI Express links established between the PICMG 1.3 SHB and each PCI Express slot or device on the backplane.

For more information, refer to the PCI Industrial Manufacturers Group's *SHB Express*TM *System Host Board PCI Express Specification, PICMG*[®] 1.3.

PCI EXPRESS EDGE CONNECTOR PIN ASSIGNMENTS

Trenton PCI Express server-class backplanes provide edge connectors A, B and C.

Optional I/O signals are defined in the PICMG 1.3 specification and if implemented must be located on edge connector C of the SHB. Trenton PICMG 1.3 backplanes enable some or all of the USB and Ethernet connections on edge connector C, but since these connections are optional, not all SHBs support them. In order to take advantage of these I/O features, the SHB in your system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.

The BPG6544 supports two ISA slots via a PCI-to-ISA bridge chip. Since the ISA bus interface is not part of the PICMG 1.3 specification, two reserved pins are used to route the ISA signals SERIRQ and NOGO_ISA to the backplane's PCI-to-ISA bridge chip. Legacy PCI card support is not impacted by this ISA bus signal routing requirement. The following bus pin assignments are used:

- * SERIRQ -- connector A, pin B77
- ** NOGO_ISA -- connector B, pin A2

The following table shows pin assignments for the PCI Express edge connectors on Trenton backplanes. Connector D is only available on graphics-class backplanes.

	Connector A			Connector B			Connector C			*Connector D		
	Side B	Side A		Side B	Side A		Side B	Side A		Side B	Side A	
1	SMCLK	SMDAT	1	+5Vaux	+5Vaux	1	USB0P	GND	1	INTB#	INTA#	
2	GND	GND	2	GND	RSVD **	2	USB0N	GND	2	INTD#	INTC#	
3	TDI	TCK	3	a_PETp8	GND	3	GND	USB1P	3	GND	VIO	
4	TDO	TMS	4	a_PETn8	GND	4	GND	USB1N	4	REQ3#	GNT3#	
5	TRST#	WAKE#	5	GND	a_PERp8	5	USB2P	GND	5	REQ2#	GNT2#	
6	PWRBT#	PME#	6	GND	a_PERn8	6	USB2N	GND	6	PCI_RST#	GNT1#	
7	PWRGD	PSON#	7	a_PETp9	GND	7	GND	USB3P	7	REQ1#	GNT0#	
8	SHB_RST#	PERST#	8	a_PETn9	GND	8	GND	USB3N	8	REQ0#	SERR#	
9	CFG0	CFG1	9	GND	a_PERp9	9	USBOC0#	GND	9	SDONE	+3.3V	
10	CFG2	CFG3	10	GND	a_PERn9	10	GND	USBOC1#	10	GND	CLKF1	
11	RSVD	GND	11	RSVD	GND	11	USBOC2#	GND	11	CLKFO	GND	
	Mechanical Key			Mechanical Key			Mechanical Key			Mechanical Key		

3-3 Trenton Technology Inc.

	Connector A		Connector B			Connector C			*Connector D		
	Side B	Side A		Side B	Side A		Side B	Side A		Side B	Side A
12 113 145 1617 189 190 122 122 122 122 122 123 133 133 133 133	GND b_PETp0 b_PETn0 GND b_PETn1 GND b_PETn1 GND b_PETn1 GND b_PETn1 GND b_PETn3 GND b_PETn3 GND b_PETn3 GND REFCLK0-GND REFCLK0-GND REFCLK2-GND REFCLK4-GND REFCLK4-GND REFCLK6-GND REFCLK	GND REFCLK3+ REFCLK3-	12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 43 44 45 46 47 48 49	GND a_PETp10 a_PETn10 GND GND a_PETn11 GND GND a_PETp12 a_PETn12 GND GND a_PETp13 a_PETn13 GND GND a_PETp14 a_PETn14 GND	RSVD GND a_PER10 a_PER10 a_PER11 GND a_PER111 GND GND a_PER12 GND GND a_PER13 GND GND a_PER14 GND GND GND GND GND GND GND GND GND GND	12 13 145 16 17 18 19 20 21 22 32 42 25 26 27 28 29 30 31 32 33 34 44 44 44 44 45 46 47 48 49 51 52 53 66 66 66 67 67 77 77 78 78 78 77 77 77 77 77 77 77 77	GND NC NC GND	USBOC3# GND GND GND NC NC GND GND NC NC GND GND a_MDI1p a_MDI3n GND	12 13 14 15 16 17 18 20 21 22 23 33 34 42 25 26 27 30 31 32 43 44 44 45 47 48 49	CLKC GND CLKA +3.3V AD31 AD29 M66EN AD27 AD25 GND C/BE3# AD23 GND AD17 C/BE2# PCL_PRST# IRDY# DEV\$EL# LOCK# PERR# GND AD15 AD13 GND AD15 AD13 GND AD14 AD08 GND AD07 AD04 GND AD03 AD00	CLKD +3.3V CLKB GND GND +3.3V AD30 AD26 AD24 +3.3V AD22 AD20 PCIXCAP AD16 GND FRAME# TRDY# +5V STOP# GND C/BE1# AD12 AD10 GND AD12 AD10 GND AD12 AD10 GND AD12 AD10 GND AD10 GND AD10 GND AD10 GND AD10 GND AD10 GND AD10 GND AD10 GND AD10 GND AD10 GND AD10 AD10 AD10 AD10 AD10 AD10 AD10 AD1

^{*} Graphics-class backplanes only.

PCI EXPRESS SIGNALS OVERVIEW

The following table provides a description of the SHB slot signal groups on the PCI Express connectors.

Туре	Signals	Description	Connector	Source
Global	GND, +5V, +3.3V, +12V PSON# PWRGD, PWRBT#, +5Vaux TRST#, TCK, TMS, TDI TDO SMCLK, SMDAT VIO IPMB_CL, IPMB_DA CFG[0:3] SHB_RST# RSVD-G WAKE#	Power Optional ATX support Optional ATX support Optional JTAG support Optional JTAG support Optional SMBus support Match keying for PCI bus Optional IPMB support PCIe configuration straps Optional reset line Reserved Reserved ground Signal for link reactivation	A A and B A A A D C A A A and B A A A	Backplane SHB Backplane SHB SHB & Backplane Backplane Backplane Backplane SHB & Backplane SHB & Backplane Backplane Backplane Backplane Backplane
	a_PETp[0:15] a_PETn[0:15] a_PERp[0:15] a_PERn[0:15]	Point-to-point from SHB slot through the x16 PCIe connector (A) to the target device(s)	A and B	SHB & Backplane
PCle	b_PETp[0:3] b_PETn[0:3] b_PERp[0:3] b_PERn[0:3]	Point-to-point from SHB slot through the x8 PCIe connector (B) to the target device(s)	А	SHB & Backplane
	REFCLK[0:7]+ REFCLK[0:7]-	Clock synchronization of PCIe expansion slots	A A	SHB
	PERST#	PCIe fundamental reset	,,	SHB &
	ADIO:241 EDAME#	Bussed on SHB slot and	D	Backplane SHB & Backplane
	AD[0:31], FRAME#, IRDY#, TRDY#, STOP#, LOCK#, DEVSEL#, PERR#, SERR#, C/BE[0:3], SDONE, SBO#, PAR	expansion slots	ט	ы по о одскріане
	GNT[0:3], REQ[0:3], CLKA, CLKB, CLKC, CLKD, CLKFO, CLKFI	Point-to-point from SHB slot to each expansion slot	D	SHB & Backplane
PCI(-X)	INTA#, INTB#, INTC#, INTD#	Bussed (rotating) on SHB slot and expansion slots	D	Backplane
	M66EN, PCIXCAP	Bussed on SHB slot and expansion slots	D	Backplane
	PCI_PRST#	PCI(-X) present on backplane detect	D	Backplane
	PME#	Optional PCI wake-up event bussed on SHB and backplane expansion slots	А	Backplane

3-5 Trenton Technology Inc.

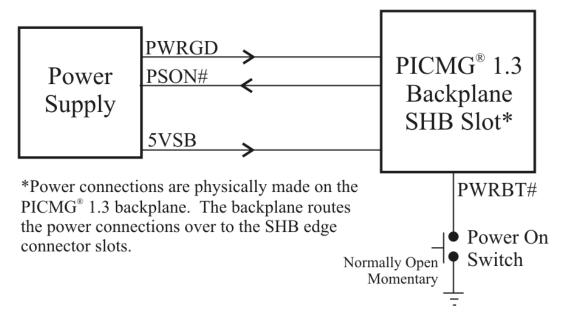
PCI EXPRESS SIGNALS OVERVIEW (CONTINUED)

Туре	Signals	Description	Connector	Source
	USBOC[0:3]#	Optional point-to-point from SHB Connector C to a destination USB device	С	SHB & Backplane
	a_MDI[0:3]n	Optional point-to-point from SHB Connector C to a destination Ethernet device	С	SHB & Backplane

^{*} According to the PCI Industrial Manufacturers Group's *SHB Express*TM *System Host Board PCI Express Specification, PICMG*[®] *1.3*, some of these I/O connections are optional, and therefore not all SHBs support them. Check with the SHB vendor for a listing of I/O connections which are supported by the SHB.

POWER CONNECTION

The combination of new power supply technologies and the system capabilities defined in the SHB Express $^{\text{\tiny TM}}$ (PICMG $^{\text{\tiny B}}$ 1.3) specification require a different approach to connecting system power to a PICMG 1.3 backplane and/or SHB hardware.


To improve system MTTR (Mean Time To Repair), the PICMG 1.3 specification defines power connections to the SHB's edge connectors which should provide enough power to the SHB to eliminate the need to connect auxiliary power to the SHB. The connectors on a backplane must have an adequate number of contacts that are sufficiently rated to safely deliver the necessary power to drive high-performance SHBs. Trenton PICMG 1.3 backplanes define ATX/EPS and +12V connectors that are compatible with today's ATX/EPS power supply cable harnesses and provide multiple pins capable of delivering the current necessary to power high-performance processors.

The PICMG 1.3 specification supports soft power control signals via the Advanced Configuration and Power Interface (ACPI). Trenton SHBs support these signals, which are controlled by the ACPI and are used to implement various sleep modes. Refer to the General ACPI Configuration section of the *Advanced Setup* chapter in your SHB manual for information on ACPI BIOS settings.

When soft control signals are implemented, the type of ATX or EPS power supply used in the system and the operating system software will dictate how system power should be connected to the SHB. It is critical that the correct method be used.

POWER SUPPLY AND SHB INTERACTION

The following diagram illustrates the interaction between the power supply and the processor. The signals shown are PWRGD (Power Good), PSON# (Power Supply On), 5VSB (5 Volt Standby) and PWRBT# (Power Button). The +/- 12V, +/-5V, +3.3V and Ground signals are not shown.

Power Supply and SHB Interaction

PWRGD, PSON# and 5VSB are usually connected directly from an ATX or EPS power supply to the backplane. The PWRBT# is a normally open momentary switch that can be wired directly to a power button on the chassis.

CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

ELECTRICAL CONNECTION CONFIGURATIONS

There are a number of different connector types, such as EPS, ATX or terminal blocks, which can be utilized in wiring power supply and control functions to a PICMG 1.3 backplane. However, there are only two basic electrical connection configurations.

3-7 Trenton Technology Inc.

ACPI Connection

The diagram above shows how to connect an ACPI compliant power supply to an ACPI enabled PICMG 1.3 system. The following table shows the required connections which must be made for soft power control to work.

<u>Signal</u>	<u>Description</u>	Source
+ 12V	DC voltage for those systems that require it	Power Supply
+ 5V	DC voltage for those systems that require it	Power Supply
+ 3.3V	DC voltage for those systems that require it	Power Supply
+ 5VSB	5 Volt Standby. This DC voltage is always on when an ATX or EPS type power supply has AC voltage connected. 5VSB is used to keep the necessary circuitry functioning for software power control and wake up.	Power Supply
PWRGD	Power Good. This signal indicates that the power supply's voltages are stable and within tolerance.	Power Supply
PSON#	Power Supply On. This signal is used to turn on an ATX or EPS type power supply.	SHB/Backplane
PWRBT#	Power Button. A momentary normally open switch is connected to this signal. When pressed and released, this signals the SHB to turn on a power supply that is in an off state.	Power Button
	If the system is on, holding this button for four seconds will cause the SHB's chipset to shut down the power supply. The operating system is not involved and therefore this is not considered a clean shutdown. Data can be lost if this situation occurs.	

Legacy Non-ACPI Connection

For system integrators that either do not have or do not require an ACPI compliant power supply as described in the section above, an alternative electrical configuration is described in the following table.

<u>Signal</u>	<u>Description</u>	Source
+ 12V	DC voltage for those systems that require it	Power Supply
+ 5V	DC voltage for those systems that require it	Power Supply
+ 3.3V	DC voltage for those systems that require it	Power Supply
+ 5VSB	Not required	Power Supply
PWRGD	Not required	Power Supply
PSON#	Power Supply On. This signal is used to turn on an ATX or EPS type power supply. If an ATX or EPS power supply is used in this legacy configuration, a shunt must be installed on the backplane from PSON# to signal Ground. This forces the power supply DC outputs on whenever AC to the power supply is active.	Backplane
PWRBT#	Not used	

In addition to these connections, there is usually a switch controlling AC power input to the power supply.

3-9 Trenton Technology Inc.

This page intentionally left blank.

Chapter 4 - Server-Class Backplanes

6377-000 BPX3/8

The BPX3/8 is a PICMG-compatible backplane. It is a six-layer .062" thick PCB which provides three PCI Express[®] slots, four 64-bit/66MHz PCI-X slots and four 64-bit/33MHz PCI slots and can support PCI Express, PCI-X and PCI option cards. The backplane is PICMG[®] 1.3 compliant and the PCI-to-PCI bridge supports the PCI Local Bus 2.1 Specification. The backplane supports both Trenton Technology's modified 14-slot (64-bit) and PICMG[®] 1.3 13-slot hole patterns.

Of the three PCI Express slots, one is dedicated to an SHB Express $^{\text{TM}}$ system host board (SHB). The two remaining x16 PCIe slots provide the mechanical connections between the PCI Express option cards and the SHB. These slots mechanically can support x16, x8, x4 and x1 PCI Express cards. The electrical interfaces between PCIe slots A1 and B1 and the SHB are x8 PCI Express links.

The four 64-bit/33MHz PCI slots provide support for +5V or universal PCI option cards. The four 64-bit/66MHz PCI-X slots provide support for PCI option cards and PCI-X option cards, which must be either +3.3V or universal option cards.

NOTE: The 64-bit/66MHz PCI-X slots enable 66MHz PCI-X option cards to run at 66MHz. 66MHz PCI option cards will function in these slots but may only operate at 33MHz due to the differences between a PCI and PCI-X bus.

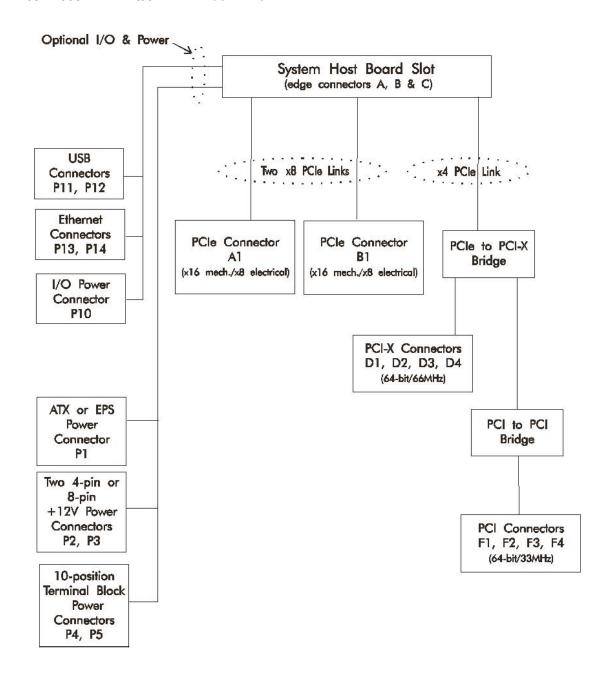
The BPX3/8 supports the optional Ethernet routing feature of the SHB Express specification and provides two 10/100/1000Base-T Ethernet RJ-45 connectors. It also has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane.

USB and Ethernet functionality on the BPX3/8 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of these I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.

The backplane is available in models which have either ATX or EPS power connections. The ATX model has standard ATX connectors. The ATX and EPS models have two extended-current terminal block connectors which provide additional power capacity for power-intensive applications -- up to 80 Amps of +12V, 80 Amps of +3.3V and 40 Amps of +5V.

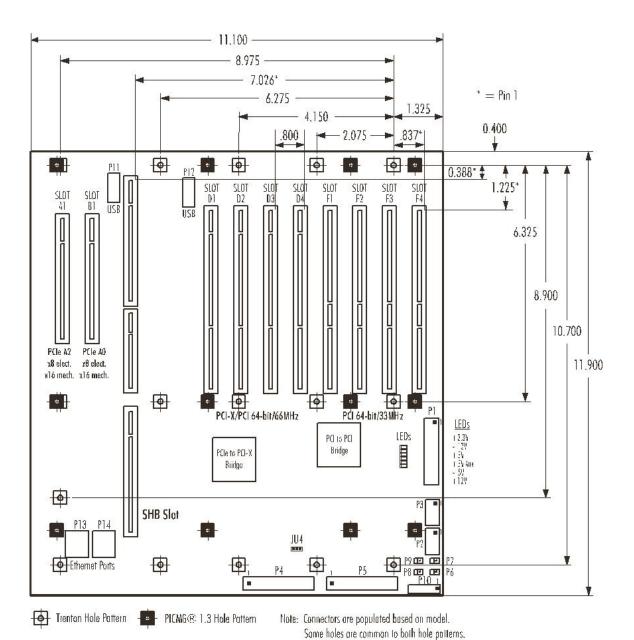
Two +12V power connectors are provided on all BPX3/8 models for routing auxiliary power to the SHB's edge connectors, eliminating the need for auxiliary power connections on the system host board. These are 8-pin connectors that can accommodate either a 4-pin or 8-pin power cable connection.

CAUTION: Trenton recommends using the EPS model of the backplane in systems using high-performance, dual-processor SHB Express system host boards. An EPS type of system power supply provides adequate power delivery in these types of embedded computing systems.


4-1 Trenton Technology Inc.

The power needs of backplane option cards, high-performance processors and other system components may result in drawing 20A of current from the +12V power supply line. If this occurs, hazardous energy (240VA) could exist inside the system chassis. Final system/equipment suppliers must provide protection to service personnel from these potentially hazardous energy levels.

Standby voltages may be used in the final system design to enable certain system recovery operations. In this case, the power supply may not completely remove power to the system host board when the power switch is turned off. Caution must be taken to ensure that incoming system power is completely disconnected before removing the system host board.


Models with other power configurations may be available. Contact Trenton Technology for more information.

6377-000 BPX3/8 BLOCK DIAGRAM

4-3 Trenton Technology Inc.

6377-000 **BPX3/8 DIMENSIONAL DRAWING**

PCB thickness .062"

Mounting holes .156" diameter Connector spacing .800" centers

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

Jumper JU4

Description

+5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

BPX3/8 CONNECTORS

The connectors available on the BPX3/8 vary depending on the version of the backplane you have. Connectors for the 6377-001 (ATX) and 6377-004 (EPS) tabs are defined below.

6377-001 BPX3/8-ATX CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX Power Connector

20 pin dual row header, Molex #39-29-9202

- · r -			– . –
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	11	+3.3V
2	+3.3V	12	-12V
3	Gnd	13	Gnd
4	+5V	14	PSON#
5	Gnd	15	Gnd
6	+5V	16	Gnd
7	Gnd	17	Gnd
8	PWRGD	18	-5V
9	+5VAUX	19	+5V
10	+12V	20	+5V

4-5 Trenton Technology Inc.

P2 - +12V Power Connector

4 pin mini fit JR, Molex #39-29-3046

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	3	+12V
2	Gnd	4	+12V

P3 - +12V Power Connector

4 pin mini fit JR, Molex #39-29-3046

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	3	+12V
2	Gnd	4	+12V

P4 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

mps per .
Signal
+3.3V
+3.3V
+5V
Gnd
+12V
+12V

P5 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

1	+3.3V
2	+3.3V
3	+5V
4	Gnd
5	Gnd
6	Gnd
7	Gnd
8	Gnd
9	+12V
10	+12V

Pin Signal

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 SHB_RST#

2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRGD

2 Gnd

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

- 1	6 6	,	
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	NC
17	NC	18	NC
19	NC	20	-12V

4-7 Trenton Technology Inc.

P11 -Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 -Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 -10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RA RJ-45 connector, Molex #43202-8110

<u>Pin</u>	<u>Signal</u>
1	TRP1+

- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P14 -10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RA RJ-45 connector, Molex #43202-8110

Pin Pin Signal 1 TRP1+ 2 TRP1-

- 3 TRP2+
- 4 TRP3+ 5
- TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

6377-004 BPX3/8-EPS CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - EPS Power Connector

24 pin dual row header, Molex #39-29-9243

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin mini fit JR, Molex #39-29-3086

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P3 - +12V Power Connector

8 pin mini fit JR, Molex #39-29-3086

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P4 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

<u>Pin</u>	Signal
1	+3.3V
2	+3.3V
3	+5V
4	Gnd
5	Gnd

4-9 Trenton Technology Inc.

P4 - Terminal Block Connector (continued)

Pin Signal

6 Gnd

7 Gnd

8 Gnd

9 +12V

10 +12V

P5 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

Pin Signal

1 +3.3V

2 +3.3V

3 +5V

4 Gnd

5 Gnd

6 Gnd

7 Gnd

8 Gnd

9 +12V

10 +12V

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 SHB_RST#

2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 PWRGD
- 2 Gnd

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

20 Pi	ii iigiit aligie aaai iow iie	auci, i	101CA 110 1 0 3 3 2 0 2
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	NC
17	NC	18	NC
19	NC	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

4-11 Trenton Technology Inc.

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RA RJ-45 connector, Molex #43202-8110

- Pin Signal
- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RA RJ-45 connector, Molex #43202-8110

- Pin Signal
- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

6467-000 BPX3/14

The BPX3/14 is a PICMG-compatible backplane. It is an eight-layer .080" thick PCB which provides three PCI Express[®] slots, two 64-bit/133MHz PCI-X slots and 12 64-bit/100MHz PCI-X slots and can support PCI Express, PCI-X and universal PCI option cards. The backplane is PICMG[®] 1.3 compliant and supports both Trenton and PICMG[®] 1.3 20-slot (64-bit) hole patterns. The backplane has mounting hole inserts recessed approximately .030" into the board's bottom surface.

One of the PCI Express slots is dedicated to an SHB Express $^{\text{TM}}$ system host board (SHB). The BPX3/14 also has a PCI Express expansion slot (PCIeS) which is a x8 slot that mechanically connects a Trenton IOB31 I/O expansion board to the backplane, providing an additional x4 PCI Express link from a server-class SHB.

The two remaining PCIe slots provide the mechanical connections between the PCI Express option cards and either the SHB or the PCIeS slot. The first slot (PCIe1) connects to the SHB and is a x16 slot which mechanically can support x16, x8, x4 and x1 PCI Express cards. The second slot (PCIe2) connects to the PCIeS slot and is a x8 slot which mechanically can support x8, x4 and x1 PCI Express cards. The PCI Express expansion and option card slots use a x4 PCI Express electrical interface.

NOTE: In order to use slot PCIe2 when you are using a Trenton PCI Express SHB, you must have a Trenton IOB31 (6474-000) I/O expansion board on the SHB. The IOB31 enables communication between the SHB and slot PCIe2 by providing a x1 or x4 PCI Express link to the PCIeS slot, depending on the capabilities of the SHB.

The two 64-bit/133MHz PCI-X slots and 12 64-bit/100MHz PCI-X slots provide support for PCI Express, PCI-X and PCI option cards, which must be either +3.3V or universal option cards.

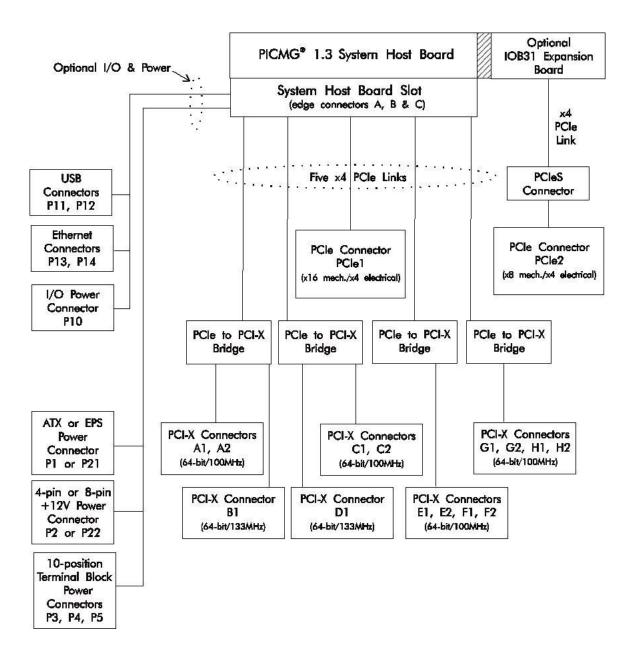
The BPX3/14 supports the optional Ethernet routing feature of the SHB Express specification and provides two 10/100/1000Base-T Ethernet RJ-45 connectors. It also has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane.

USB and Ethernet functionality on the BPX3/14 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of these I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.

The backplane is available in models which have either ATX or EPS power connections. The ATX model has standard ATX connectors. The EPS model has three extended- current terminal block connectors which provide additional power capacity for power- intensive applications -- up to 80 Amps of +12V, 120 Amps of +3.3V and 80 Amps of +5V.

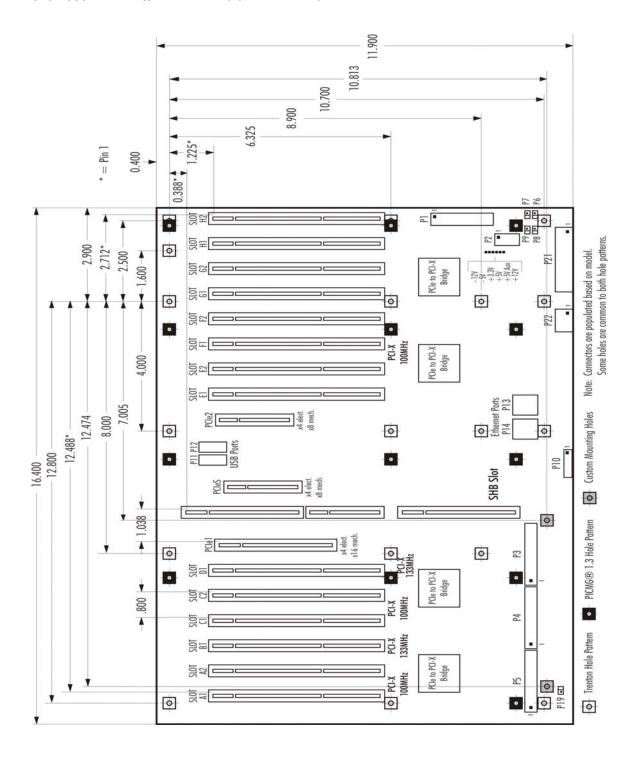
Two +12V power connectors are provided on all BPX3/14 models for routing auxiliary power to the SHB's edge connectors, eliminating the need for auxiliary power connections on the system host board. These are 8-pin connectors that can accommodate either a 4-pin or 8-pin power cable connection.

4-13 Trenton Technology Inc.


CAUTION: Trenton recommends using the EPS model of the backplane in systems using high-performance, dual-processor SHB Express system host boards. An EPS type of system power supply provides adequate power delivery in these types of embedded computing systems.

The power needs of backplane option cards, high-performance processors and other system components may result in drawing 20A of current from the +12V power supply line. If this occurs, hazardous energy (240VA) could exist inside the system chassis. Final system/equipment suppliers must provide protection to service personnel from these potentially hazardous energy levels.

Standby voltages may be used in the final system design to enable certain system recovery operations. In this case, the power supply may not completely remove power to the system host board when the power switch is turned off. Caution must be taken to ensure that incoming system power is completely disconnected before removing the system host board.


Models with other power configurations may be available. Contact Trenton Technology for more information.

6467-000 BPX3/14 BLOCK DIAGRAM

4-15 Trenton Technology Inc.

6467-000 BPX3/14 DIMENSIONAL DRAWING

PCB thickness .080" Mounting holes .156" diameter Connector spacing .800" centers

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

Jumper JU4

Description

+5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

BPX3/14 Connectors

The connectors available on the BPX3/14 vary depending on the version of the backplane you have. Connectors for the 6467-001 (ATX) and 6467-004 (EPS) tabs are defined below.

6467-001 BPX3/14-ATX CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX Power Connector

20 pin dual row header, Molex #39-29-9202

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	11	+3.3V
2	+3.3V	12	-12V
3	Gnd	13	Gnd
4	+5V	14	PSON#
5	Gnd	15	Gnd
6	+5V	16	Gnd
7	Gnd	17	Gnd
8	PWRGD	18	-5V
9	+5VAUX	19	+5V
10	+12V	20	+5V

4-17 Trenton Technology Inc.

P2 - +12V Power Connector

4 pin mini fit JR, Molex #39-29-3046

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	3	+12V
2	Gnd	4	+12V

P3 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

<u>Pin</u>	<u>Signal</u>
1	+5V
2	+5V
3	+5V
4	+5V
5	Gnd
6	Gnd
7	+12V
8	+12V
9	+12V
10	+12V

P4 - Terminal Block Connector

10 position terminal block, Amp $\#1\mbox{-}796949\mbox{-}0$

20 Amps per circuit Pin Signal

Signai
Gnd
Gnd
+3.3V
Gnd
Gnd

P5 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

<u>Pin</u>	Signal
1	Gnd
2	Gnd
3	Gnd
4	Gnd
5	Gnd

P5 - Terminal Block Connector (continued)

Pin Signal

6 Gnd

7 Gnd

8 Gnd

9 Gnd

10 Gnd

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 External Reset In (Low Active)

2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRGD

2 +3.3V

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX_IN
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#

4-19 Trenton Technology Inc.

P10 - I/O Power Connector (continued)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
15	PWRGD	16	+5VAUX_IN
17	Gnd	18	+5VAUX_IN
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RA RJ-45 connector, Molex #43202-8110

Pin Signal
1 TRP1+
2 TRP13 TRP2+
4 TRP3+
5 TRP3-

6 TRP2-7 TRP4+

8 TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RA RJ-45 connector, Molex #43202-8110

Pin Signal
1 TRP1+
2 TRP13 TRP2+
4 TRP3+

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1 (cont'd)

Pin Signal

- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P19 - System Management Bus Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 SMB Clock
- 2 SMB Data

P21 - ATX Power Connector

20 pin right angle mini fit JR, Molex #35318-2020

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	11	+3.3V
2	+3.3V	12	-12V
3	Gnd	13	Gnd
4	+5V	14	PSON:
5	Gnd	15	Gnd
6	+5V	16	Gnd
7	Gnd	17	Gnd
8	PWRGD	18	-5V
9	+5VAUX	19	+5V
10	+12V	20	+5V

P22 - +12V Power Connector

4 pin right angle mini fit JR, Molex #35318-0420

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	3	+12V
2	Gnd	4	+12V

6467-004 BPX3/14-EPS CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - EPS Power Connector

24 pin dual row header, Molex #39-29-9243

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V

P1 - EPS Power Connector (continued)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin mini fit JR, Molex #39-29-3086

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P3 - Power Supply Connector

10 position terminal block, Amp #1-796949-0 20 Amps per circuit Pin Signal

<u> Pın</u>	Signal
1	+5V
2	+5V
3	+5V
4	+5V
5	Gnd
6	Gnd
7	+12V
8	+12V
9	+12V
10	+12V

P4 - Power Supply Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

<u>Pin</u>	<u>Signal</u>
1	Gnd
2	Gnd
3	+3.3V
4	+3.3V
5	+3.3V

P4 - Power Supply Connector (continued)

<u>Pin</u> <u>Signal</u>

6 +3.3V

7 +3.3V

8 +3.3V

9 Gnd

10 Gnd

P5 - Power Supply Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

Pin Signal

1 Gnd

2 Gnd

3 Gnd

4 Gnd

5 Gnd

6 Gnd

7 Gnd

8 Gnd

9 Gnd

10 Gnd

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 External Reset In (Low Active)

2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal 1 PWRGD 2 +3.3V

2 13.5 1

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

- · r -			
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX_IN
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	+5VAUX_IN
17	Gnd	18	+5VAUX_IN
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RA RJ-45 connector, Molex #43202-8110

- Pin Signal
- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RA RJ-45 connector, Molex #43202-8110

- Pin Signal
- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P19 - System Management Bus Connector

2 pin single row header, Amp #640456-2

- Pin Signal
 - 1 SMB Clock
- 2 SMB Data

P21 - EPS Power Connector

24 pin right angle dual row header, Amp #794516-1

24 pi	n right angle dual ro	w header, A	mp #7943
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

4-25 Trenton Technology Inc.

P22 - +12V Power Connector

8 pin right angle mini fit JR, Molex #39-30-0080

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

6510-000 BPX5

The BPX5 is a PICMG[®] 1.3 compliant, small form factor, server-class backplane made up of a six-layer .062" thick PCB.

The backplane has one PCI Express® slot which accepts an SHB Express™ system host board (SHB). It also has a PCI Express expansion slot (PCIeS) which is a x8 slot that mechanically connects a Trenton IOB31 I/O expansion board to the backplane, providing an additional x4 PCI Express link from a server-class SHB.

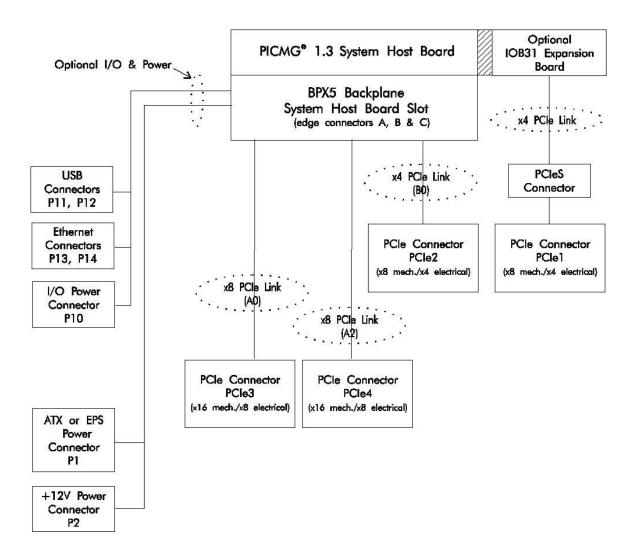
The four remaining PCIe slots provide the mechanical connections between the PCI Express option cards and either the SHB or the PCIeS slot. The first slot (PCIe1), which connects to the PCIeS slot, is a x8 slot which mechanically can support x8, x4 and x1 PCI Express cards. The second slot (PCIe2) connects to the SHB and provides a x4 PCIe link (B0) between the SHB and the backplane. It is a x8 slot which mechanically can support x8, x4 and x1 PCI Express cards. Slots PCIe1 and PCIe2 use x4 PCI Express electrical interfaces.

NOTE: In order to use slot PCIe1 when you are using a Trenton PCI Express SHB, you must have a Trenton IOB31 (6474-000) I/O expansion board on the SHB. The IOB31 enables communication between the SHB and slot PCIe1 by providing a x1 or x4 PCI Express link to the PCIeS slot, depending on the capabilities of the SHB.

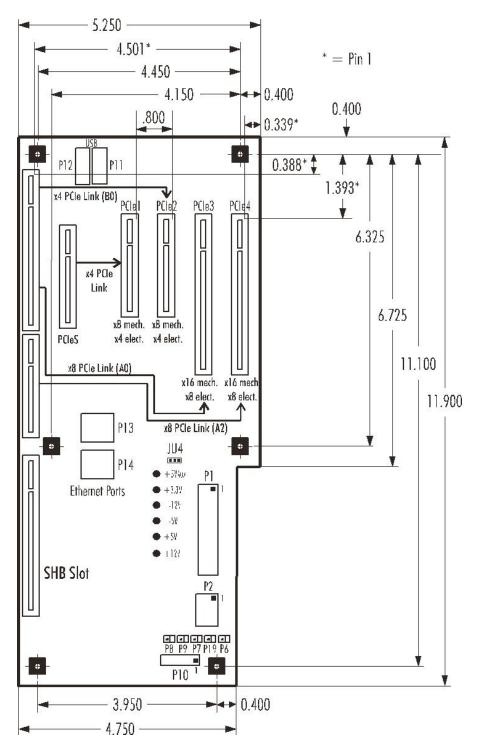
PCI Express slots PCIe3 and PCIe4 are driven by two x8 PCI Express links (A0 and A2) from the SHB. These slots mechanically can support x16, x8, x4 and x1 PCI Express cards.

The BPX5 supports the optional Ethernet routing feature of the SHB Express specification and provides two 10/100/1000Base-T Ethernet RJ-45 connectors. It also has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane.

USB and Ethernet functionality on the BPX5 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of these I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.


The backplane has a power connector (P1) which can accommodate either ATX or EPS power. A +12V power connector (P2) is provided for routing auxiliary power to the SHB's edge connectors, eliminating the need for auxiliary power connections on the system host board.

The BPX5 backplane is available in models which have either right angle or straight-in power connections.


CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

4-27 Trenton Technology Inc.

6510-000 BPX5 BLOCK DIAGRAM

6510-000 BPX5 DIMENSIONAL DRAWING

PCB thickness .062" Mounting holes .156" diameter Connector spacing .800" centers

4-29 Trenton Technology Inc.

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

<u>Jumper</u>

Description

JU4 +5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

BPX5 CONNECTORS

The connectors available on the BPX5 vary depending on the version of the backplane you have. Connectors for the 6510-007 (right angle connectors) and 6510-008 (straight- in connectors) are defined below.

6510-007 BPX5-CRA CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin right angle dual row header, Amp #794516-1

	2 2	,	1
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

6510-007 BPX5-CRA CONNECTORS (CONTINUED)

P2 - +12V Power Connector

8 pin right angle mini fit JR, Molex #39-30-0080

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 PSON#
2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 PWRBT#
2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 SHB_RST#
2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal
PWRGD
Gnd

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

	\mathcal{C}	,	
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#

4-31 Trenton Technology Inc.

6510-007 BPX5-CRA CONNECTORS (CONTINUED)

P10 - I/O Power Connector (continued)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
15	PWRGD	16	+5VAUX
17	Gnd	18	+5VAUX
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RA RJ-45 connector, Molex #43202-8919

Pin Signal
1 TRP1+
2 TRP13 TRP2+
4 TRP3+
5 TRP36 TRP2-

7 TRP4+

8 TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RA RJ-45 connector, Molex #43202-8919

<u>Pin</u> <u>Signal</u> 1 TRP1+ 2 TRP1-

TRP2+

3

6510-007 BPX5-CRA CONNECTORS (CONTINUED)

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1 (cont'd)

<u>Pin</u> <u>Signal</u>

- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P19 - System Management Bus Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 SMB Clock
- 2 SMB Data

6510-008 BPX5-CST CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin dual row mini fit JR, Molex #39-29-6248

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON:
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin mini fit JR, Molex #39-29-3086

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

4-33 Trenton Technology Inc.

6510-008 BPX5-CST CONNECTORS (CONTINUED)

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal 1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 SHB_RST#

2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRGD

2 Gnd

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	+5VAUX
17	Gnd	18	+5VAUX
19	Gnd	20	-12V

P11 -Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 -Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 -10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RA RJ-45 connector, Molex #43202-8919

<u>Pin</u>	<u>Signal</u>
1	TRP1+

- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P14 -10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RA RJ-45 connector, Molex #43202-8919

Pin Pin Signal

- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+ 5
- TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

4-35 Trenton Technology Inc.

CONNECTORS (CONTINUED) 6510-008 **BPX5-CST**

P19 -**System Management Bus Connector**

2 pin single row header, Amp #640456-2

Pin

- Signal SMB Clock 1
- 2 SMB Data

4-36 Trenton Technology Inc.

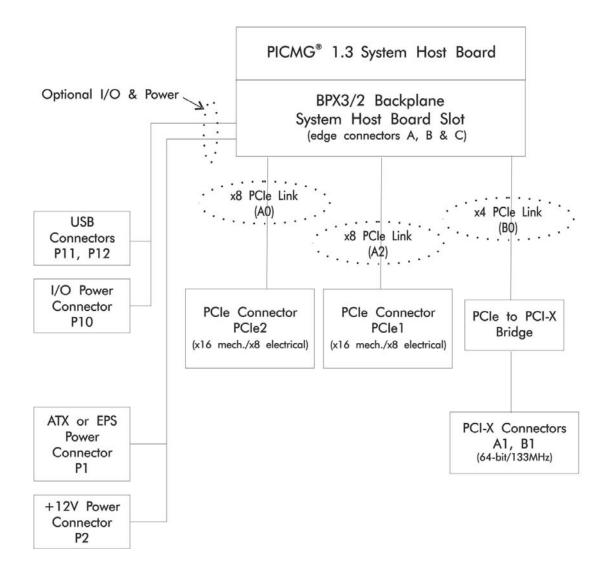
6526-000 BPX3/2

The BP3/2 is a PICMG[®] 1.3 compliant, small form factor, server-class backplane made up of a six-layer .062" thick PCB.

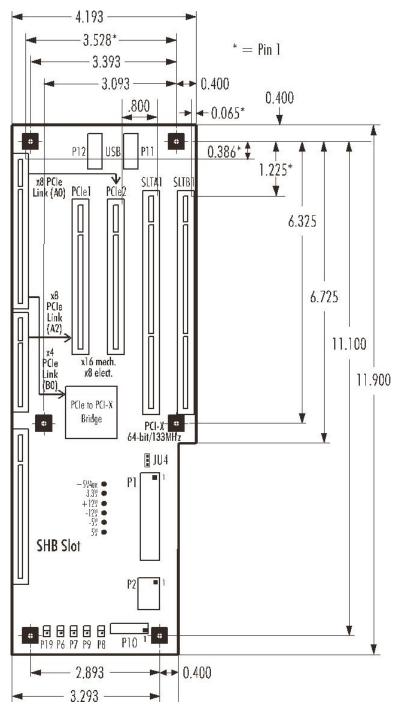
The backplane has one PCI Express® slot which accepts an SHB Express[™] system host board (SHB). It also has two x16 PCI Express slots (PCIe1 and PCIe2) which provide the mechanical connections between the PCI Express option cards and the SHB. These slots are driven by the SHB via two x8 PCI Express links (A0 and A2) and mechanically can support x16, x8, x4 and x1 PCI Express cards.

In addition, the BPX3/2 has two PCI-X slots (SLTA1 and SLTB1) which are connected to the SHB by a x4 PCI Express link (B0) via a PCI Express-to-PCI-X bridge chip which provides two 64-bit/133MHz PCI-X channels. The PCI-X slots provide support for PCI-X option cards and PCI option cards, which must be either +3.3V or universal option cards. If a card with an interface bus speed less than 133MHz is placed in either of the PCI-X slots, the bridge chip throttles down the bus interface speed to match that of the card.

The BPX3/2 has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane. USB functionality on the BPX3/2 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of the USB capability, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.


The backplane has a power connector (P1) which can accommodate either ATX or EPS power. A +12V power connector (P2) is provided for routing auxiliary power to the SHB's edge connectors, eliminating the need for auxiliary power connections on the system host board.

The BPX3/2 backplane is available in models which have either right angle or straight-in power connections.


CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

4-37 Trenton Technology Inc.

6526-000 BPX3/2 BLOCK DIAGRAM

6526-000 BPX3/2 DIMENSIONAL DRAWING

PCB thickness .062" Mounting holes .156" diameter Connector spacing .800" centers

4-39 Trenton Technology Inc.

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "TOP" and "BOTTOM" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

<u>Jumper</u>

Description

JU4 +5V Auxiliary Voltage

Install on the TOP if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the BOTTOM if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

BPX3/2 CONNECTORS

The connectors available on the BPX3/2 vary depending on the version of the backplane you have. Connectors for the 6526-007 (right angle connectors) and 6526-008 (straight- in connectors) are defined below.

6526-007 BPX3/2-CRA CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin right angle dual row header, Amp #794516-1

	\mathcal{E}	,	1
Pin Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

6526-007 BPX3/2-CRA CONNECTORS (CONTINUED)

P2 - +12V Power Connector

8 pin right angle mini fit JR, Molex #39-30-0080

<u>Pin</u>	Signal	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P6 - Power-On Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal 1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal 1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal

1 SHB RST#

2 Gnd

P9 - Power Good Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal 1 PWRGD

2 Gnd

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

- 1	8	,	
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB RST#

4-41 Trenton Technology Inc.

6526-007 BPX3/2-CRA CONNECTORS (CONTINUED)

P10 - I/O Power Connector (continued)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
15	PWRGD	16	+5VAUX
17	Gnd	18	+5VAUX
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P19 - System Management Bus Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal

1 SMB Clock

2 SMB Data

6526-008 BPX3/2-CST CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin dual row mini fit JR, Molex #39-29-6248

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd

P1 - ATX/EPS Power Connector (continued)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin mini fit JR, Molex #39-29-3086

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P6 - Power-On Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal 1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal

1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal

1 SHB_RST#

2 Gnd

P9 - Power Good Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal

1 PWRGD

2 Gnd

4-43 Trenton Technology Inc.

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	+5VAUX
17	Gnd	18	+5VAUX
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

 $8~\mathrm{pin}$ dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P19 - System Management Bus Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 SMB Clock

2 SMB Data

6571-000 BPX6571

The BPX6571 is a server-class PICMG-compatible backplane which is a six-layer .080" thick PCB. It is $PICMG^{@}$ 1.3 compliant and supports Trenton and $PICMG^{@}$ 1.3 20-slot (64-bit) hole patterns.

The backplane has one PCI Express® slot which accepts an SHB Express $^{\text{TM}}$ system host board (SHB). It also has two PCI Express slots (PCIe1 and PCIe2) which provide the mechanical connections between the PCI Express option cards and the SHB. PCI Express slot PCIe1 is a x8 mechanical slot which can support x8, x4 and x1 PCIe cards and is driven by the SHB via a x4 PCI Express link. PCI Express slot PCIe2 is a x16 mechanical slot which can support x16, x8, x4 and x1 PCIe cards and is driven by the SHB via a x8 PCI Express link.

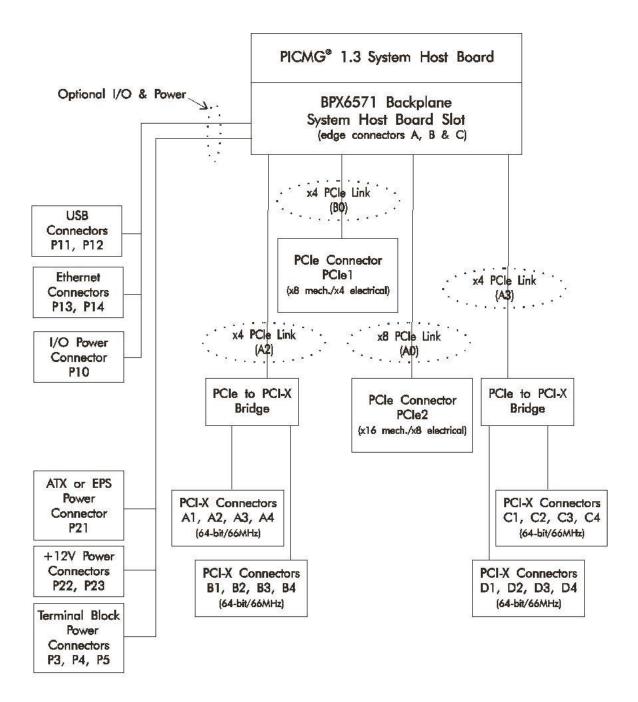
In addition, the BPX6571 has sixteen PCI-X slots which are connected to the SHB by two x4 PCI Express links (A2 and A3) via two PCI Express-to-PCI-X bridge chips, each of which provides two 64-bit/66MHz PCI-X channels. The PCI-X slots provide support for PCI-X option cards and PCI option cards, which must be either +3.3V or universal option cards. If a card with an interface bus speed less than 66MHz is placed in any of the PCI-X slots, the bridge chip throttles down the bus interface speed to match that of the card.

NOTE: The 64-bit/66MHz PCI-X slots enable 66MHz PCI-X option cards to run at 66MHz. 66MHz PCI option cards will function in these slots but may only operate at 33MHz due to the differences between a PCI and PCI-X bus.

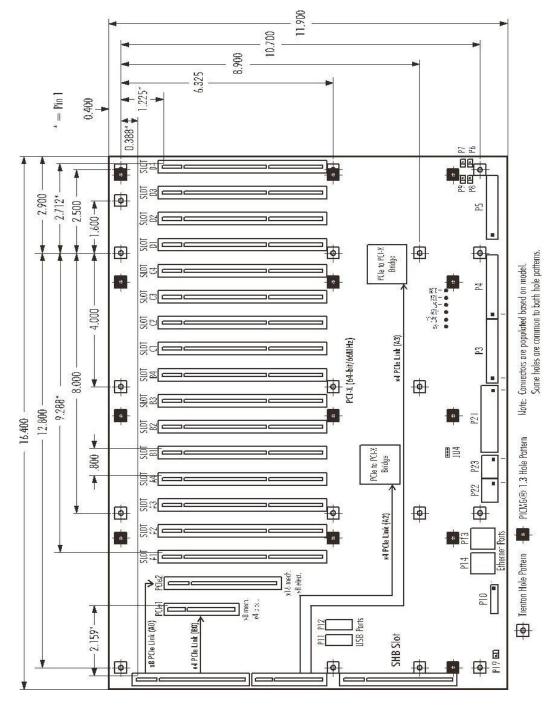
The BPX6571 supports the optional Ethernet routing feature of the SHB Express specification and provides two 10/100/1000Base-T Ethernet RJ-45 connectors. It also has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane.

USB and Ethernet functionality on the BPX6571 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of these I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.

The backplane has a power connector (P21) which can accommodate either ATX or EPS power. Two +12V power connectors (P22 and P23) are provided for routing auxiliary power to the SHB's edge connectors, eliminating the need for auxiliary power connections on the system host board. The BPX6571 also has three extended-current terminal block connectors which provide additional power capacity for power-intensive applications -- up to 80 Amps of +12V, 120 Amps of +3.3V and 80 Amps of +5V.


The BPX6571 backplane is available in models which have either right angle or straight- in power connections.

CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.


Models with other power configurations may be available. Contact Trenton Technology for more information.

4-45 Trenton Technology Inc.

6571-000 BPX6571 BLOCK DIAGRAM

6571-000 BPX6571 DIMENSIONAL DRAWING

PCB thickness .080" Mounting holes .156" diameter Connector spacing .800" centers

4-47 Trenton Technology Inc.

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

Jumper

Description

JU4 +5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

BPX6571 CONNECTORS

The connectors available on the BPX6571 vary depending on the version of the backplane you have. Connectors for the 6571-007 (right angle connectors) and 6571-008 (straight-in connectors) are defined below.

6571-007 BPX6571-CRA CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P3 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

Pin Signal 1 +3.3V2 +3.3V3 +5V 4 Gnd 5 Gnd 6 Gnd 7 Gnd 8 Gnd 9 +12V

+12V

10

P4 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

Signal <u>Pin</u> 1 +3.3V2 +3.3V3 +5V 4 Gnd 5 Gnd 6 Gnd 7 Gnd

8 Gnd

9 +12V

10 +12V

P5 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

Signal <u>Pin</u> 1 +3.3V2 +3.3V3 +5V 4 Gnd 5 Gnd 6 Gnd 7 Gnd 8 Gnd 9 +12V10 +12V

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 PSON#
2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 PWRBT#
2 Gnd

4-49 Trenton Technology Inc.

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 SHB_RST#
- 2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 PWRGD
- 2 Gnd

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

- v P-			-01011 110 1 000 -0
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	+5VAUX_IN
17	Gnd	18	+5VAUX_IN
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u> Pın</u>	<u>Signal</u>	<u> Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

6571-007 **CONNECTORS (CONTINUED) BPX6571-CRA**

10/100/1000Base-T Ethernet Connector - LAN 0 P13 -

8 pin shielded RA RJ-45 connector, Molex #43860-0025

- Pin Signal 1 TRP1+
- TRP1-
- 2
- 3 TRP2+
- TRP3+ 4
- 5 TRP3-6 TRP2-
- 7 TRP4+
- TRP4-

P14 -10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RA RJ-45 connector, Molex #43860-0025

- Signal Pin TRP1+1
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- TRP2-
- 7 TRP4+
- 8 TRP4-

ATX/EPS Power Connector P21 -

24 pin right angle dual row header, Amp #794516-1

- · r -			r
Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

4-51 Trenton Technology Inc.

P22 - +12V Power Connector

8 pin right angle mini fit JR, Molex #39-30-0080

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P23 - +12V Power Connector

8 pin right angle mini fit JR, Molex #39-30-0080

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

6571-008 BPX6571-CST CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P3 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

1	+3.3V
2	+3.3V
3	+5V
4	Gnd
5	Gnd
6	Gnd
7	Gnd
8	Gnd
9	+12V
10	+12V

Pin Signal

P4 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

Pin Signal 1 +3.3V 2 +3.3V 3 +5V 4 Gnd 5 Gnd

P4 - Terminal Block Connector (continued)

Pin Signal

- 6 Gnd
- 7 Gnd
- 8 Gnd
- 9 +12V
- 10 +12V

P5 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

Pin Signal

- 1 +3.3V
- 2 +3.3V
- 3 +5V
- 4 Gnd
- 5 Gnd
- 6 Gnd
- 7 Gnd
- 8 Gnd
- 9 +12V
- 10 +12V

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 PSON#
- 2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 PWRBT#
- 2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 SHB_RST#
- 2 Gnd

4-53 Trenton Technology Inc.

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 PWRGD
- 2 Gnd

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

-0 PI	20 pm right ungle dual for header, mores 2020			
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>	
1	Gnd	2	+12V	
3	IPMB_DA	4	Gnd	
5	IPMB_CL	6	+5V	
7	SMDAT	8	+5VAUX	
9	SMCLK	10	+3.3V	
11	PWRBT#	12	PSON#	
13	Gnd	14	SHB_RST#	
15	PWRGD	16	+5VAUX_IN	
17	Gnd	18	+5VAUX_IN	
19	Gnd	20	-12V	

P11 - Universal Serial Bus (USB) Connector

 $8\ pin\ dual\ row\ header,\ Molex\ \#702\text{-}46\text{-}0801$

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RA RJ-45 connector, Molex #43860-0025

- Pin Signal
- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RA RJ-45 connector, Molex #43860-0025

- Pin Signal
- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P21 - ATX/EPS Power Connector

24 pin dual row mini fit JR, Molex #39-29-6248

1		,	
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

4-55 Trenton Technology Inc.

P22 - +12V Power Connector

8 pin mini fit JR, Molex #39-29-3086

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P23 - +12V Power Connector

8 pin mini fit JR, Molex #39-29-3086

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

6610-000 BPX6610

The BPX6610 is a server-class PICMG-compatible backplane which is a six-layer .080" thick PCB. It is PICMG[®] 1.3 compliant and supports Trenton and PICMG[®] 1.3 14-slot hole patterns.

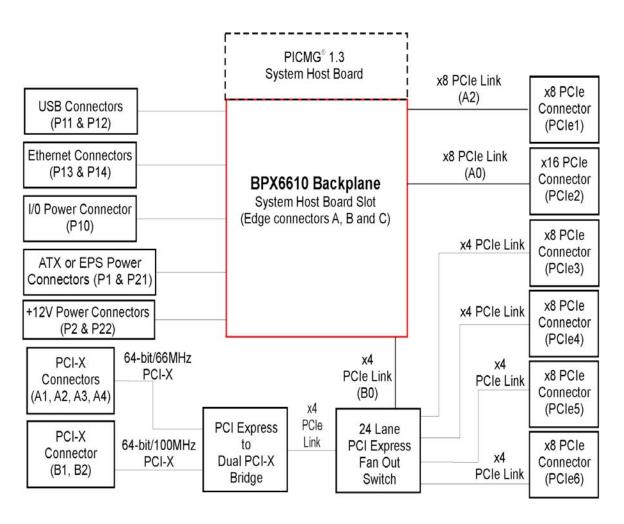
The backplane has one PCI Express® slot which accepts an SHB Express $^{\text{TM}}$ system host board (SHB). It also has six PCI Express option card slots (PCIe1 through PCIe6) which provide the mechanical connections between the PCI Express option cards and the SHB. Option card slots PCIe1 and PCIe2 are driven by x8 PCI Express links directly from a server-class system host board. PCIe2 is a x16 mechanical slot capable of supporting x16, x8, x4 or x1 PCI Express option cards. PCIe3 through PCIe6 are x8 mechanical slots and each slot is driven by a x4 PCI Express link from the PCI Express fan out switch. The fan out switch is driven by a x4 PCI Express link from the server-class SHB.

In addition, the BPX6610 has six PCI-X slots. The six PCI-X slots on the BPX6610 are connected to the SHB via a x4 PCI Express link delivered from the PCI Express fan out switch to the PCI Express-to-PCI-X bridge chip. The bridge chip provides a 64-bit/66MHz PCI-X channel to support option card slots SLTA1 through SLTA4 and a 64-bit/100MHz PCI-X channel to support slots SLTB1 and SLTB2. These slots support PCI-X and universal PCI option cards i.e., 5V/3.3V combo or 3.3V only. The bridge chip will throttle-down the bus interface speeds to match any universal PCI or PCI-X card with an interface bus speed less than 66MHz or 100MHz.

NOTE: The 64-bit/66MHz PCI-X slots enable 66MHz PCI-X option cards to run at 66MHz. 66MHz PCI option cards will function in these slots but may only operate at 33MHz due to the differences between a PCI and PCI-X bus.

The BPX6610 supports the optional Ethernet routing feature of the SHB Express specification and provides two 10/100/1000Base-T Ethernet RJ-45 connectors. It also has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane.

USB and Ethernet functionality on the BPX6610 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of these I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.


The backplane has both right angle (P1) and horizontal (P21) power connectors which can accommodate either ATX or EPS power. Two +12V power connectors (P2 – right angle, P22 – horizontal) are provided for routing auxiliary power to the SHB's edge connectors, eliminating the need for auxiliary power connections on the system host board. The BPX6610 also has two extended-current terminal block connectors which provide additional power capacity for power-intensive applications -- up to 80 Amps of +12V, 120 Amps of +3.3V and 80 Amps of +5V.

CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

Models with other power configurations may be available. Contact Trenton Technology for more information.


4-57 Trenton Technology Inc.

6610-000 BPX6610 BLOCK DIAGRAM

6610-000 **BPX6610 DIMENSIONAL DRAWING**

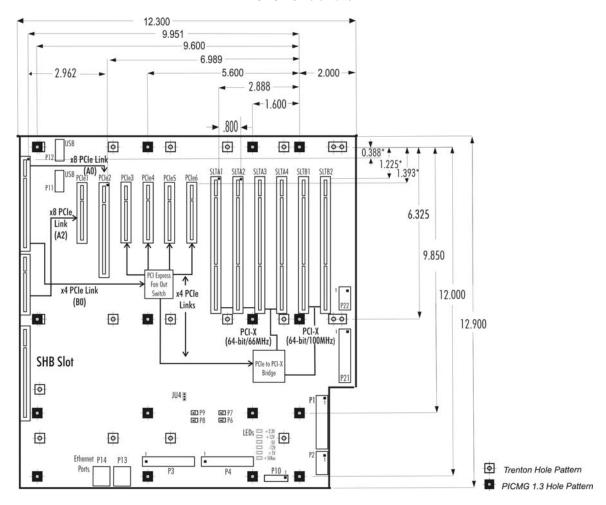
Trenton Hole Pattern

^{**}Optional USB and Ethernet connectivity provided by PICMG 1.3 SHB. Not all SHBs support this capability.

Nominal P.CB thickness: .080"

Connector spacing: .800" centers

To find the center of a PCI-X/PCI option card connector to the left of the reference dimension hole, add 0.150" to the pin 1 location dimension.


To find the center of a PCI Express option card connector and the SHB slot add 0.049" to the pin 1 location dimension.

Mounting holes: .156" diameter

All dimensions are inches

6610-000 BPX6610 DIMENSIONAL DRAWING

PICMG 1.3 Hole Pattern

*=Pin 1

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "TOP" and "BOTTOM" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

<u>Jumper</u>

Description

JU4

+5V Auxiliary Voltage

Install on the TOP if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the BOTTOM if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

6610-007

BPX6610 CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin right angle dual row, Molex #39-30-1240

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin right angle dual row, Molex #39-30-0080

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

4-61 Trenton Technology Inc.

6610-007 BPX6610 CONNECTORS (CONTINUED)

P3 - Terminal Block Connector

10 position terminal block, Phoenix Contract Inc., 19-35-24-2

20 Amps per circuit

Pin Signal 1 +3.3V 2 +3.3V 3 +3.3V

4 +3.3V

5 Gnd

6 Gnd

7 Gnd

8 Gnd

9 Gnd

10 Gnd

P4 - Terminal Block Connector

10 position terminal block, Phoenix Contract Inc., 19-35-24-2

20 Amps per circuit

<u>Pin</u> Signal 1 +5V 2 +5V 3 Gnd 4 Gnd 5 Gnd 6 Gnd 7 Gnd 8 +12V

9 +12V 10 +12V

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 PSON#
2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 PWRBT#
2 Gnd

2 Gild

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 SHB_RST#
2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

6610-007 BPX6610 CONNECTORS (CONTINUED)

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

11070	33 2020		
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	5VAUX
17	GND	18	5VAUX
19	GND	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

 $8~\mathrm{pin}$ dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin right angle shielded RJ-45 connector, Molex #43202-8919

<u> Pın</u>	<u>Signal</u>
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-
7	TRP4+

TRP4-

8

4-63 Trenton Technology Inc.

6610-007 **BPX6610 CONNECTORS (CONTINUED)**

P14 -10/100/1000Base-T Ethernet Connector - LAN 1

8 right angle pin shielded RJ-45 connector, Molex #43202-

8919

Pin Signal TRP1+ 1 2 TRP1-

3 TRP2+ 4 TRP3+

5 TRP3-

6 TRP2-7

TRP4+

8 TRP4-

P19 -**SMBUS Connector**

2 pin single row header, Amp #640456-2

Signal **SMBUS** 1 2 Gnd

EPS Power Connector P21 -

24 pin vertical dual row, Molex #44206-0007

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P22 - +12V Power Connector

8 pin vertical dual row, Molex #44206-0005

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

6620-000 BPX6620

The BPX6620 is a server-class PICMG-compatible backplane which is a six-layer .080" thick PCB. It is PICMG[®] 1.3 compliant and supports Trenton and PICMG[®] 1.3 14-slot (64-bit) hole patterns.

The backplane has one PCI Express® slot which accepts an SHB Express™ system host board (SHB). It also has a PCI Express expansion slot (PCIeS) which is a x8 slot that mechanically connects a Trenton IOB31 I/O expansion board to the backplane, providing an additional x4 PCI Express link from a server-class SHB.

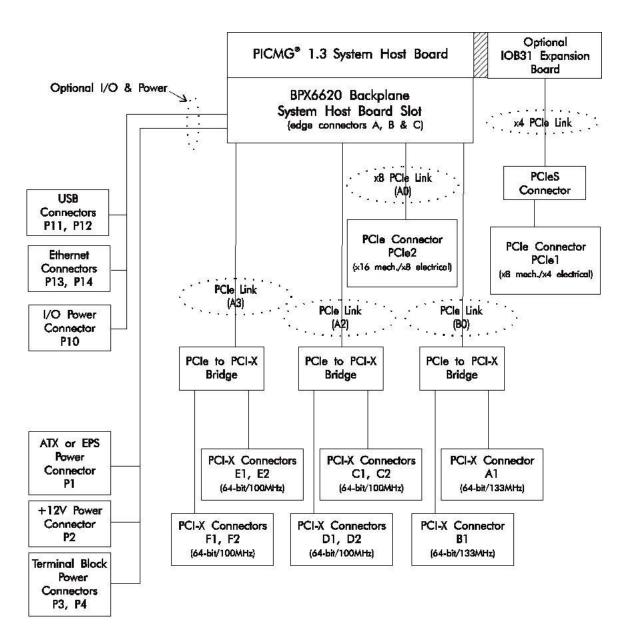
The two remaining PCIe slots provide the mechanical connections between the PCI Express option cards and either the SHB or the PCIeS slot. The first slot (PCIe1) is a x8 slot which mechanically can support x8, x4 and x1 PCI Express cards and is driven by a x4 electrical interface from the PCIeS slot. The second slot (PCIe2) connects to the SHB and provides a x8 PCIe link (A0) between the SHB and the backplane. It is a x16 slot which mechanically can support x16, x8, x4 and x1 PCI Express cards.

NOTE: In order to use slot PCIe1 when you are using a Trenton PCI Express SHB, you must have a Trenton IOB31 (6474-000) I/O expansion board on the SHB. The IOB31 enables communication between the SHB and slot PCIe1 by providing a x4 PCI Express link to the PCIeS slot.

The BPX6620 has a total of ten PCI-X slots which are connected to the SHB by three PCI Express links (A2, A3 and B0) which drive three PCI Express-to-PCI-X bridge chips. Two of these bridge chips support four 64-bit/100MHz PCI-X slots each. The third bridge chip supports two 64-bit/133MHz PCI-X slots. The PCI-X slots provide support for PCI-X option cards and PCI option cards, which must be either +3.3V or universal option cards. If a card has an interface bus speed lower than the speed of the PCI-X slot in which it is placed, the bridge chip throttles down the bus interface speed to match that of the card.

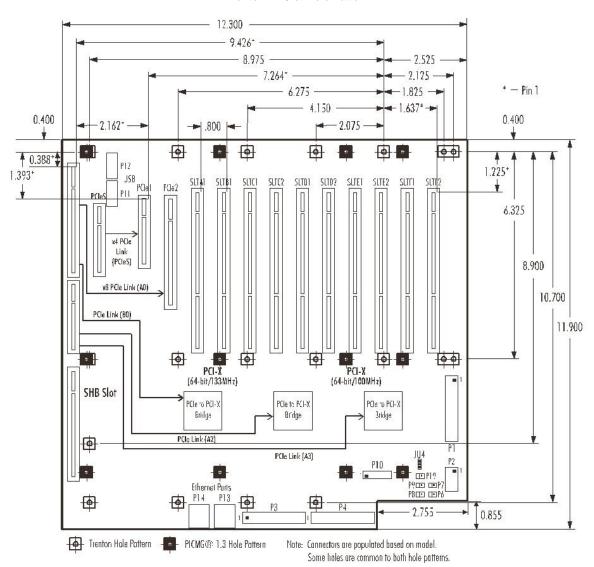
The BPX6620 supports the optional Ethernet routing feature of the SHB Express specification and provides two 10/100/1000Base-T Ethernet RJ-45 connectors. It also has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane.

USB and Ethernet functionality on the BPX6620 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of these I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.


The backplane has a power connector (P1) which can accommodate either ATX or EPS power. A +12V power connector (P2) is provided for routing auxiliary power to the SHB's edge connectors, eliminating the need for auxiliary power connections on the system host board. The BPX6620 also has two extended-current terminal block connectors which provide additional power capacity for power-intensive applications -- up to 80 Amps of +12V, 80 Amps of +3.3V and 40 Amps of +5V.

CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

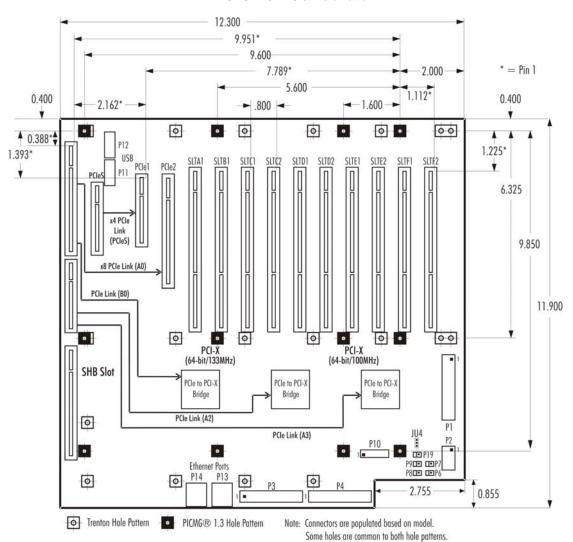
Models with other power configurations may be available. Contact Trenton Technology for more information.


4-65 Trenton Technology Inc.

6620-000 BPX6620 BLOCK DIAGRAM

6620-000 BPX6620 DIMENSIONAL DRAWINGS

Trenton 14-Slot Hole Pattern



PCB thickness .080" Mounting holes .156" diameter Connector spacing .800" centers

4-67 Trenton Technology Inc.

6620-000 BPX6620 DIMENSIONAL DRAWINGS

PICMG[®] 1.3 14-Slot Hole Pattern

PCB thickness .080" Mounting holes .156" diameter Connector spacing .800" centers

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "TOP" and "BOTTOM" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

<u>Jumper</u> <u>Description</u>

JU4 +5V Auxiliary Voltage

Install on the TOP if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the BOTTOM if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

BPX6620 CONNECTORS

The connectors available on the BPX6620 vary depending on the version of the backplane you have. Connectors for the 6620-004 (-EPS) and 6620-007 (-CRA) are defined below.

6620-004 BPX6620-EPS CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin dual row header, Molex #44206-0007

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

4-69 Trenton Technology Inc.

6620-004 BPX6620-EPS CONNECTORS (CONTINUED)

P2 - +12V Power Connector

8 pin dual row header, Molex #44206-0005

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P3 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

<u>Pin</u>	<u>Signal</u>
1	+12V
2	+12V
3	+12V
4	+12V
5	Gnd
6	Gnd
7	Gnd
8	Gnd
9	+5V
10	+5V

P4 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

20 mmps per				
<u>Pin</u>	Signal			
1	+3.3V			
2	+3.3V			
3	+3.3V			
4	+3.3V			
5	Gnd			
6	Gnd			
7	Gnd			
8	Gnd			
9	Gnd			
10	Gnd			

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 PSON#
2 Gnd

6620-004 BPX6620-EPS CONNECTORS (CONTINUED)

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 PWRBT#
- 2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 SHB_RST#
- 2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 PWRGD
- 2 Gnd

P10 - I/O Power Connector

20 pin dual row header, Molex #87831-2020

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	+5VAUX_IN
17	Gnd	18	+5VAUX_IN
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

4-71 Trenton Technology Inc.

6620-004 BPX6620-EPS CONNECTORS (CONTINUED)

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

Pin	Signal	Pin	Signal
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RJ-45 connector, Molex #85508-0001

<u>Pin</u>	<u>Signal</u>
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-
7	TRP4+
8	TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RJ-45 connector, Molex #85508-0001

```
Signal
<u>Pin</u>
      TRP1+
 1
 2
      TRP1-
 3
      TRP2+
 4
      TRP3+
 5
      TRP3-
 6
      TRP2-
 7
      TRP4+
 8
      TRP4-
```

P19 - System Management Bus Connector

2 pin single row header, Amp #640456-2

Pin Signal
1 SMB Clock
2 SMB Data

6620-007 BPX6620-CRA CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin right angle dual row mini fit JR, Molex #35318-2420

	2 2		,
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin right angle mini fit JR, Molex #35318-0820

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P3 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

	1 1
<u>Pin</u>	Signal
1	+12V
2	+12V
3	+12V
4	+12V
5	Gnd
6	Gnd
7	Gnd
8	Gnd
9	+5V
10	+5V

4-73 Trenton Technology Inc.

6620-007 BPX6620-CRA CONNECTORS (CONTINUED)

P4 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

Pin Signal 1 +3.3V

2 +3.3V

3 +3.3V

4 +3.3V

5 Gnd

6 Gnd

7 Gnd

8 Gnd

9 Gnd

10 Gnd

P6 - Power-On Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 SHB_RST#

2 Gnd

P9 - Power Good Connector

2 pin single row header, Amp #640456-2

Pin Signal

1 PWRGD

2 Gnd

6620-007 BPX6620-CRA CONNECTORS (CONTINUED)

P10 - I/O Power Connector

20 pin dual row header, Molex #87831-2020

- 1			
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	+5VAUX_IN
17	Gnd	18	+5VAUX_IN
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

 $8\ pin\ dual\ row\ header,\ Molex\ \#702\text{-}46\text{-}0801$

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

 $8~\mathrm{pin}$ dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin shielded RJ-45 connector, Molex #85508-0001

<u>Pin</u>	<u>Signal</u>
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-
7	TRP4+

TRP4-

8

4-75 Trenton Technology Inc.

6620-007 BPX6620-CRA CONNECTORS (CONTINUED)

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin shielded RJ-45 connector, Molex #85508-0001

Pin Signal

- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P19 - System Management Bus Connector

2 pin single row header, Amp #640456-2

Pin Signal

- 1 SMB Clock
- 2 SMB Data

6719-000 BPX6719

The BPX6719 is a PICMG $^{\otimes}$ 1.3 compliant , small form factor, server-class backplane made up of a six-layer .062" thick PCB.

The backplane has one PCI Express® slot which accepts an SHB Express™ system host board (SHB). It also has three PCI Express slots (PCIe1 through PCIe3) which provide the mechanical connections between the PCI Express option cards and the SHB.

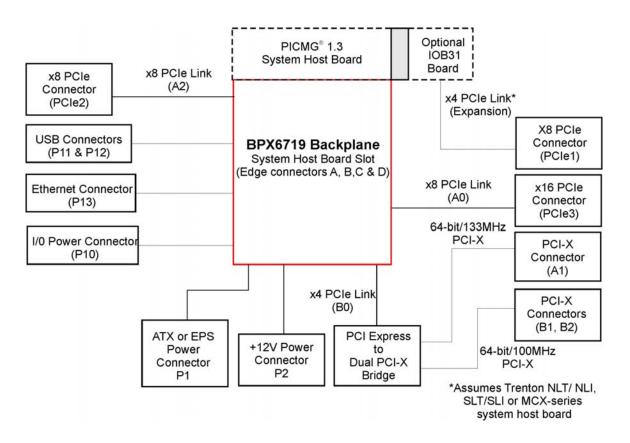
Two PCI Express slots (slots PCIe1 and PCIe2) on the BPX6719 are x8 slots that mechanically support x8, x4 and x1 PCI Express cards. PCI Express option card slot PCIe2 is driven directly by the SHB via a x8 PCI Express link (A2) from the server-class SHB and PCIe1 uses the x4 PCIe link provided by the SHB via a Trenton IOB31 I/O expansion board. The IOB31 is attached to the SHB and connects to the backplane's PCIeS slot.

PCIe3 is a x16 PCI Express mechanical slot that is driven by a x8 PCI Express link (A0) from the SHB. This slot mechanically supports x16, x8, x4 and x1 PCI Express option cards.

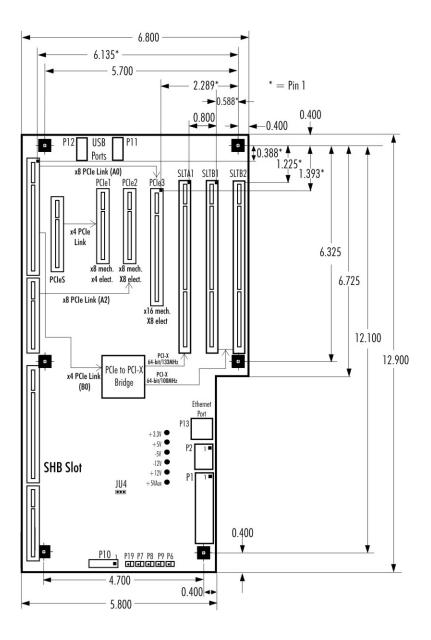
Three PCI-X slots (SLTA1, SLTB1 and SLTB2) on the BPX6719 are connected to the SHB via a x4 PCI Express link (B0) via a PCI Express-to-PCI-X bridge chip. The bridge chip supports SLTA1 with a 64-bit/133MHz PCI-X interface and SLTB1 and SLTB2 with a 64-bit/100MHz PCI-X interface. These slots support PCI-X and universal PCI option cards, (i.e. 5V/3.3V combo or 3.3V only).

The BPX6719 supports the optional Ethernet routing feature of the SHB Express specification and provides one 10/100/1000Base-T Ethernet RJ-45 connectors. It also has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane.

USB and Ethernet functionality on the BPX6719 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of these I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.


The standard BPX6719 backplane is available with a low-profile right-angle power connector suitable for use with either an ATX or EPS power supply. An optional BPX 6719 is available with straight in or vertical power connectors. Using straight-in power connectors may interfere with a full-length option card placed in the SLTB1 slot.

CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.


Models with other power configurations may be available. Contact Trenton Technology for more information.

4-77 Trenton Technology Inc.

6719-000 BPX6719 BLOCK DIAGRAM

6719-000 BPX6719 DIMENSIONAL DRAWING

4-79 Trenton Technology Inc.

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

<u>Jumper</u>

Description

JU4

+5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

6719-007

BPX6719 CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin right angle dual row, Molex #39-30-1240

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

6719-007 BPX6719 CONNECTORS (CONTINUED)

P2 - +12V Power Connector

8 pin right angle dual row, Molex #39-30-0080

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P6 - Power-On Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 PSON#
2 Gnd

P7 - Power Button Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 PWRBT#
2 Gnd

P8 - Reset Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 SHB_RST#
2 Gnd

P9 - Power Good Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 PWRGD
2 Gnd

P10 - I/O Power Connector

20 pin right angle dual row header, Molex #87833-2020

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	5VAUX
17	GND	18	5VAUX
19	GND	20	-12V

4-81 Trenton Technology Inc.

6719-007 BPX6719 CONNECTORS (CONTINUED)

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

 $8~\rm pin$ right angle shielded RJ-45 connector, Molex #43202-8919

<u>Pin</u>	Signal
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-
7	TRP4+
8	TRP4-

P19 - SMBUS Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 SMBUS
2 Gnd

6806-000 BPX6806

The BPX6806 is 20-slot form factor, server-class backplane that provides eighteen (18) PCI Express option card slots. Each card slot has a x16 PCIe mechanical connector and the slots use a variety of x8 and x4 PCI Express links from a server-class System host Board and a Trenton IOB31.

The server-class SHB supplies the x8 PCIe links to the two PCI Express fan-out switch devices that in turn provide the interface between sixteen (16) of the option card slots and the SHB. The remaining two card slots are driven directly by the SHB and by the SHB via a Trenton IOB31 module.

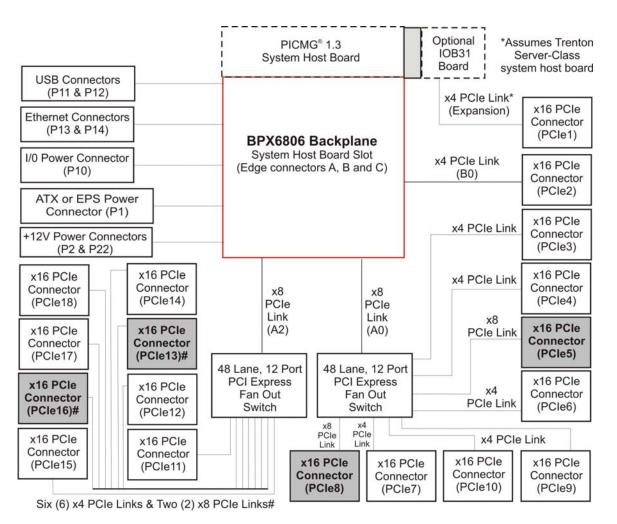
All of the card slots on the BPX6806 are PCI Express, x16 mechanical slots and can support x16, x8, x4 and x1 PCI Express cards. The actual speed of a specific PCI Express connection from the SHB to an option card slot is determined by the SHB's PCI Express link configuration and the auto-negotiation/link training features of PCI Express.

The BPX6806 supports the optional Ethernet routing feature of the SHB Express specification. Two 10/100/1000Base-T Ethernet RJ-45 connectors are available for use on the backplane. It also has two USB 2.0 headers which are capable of supporting up to four USB 2.0 ports on the backplane.

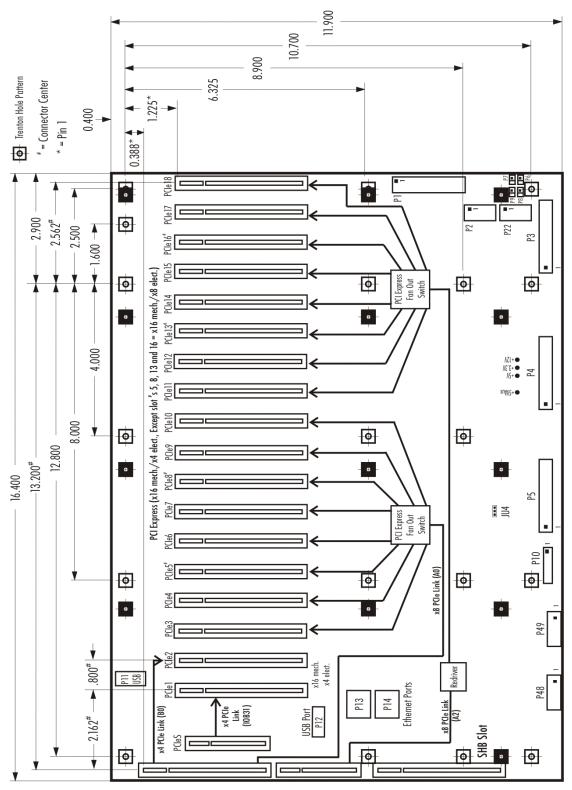
USB and Ethernet functionality on the BPX6806 is dependent on the SHB providing I/O capability to edge connector C of the backplane. In order to take advantage of these I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Computer Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.

The standard BPX6806 backplane is available with a vertical ATX/EPS power connector and two auxiliary 12VDC vertical power connectors suitable for use with either an ATX or EPS power supply. Additional high-current terminal blocks and right-angle power connectors are also available.

Each PCI Express option card slot on the backplane supports a maximum 75W of power as defined in revision 1.1 of the PCI Express Base Specification. The Trenton SHB and a x16 option card plugged into a backplane slot will auto-negotiate to ensure data communication between the SHB and the card, but care must taken to ensure that adequate card slot power is available when using a backplane slot to support a x16 card.


The following table illustrates the maximum current delivery possible with each available BPX6806 power connector configuration.

connector configuration.				
Connector Configuration	3.3V Total	5V Total	GND Total	12V Total
	Current	Current	Current	Current
	Delivery (A)	Delivery (A)	Delivery (A)	Delivery (A)
-001 (P1, P2, P22)	24	30	96	60
-002 (P48, P49)	120	0	150	30
-003 (P1, P2, P22, P48, P49)	144	30	246	90
-004 (P1, P2, P22, P3, P4, P5)	136	50	396	200


CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

4-83 Trenton Technology Inc.

6806-000 BPX6806 BLOCK DIAGRAM

6806-000 BPX6806 DIMENSIONAL DRAWING

4-85 Trenton Technology Inc.

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

<u>Jumper</u>

Description

JU4

+5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

6806-001

BPX6806 CONN

CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin vertical dual row, Molex #44206-002

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin vertical dual row, Molex #44206-0005

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	8	+12V
2	Gnd	7	+12V
3	Gnd	6	+12V
4	Gnd	5	+12V

P6 - Power-On Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

1 PSON#

2 Gnd

P7 - Power Button Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

1 PWRBT#

2 Gnd

P8 - Reset Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

1 SHB_RST#

2 Gnd

P9 - Power Good Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

1 PWRGD

2 +5V

P10 - I/O Power Connector

20 pin vertical dual row header, Molex #87831-2020

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	5VAUX
17	Gnd	18	5VAUX
19	Gnd	20	-12V

4-87 Trenton Technology Inc.

P11 -Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 -Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 -10/100/1000Base-T Ethernet Connector - LAN 0

8 pin right angle shielded RJ-45 connector, Molex #43860-0025

o pm	115111 41151
<u>Pin</u>	<u>Signal</u>
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-

- TRP2-
- 7 TRP4+
- 8 TRP4-

P14 -10/100/1000Base-T Ethernet Connector - LAN 1

8 pin right angle shielded RJ-45 connector, Molex #43860-0025

Pin	<u>Signal</u>
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-

7 TRP4+

TRP4-

P22 - +12V Power Connector

8 pin vertical dual row, Molex #44206-0005

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	8	+12V
2	Gnd	7	+12V
3	Gnd	6	+12V
4	Gnd	5	+12V

4-89 Trenton Technology Inc.

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P6 - Power-On Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

- 1 PSON#
- 2 Gnd

P7 - Power Button Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

- 1 PWRBT#
- 2 Gnd

P8 - Reset Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

- 1 SHB_RST#
- 2 Gnd

P9 - Power Good Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

- 1 PWRGD
- 2 +5V

P10 - I/O Power Connector

20 pin vertical dual row header, Molex #87831-2020

- v r-	ii verticul dunii 10 m ileno	 ,	• · · · · · · · · · · · · · · · · · · ·
Pin Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	5VAUX
17	Gnd	18	5VAUX
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin right angle shielded RJ-45 connector, Molex #43860-0025

o pm	ingin angi
<u>Pin</u>	<u>Signal</u>
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-

7 TRP4+ 8 TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin right angle shielded RJ-45 connector, Molex #43860-0025

Pin	<u>Signal</u>
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-
7	TRP4+

TRP4-

8

4-91 Trenton Technology Inc.

DC Return Extended-Current Connector 5 pin right angle, Amp# 193839-4 P48 -

Pin Signal Gnd 1 2 Gnd 3 Gnd

5 Gnd

Gnd

4

P49 **DC Extended-Current Connector**

5 pin right angle, Amp# 193839-4

<u>Pin</u> Signal 1 +3.3V 2 +3.3V3 +3.3V4 +3.3V5 +12V

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin vertical dual row, Molex #44206-002

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin vertical dual row, Molex #44206-0005

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	8	+12V
2	Gnd	7	+12V
3	Gnd	6	+12V
4	Gnd	5	$\pm 12V$

P6 - Power-On Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal
1 PSON#
2 Gnd

P7 - Power Button Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal
1 PWRBT#
2 Gnd

P8 - Reset Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal
1 SHB_RST#

2 Gnd

4-93 Trenton Technology Inc.

P9 - Power Good Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

1 PWRGD

2 +5V

P10 - I/O Power Connector

20 pin vertical dual row header, Molex #87831-2020

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	5VAUX
17	Gnd	18	5VAUX
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin right angle shielded RJ-45 connector, Molex #43860-0025

Pin Signal

- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin right angle shielded RJ-45 connector, Molex #43860-0025

Pin Signal

- 1 TRP1+
- 2 TRP1-
- 3 TRP2+
- 4 TRP3+
- 5 TRP3-
- 6 TRP2-
- 7 TRP4+
- 8 TRP4-

P22 - +12V Power Connector

8 pin vertical dual row, Molex #44206-0005

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	8	+12V
2	Gnd	7	+12V
3	Gnd	6	+12V
4	Gnd	5	+12V

P48 - DC Return Extended-Current Connector

5 pin right angle, Amp# 193839-4

Pin Signal

- 1 Gnd
- 2 Gnd
- 3 Gnd
- 4 Gnd
- 5 Gnd

4-95 Trenton Technology Inc.

P49 - DC Extended-Current Connector

5 pin right angle, Amp# 193839-4

 Pin
 Signal

 1
 +3.3V

 2
 +3.3V

 3
 +3.3V

 4
 +3.3V

 5
 +12V

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin vertical dual row, Molex #44206-002

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2 - +12V Power Connector

8 pin vertical dual row, Molex #44206-0005

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	8	+12V
2	Gnd	7	+12V
3	Gnd	6	+12V
4	Gnd	5	+12V

P3 - Terminal Block Connector

10 position terminal block, Amp $\#1\mbox{-}796949\mbox{-}0$

20 Amps per circuit

P ₁ n	Signa
1	+3.3V
2	+3.31
3	+3.31
4	+3.31
5	+3.31
6	Gnd
7	Gnd
8	Gnd
9	Gnd
10	Gnd

4-97 Trenton Technology Inc.

4-98

6806-004 BPX6806 CONNECTORS (CONTINUED)

P4 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0 20 Amps per circuit

Pin Signal 1 +12V 2 +12V 3 +5V 4 +3.3V 5 +3.3V

6 Gnd 7 Gnd

8 Gnd

9 Gnd

10 Gnd

P5 - Terminal Block Connector

10 position terminal block, Amp #1-796949-0

20 Amps per circuit

<u>Pin</u> Signal 1 +12V2 +12V3 +12V 4 +12V5 +12V6 Gnd 7 Gnd 8 Gnd 9 Gnd

Gnd

P6 - Power-On Connector

10

2 pin vertical single row header, Amp #640456-2

Pin Signal
1 PSON#
2 Gnd

P7 - Power Button Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal
1 PWRBT#
2 Gnd

P8 - Reset Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal
1 SHB_RST#
2 Gnd

P9 - Power Good Connector

2 pin vertical single row header, Amp #640456-2

Pin Signal

1 PWRGD

2 +5V

P10 - I/O Power Connector

20 pin vertical dual row header, Molex #87831-2020

- · r -		,	
Pin	Signal	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	5VAUX
17	Gnd	18	5VAUX
19	Gnd	20	-12V

P11 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1

P12 - Universal Serial Bus (USB) Connector

8 pin dual row header, Molex #702-46-0801

(+5V fused with self-resetting fuses)

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3

4-99 Trenton Technology Inc.

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0

8 pin right angle shielded RJ-45 connector, Molex #43860-0025

 Pin
 Signal

 1
 TRP1+

 2
 TRP1

3 TRP2+

4 TRP3+

5 TRP3-

6 TRP2-

7 TRP4+

8 TRP4-

P14 - 10/100/1000Base-T Ethernet Connector - LAN 1

8 pin right angle shielded RJ-45 connector, Molex #43860-0025

Pin Signal
1 TRP1+
2 TRP13 TRP2+
4 TRP3+
5 TRP36 TRP2-

7 TRP4+

8 TRP4-

o ma

P22 - +12V Power Connector

8 pin vertical dual row, Molex #44206-0005

Pin Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	8	+12V
2	Gnd	7	+12V
3	Gnd	6	+12V
4	Gnd	5	+12V

Chapter 5 - Multiple SHB Segment Backplanes

6605-000 BP6FS6605

The BP6FS6605 is a six-segment, PICMG-compatible backplane which is a six-layer .080" thick PCB. The six SHB segments are flexible enough to be ordered in either a graphics-class or server-class configuration. It is PICMG[®] 1.3 compliant and supports Trenton and PICMG[®] 1.3 20-slot mounting hole patterns.

In a graphics-class configuration of the BP6FS6605, the SHB slot in each backplane segment supports a graphics-class PICMG 1.3 system host board such as Trenton's TML. Each graphics-class SHB segment supports the segment's x16 PCI Express (PCIe) mechanical slot with a x16 PCIe electrical link from the SHB. There is one x16 PCIe mechanical slot for each SHB segment: PCIe1-2, PCIe2-2, PCIe3-2, PCIe4-1, PCIe5-1 and PCIe6-1.

In a server-class configuration of the BP6FS6605, the SHB slot in each backplane segment supports server-class PICMG 1.3 system host boards such as the Trenton SLT or SLI. Each server-class SHB segment supports the x16 PCI Express (PCIe) mechanical slot with a x8 PCIe electrical link from the SHB.

SHB segments A1, A2 and A3 also feature a x8 PCIe mechanical slot. These slots are labeled PCIe1-1, PCIe2-1 and PCIe3-1 and are driven by an SHB's x4 PCI Express link in both graphics-class and server-class configurations of the backplane.

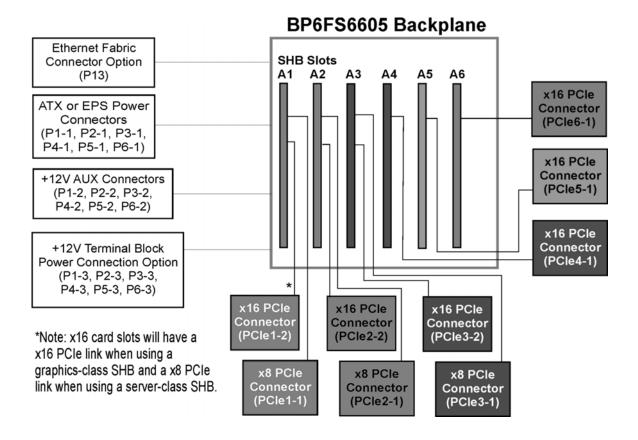
Trenton's BP6FS6605 backplane is available with an optional Ethernet fabric to enable the SHBs in each segment to share data and communicate information to and from the system host via the backplane's Ethernet hub port. The backplane's optional Ethernet hub switch makes this functionality possible. The Ethernet hub switch controls the SHB-to-SHB communication and the SHB's communication to the host system via the 10/100Base-T Ethernet port interface. This optional backplane capability requires that the SHB support the optional Ethernet interface routing to SHB edge connector C as defined in the PICMG 1.3 or SHB Express specification. The Ethernet fabric on the BP6FS6605 backplane enables many system advantages in applications that require cluster computing.

Each backplane segment provides soft control power circuitry to control the power-up and power-down sequences of each SHB segment. Connecting an independent power source to each segment maximizes the power control aspect of each backplane segment. The BP6FS6605 backplane allows segments to be powered individually or grouped together for the purpose of being powered by a single power source. Care must be used when grouping segments together to ensure that adequate power is provided and the desired power sequences are controlled.

The BP6FS6605 backplane supports two backplane connector option types: ATX/EPS and terminal blocks.

In the ATX/EPS configuration, each SHB segment is usually powered by a separate ATX or EPS power supply. A 24-pin vertical power connector in each SHB segment provides the interface to the segment's power supply. Each segment also includes a +12V auxiliary power connector for routing the auxiliary power directly to the SHB's edge connectors. This new capability of PICMG 1.3 compliant SHBs and backplanes eliminates the need for auxiliary power connections on the system host board. The BP6FS6605 backplane power connectors used in the standalone configuration are suitable for use with either an ATX or EPS power supply.

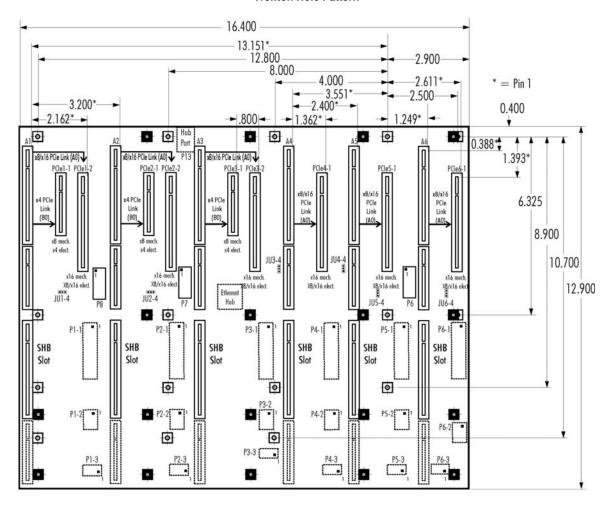
The terminal block connectors enable each SHB segment or multiple segments to be powered by a +12V power source. The voltage regulator circuits in each SHB segment provide all of the required voltage levels for the SHB and option card slots. Using the terminal blocks is the recommended method for grouping together segments in order to drive multiple segments with a common power supply. (Note:


5-1 Trenton Technology Inc.

grouping segments with the standard ATX/EPS power connectors is also allowed, but Trenton recommends using the terminal blocks for this type of multiple SHB segment power connection.) Each segment's four-position terminal block provides additional power capacity and up to 80 Amps of +12V.

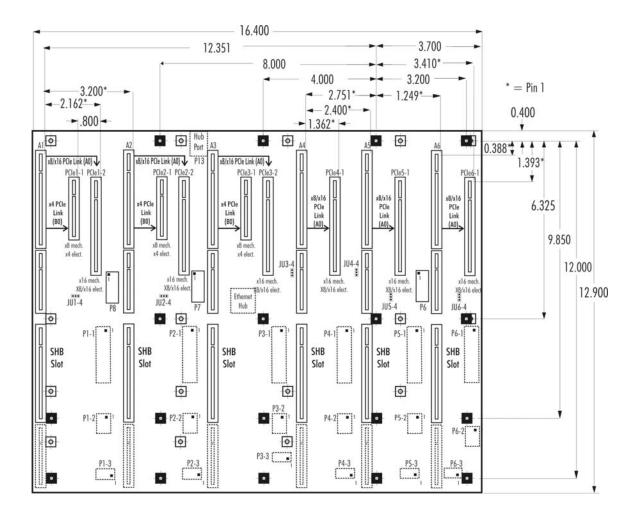
CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

Models with other power configurations may be available. Contact Trenton Technology for more information.


6605-000 BP6FS66055 BLOCK DIAGRAM

5-3 Trenton Technology Inc.

6605-000 BP6FS6605 DIMENSIONAL DRAWING


Trenton Hole Pattern

Note: Connectors and components on the layout drawings shown in dotted lines may or may not be populated on your specific model of the BP6FS66005 backplane. Refer to Backplane Configuration Table.

6605-000 BP6FS6605 DIMENSIONAL DRAWING

PICMG 1.3 Hole Pattern

Note: Connectors and components on the layout drawings shown in dotted lines may or may not be populated on your specific model of the BP6FS66005 backplane. Refer to Backplane Configuration Table.

5-5 Trenton Technology Inc.

6605-000 BP6FS6605 BACKPLANE CONFIGURATION TABLE

	05-000 BP6F3 Model Name &	SHB	LANE CONFIGU		±10V Tomain al	Ethomat	Ethomat
Model#	Type	Connector D	ATX/EPS Connectors P1-1 P2-1 P3-1 P4-1 P5-1 P6-1	+12V Aux Connectors P1-2 P2-2 P3-2 P4-2 P5-2 P6-2	+12V Terminal Blocks P1-3 P2-3 P3-3 P4-3 P5-3 P6-3	Hub	Ethernet Hub Port P13
6605-005	BP6FS6605- SCSV, Server- class, Standalone, Vertical ATX/EPS connectors	No	Yes	Yes	No	No	No
6605-016	BP6FS6605- SCST, Server- class, Standalone, Terminal Block connectors	No	No	No	Yes	No	No
6605-025	BP6FS6605- SCEV, Server- class, Ethernet, Vertical ATX/EPS connectors	No	Yes	Yes	No	Yes*	Yes*
6605-036	BP6FS6605- SCET, Server- class, Ethernet, Terminal Block connectors	No	No	No	Yes	Yes*	Yes*
6605-105	BP6FS6605- GCSV, Graphics- class, Standalone, Vertical ATX/EPS connectors	Yes	Yes	Yes	No	No	No
6605-116	BP6FS6605- GCST, Graphics- class, Standalone, Terminal Block connectors	Yes	No	No	Yes	No	No
6605-125	BP6FS6605- GCEV,Graphics- class, Ethernet, Vertical ATX/EPS connectors	Yes	Yes	Yes	No	Yes	Yes
6605-136	BP6FS6605- GCET, Graphics-class, Ethernet, Terminal Block connectors	Yes	No	No	Yes	Yes	Yes

^{*}TRENTON SLT/SLI SYSTEM HOST BOARDS DO NOT SUPPORT THIS FUNCTION ON THE BACKPLANE

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post) in SHB segments 1 and 2, "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the SHB's I/O plate(s) at the top end of the backplane.

NOTE: For the two-position jumper (3-post) in SHB segments 3, 4, 5 and 6, "TOP" and "BOTTOM" refer to positioning when the backplane is viewed with the SHB's I/O plate(s) at the top end of the backplane.

<u>Jumper</u> <u>Description</u>

JU4, 1-2 +5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies. *

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies.

JU4, 3-6 +5V Auxiliary Voltage

Install on the TOP if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies. *

Install on the BOTTOM if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies.

5-7 Trenton Technology Inc.

6605-000 BP6FS6605 CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1, 1-6 - EPS Power Connector

24 pin vertical dual row, Molex #44206-0007

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

P2, 1-6 - +12V Power Connector

8 pin vertical dual row, Molex #44206-0005

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P3, 1-6 - Terminal Block Connector

4 position terminal block, AMP, #796949-4

20 Amps per circuit

Pin	Signal
1	+12V
2	+12V
3	Gnd
4	Gnd

P6 - Power-On Connector

14 pin dual row connector, 3M, #N2514-6002RB

Pin Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	PSON# - 1	2	Gnd - 1
3	PSON# - 2	4	Gnd - 2
5	PSON# - 3	6	Gnd - 3
7	PSON# - 4	8	Gnd - 4
9	PSON# - 5	10	Gnd - 5
11	PSON# - 6	12	Gnd - 6
13	NC	14	NC

6605-000 BP6FS6605 **CONNECTORS (CONTINUED)**

P7 -**Power Button Connector**

14 pin dual row connector, 3M, #N2514-6002RB

Pin	<u>Signal</u>	Pin	Signal
1	PWRBT# - 1	2	Gnd - 1
3	PWRBT# - 2	4	Gnd - 2
5	PWRBT# - 3	6	Gnd - 3
7	PWRBT# - 4	8	Gnd - 4
9	PWRBT# - 5	10	Gnd - 5
11	PWRBT# - 6	12	Gnd - 6
13	NC	14	NC

P8 -**Reset Connector**

14 pin dual row connector, 3M, #N2514-6002RB

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	SHB_RST# - 1	2	Gnd - 1
3	SHB_RST# - 2	4	Gnd - 2
5	SHB_RST# - 3	6	Gnd - 3
7	SHB_RST# - 4	8	Gnd - 4
9	SHB_RST# - 5	10	Gnd - 5
11	SHB_RST# - 6	12	Gnd - 6
13	NC	14	NC

P13 -10/100 Base-T Ethernet Connector – Backplane Hub Port

8 pin right angle shielded RJ-45 connector, Pulse, #J0035D21BNL

	0
<u>Pin</u>	<u>Signal</u>
1	RXD-

² RXD+

TXD+

³ **RCI**

⁴ RC

⁵ TC

⁶ TCI

⁷ TXD-

6890-000 BP4FS6890

The BP4FS6890 is a four-segment PICMG 1.3 backplane built on a .080" thick PCB. The four SHB segments may be factory configured to support PICMG 1.3 graphics or server-class system implementations. This 20-slot form factor backplane is fully compliant with the PICMG 1.3 (SHB Express®) specification and supports both the Trenton and PICMG 1.3 mounting hole patterns.

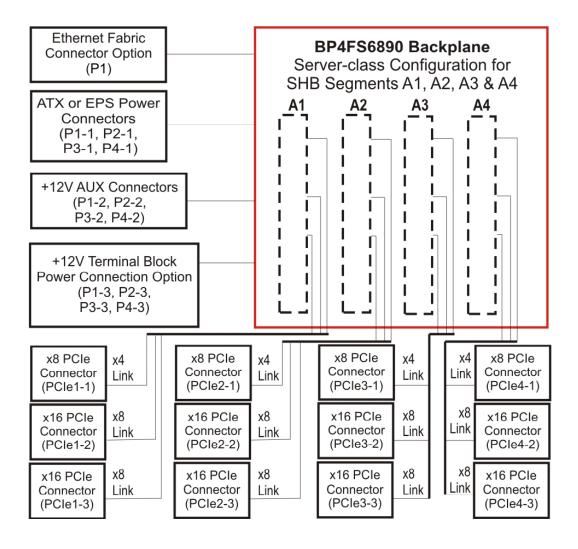
In a server-class configuration of the BP4FS6890, the SHB slot in each backplane segment supports server-class PICMG 1.3 system host boards such as the Trenton MCXT, MCXT-E, MCXI, SLT, SLI, NLT or NLI. Each server-class SHB segment supports two x16 PCI Express (PCIe) mechanical slots with x8 PCIe electrical links directly from the segment's single board computer. These option card slots are numbered: PCIe1-2, PCIe2-2, PCIe3-2, PCIe4-2, PCIe1-3, PCIe2-3, PCIe3-3 and PCIe4-3. SHB option card slot positions PCIe1-1, PCIe2-1, PCIe3-1 and PCIe4-1 are x8 PCIe mechanical card slots and each slot is driven with a x4 PCIe electrical link.

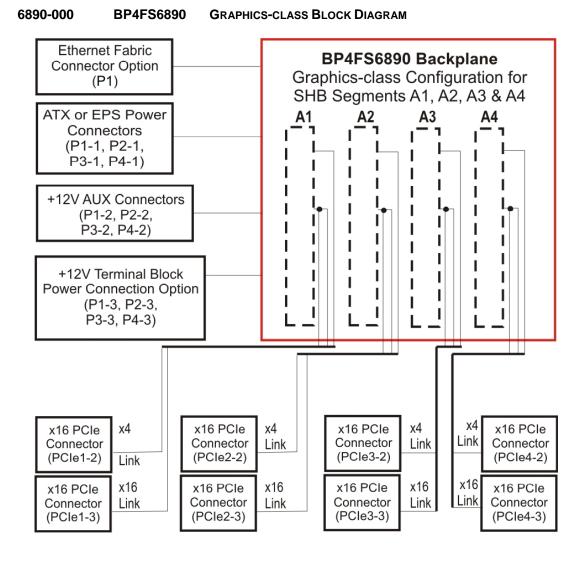
In a graphics-class configuration of the BP4FS6890 the SHB slot in each backplane segment supports a graphics-class PICMG 1.3 system host board such as Trenton's TQ9, MCGT, MCGT-E, MCGI, TML or T4L. Each graphics-class SHB segment supports the x16 PCI Express (PCIe) mechanical slot that is farthest from the segment's SHB slot with a x16 PCIe electrical link. In each SHB segment, the x16 PCIe mechanical slot with the x16 electrical link directly from the single board computer is numbered: PCIe1-3, PCIe2-3, PCIe3-3 or PCIe4-3. The x16 mechanical slot that is closest to a segment's SHB is numbered PCIe1-2, PCIe2-2, PCIe3-2 or PCIe4-2, and this card slot is driven with a x4 PCIe link from the single board computer. SHB option card slot locations PCIe1-1, PCIe2-1, PCIe3-1 and PCIe4-1 are silk screened on the backplane, but are blank connector positions in the BP4FS6890 graphic-class backplane configuration.

Trenton's BP4FS6890 backplane is available with an optional Ethernet fabric to enable the SHBs in each segment to share data and communicate information to and from the system host via the backplane's Ethernet hub port. The backplane's optional Ethernet hub switch makes this functionality possible. The Ethernet hub switch controls the SHB-to-SHB communication and the SHB's communication to the host system via the backplane's 10/100/1000Base-T Ethernet port. This optional backplane capability requires that the SHBs support the optional Ethernet interface routing to SHB edge connector C as defined in the PICMG 1.3 or SHB Express specification. The Ethernet fabric on the BP4FS6890 backplane enables many system advantages in applications that require cluster computing.

The BP4FS6890 backplane supports two backplane power connector options: ATX/EPS or terminal blocks.

In the ATX/EPS configuration, each SHB segment is usually powered by a separate ATX or EPS power supply. A 24-pin right-angle power connector in each SHB segment provides the interface to the segment's power supply. Each segment also includes an eight-position, +12V AUX, right-angle power connector for routing the auxiliary power directly to the SHB's edge connectors. This feature of PICMG 1.3 compliant SHBs and backplanes eliminates the need for auxiliary power connections on the system host board. The BP4FS6809 backplane power connectors used in the standalone configuration are suitable for use with either an ATX or EPS power supply.

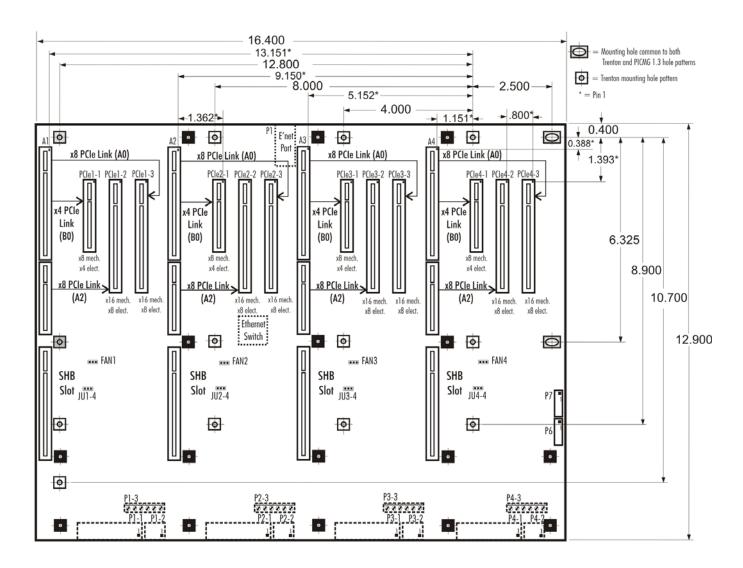

The six-position terminal block connector option enables each SHB segment or multiple segments to be powered by a +12V power source. The voltage regulator circuits in each SHB segment provides all of the required voltage levels for the SHB and option card slots. Using the terminal blocks is the recommended method for grouping together segments with a common power supply. (Note: grouping segments with the standard ATX/EPS power connectors is allowed, but Trenton recommends using the terminal blocks for this type of multiple SHB segment power connection.)


CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

Models with other power configurations may be available. Contact Trenton Technology for more information.

5-11 Trenton Technology Inc.

6890-000 BP4FS6890 SERVER-CLASS BLOCK DIAGRAM



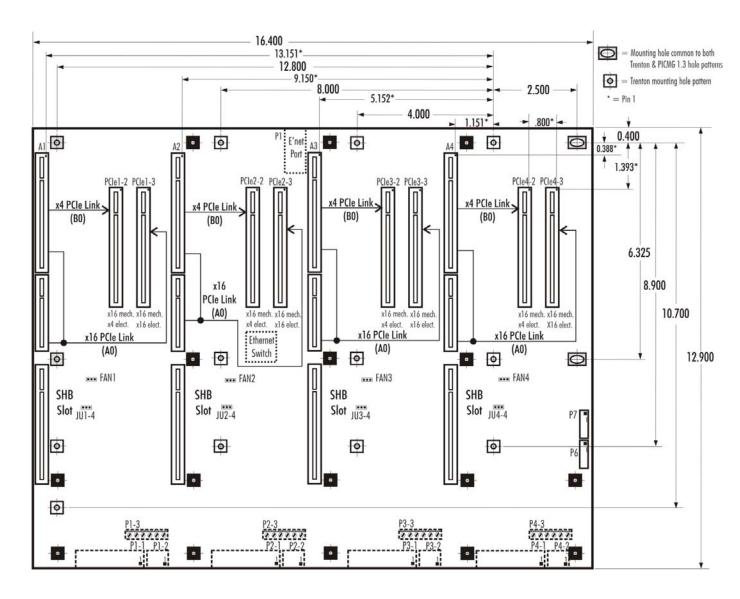
5-13 Trenton Technology Inc.

6890-000 BP4FS6890 DIMENSIONAL-DRAWING - SERVER-CLASS CONFIGURATION

Trenton Hole Pattern

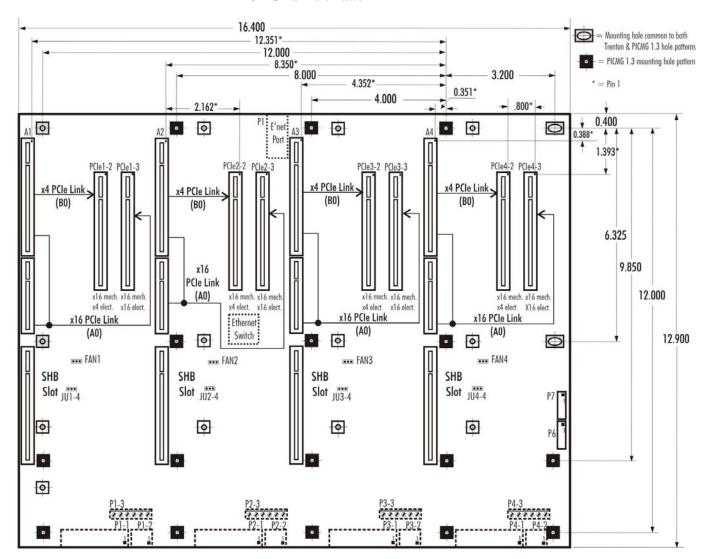
PICMG 1.3 Hole Pattern 16.400 12.351* Mounting hole common to both Trenton & PICMG 1.3 hole patterns 12.000 8.350* = Trenton mounting hole pattern 8.000 3.200 4.352* 0.351* 4.000 → .800* → P1 E'net A3 0.400 A2 - 0 -0 0 0 0 0 0.388* Port : x8 PCle Link (A0) x8 PCIe Link (A0) x8 PCle Link (A0) x8 PCle Link (A0) 1.393 PCle1-1 PCle1-2 PCle1-3 PCle2-1 PCle2-2 PCle2-3 PCle4-1 PCle4-2 PCle4-3 PCle3-1 PCle3-2 PCle3-3 4 PCle x4 PCle Link Link Link Link (B0)(B0) (B0) (B0) 6.325 9.850 (A2)12.000 x16 mech. (A2) x16 mech. x16 mech (A2)(A2)x16 mech. x16 mech. x16 mech. x16 mech x16 mech. x8 elect. Ethernet 0 12.900 0 0 0 0 FAN1 FAN2 FAN3 FAN4 SHB SHB SHB SHB Slot JU1-4 Slot JU3-4 Slot JU2-4 Slot JU4-4 0 0 0 0 0

6890-000 BP4FS6890 DIMENSIONAL-DRAWING – SERVER-CLASS CONFIGURATION


Notes:

- Dotted lines indicate connectors and other components that are populated based on model name and number. Refer to Backplane Configuration Table
- Typical PCIe connector centers are 0.049" from pin 1
- Mounting holes have a nominal 0.156" diameter
- Nominal PCB thickness: 0.080"
- All dimensions are inches.
- Suggested Trenton server-class PICMG 1.3 SHBs for use with the server-class BP4FS6890 backplane models:
 - o Dual-processor SHBs: MCXT, MCXT-E, SLT and NLT
 - o Single-processor SHBs: MCXI, SLI and NLI
 - o Use MCX-series SHB if the backplane Ethernet fabric option is needed

5-15 Trenton Technology Inc.


6890-000 BP4FS6890 DIMENSIONAL-DRAWING – GRAPHICS-CLASS CONFIGURATION

Trenton Hole Pattern

6890-000 BP4FS6890 DIMENSIONAL-DRAWING – GRAPHICS-CLASS CONFIGURATION

PICMG 1.3 Hole Pattern

Notes:

- Dotted lines indicate connectors and other components that are populated based on model name and number. Refer to Backplane Configuration Table
- Typical PCIe connector centers are 0.049" from pin 1
- Mounting holes have a nominal 0.156" diameter
- Nominal PCB thickness: 0.080"
- All dimensions are inches.
- Suggested Trenton graphics-class PICMG 1.3 SHBs for use with the server-class BP4FS6890 backplane models:
 - o Dual-processor SHBs: MCGT, MCGT-E
 - o Single-processor SHBs: MCGI, TQ9, TML and T4L
 - All Trenton graphics-class SHBs may be used if the backplane Ethernet fabric option is needed

5-17 Trenton Technology Inc.

6890-000 BP4FS6890 BACKPLANE CONFIGURATION TABLE

The BP4FS6890 four-segment PICMG 1.3 backplane can be factory-configured to operate with either PICMG 1.3 Graphics- or Server-class system host boards (SHBs). The model number column in the table below indicates the backplane's specific configuration. Server-class configurations must be matched to server-class SHBs and graphics-class configurations must be matched with graphics-class SHBs for optimum system performance.

Model#	Model Name &	SHB	ATX/EPS	+12V Aux	+12V Terminal	Ethernet	PCIe
	Type	Connector	Connectors P1-1	Connectors	Blocks P1-3	Hub and	slots per
		D	P2-1 P3-1 P4-1	P1-2 P2-2	P2-3 P3-3 P4-3	Port P1	SHB
				P3-2 P4-2			segment
6890-005	BP4FS6890-SCSR,	No	Yes	Yes	No	No	2 - x16
	Server-class,						mech. / x8
	Standalone, Right-						elect.
	angle ATX/EPS						1 - x8
	power connectors						mech. / x4
							elect.
6890-016	BP4FS6890-SCST,	No	No	No	Yes	No	2 - x16
	Server-class,						mech. / x8
	Standalone,						elect.
	Terminal Block						1 - x8
	connectors						mech. / x4
6000.025	DD4EC4000 CCED	NT	37	N/	NI	Yes*	elect. 2 – x16
6890-025	BP4FS6890-SCER,	No	Yes	Yes	No	Y es ⁺	2 – x16 mech. / x8
	Server-class, Ethernet, Right-						elect.
	angle ATX/EPS						1 – x8
	power connectors						mech. / x4
	power connectors						elect.
6890-036	BP4FS6890-SCET,	No	No	No	Yes	Yes*	2 - x16
	Server-class,						mech. / x8
	Ethernet, Terminal						elect.
	Block connectors						1 - x8
							mech. / x4
							elect.
6890-105	BP4FS6890-	No	Yes	Yes	No	No	2 - x16
	GC1SR, Graphics-						mech 1
	class, Standalone,						x16 elect.
	Right-angle						& 1 x4
	ATX/EPS power						elect.
6890-116	connectors BP4FS6890-	No	No	No	Yes	No	2 – x16
6890-116	GC1ST, Graphics-	No	No	No	Yes	No	2 – x16 mech 1
	class, Standalone,						x16 elect.
	Terminal Block						& 1 x4
	connectors						elect.
6890-125	BP4FS6890-	No	Yes	Yes	No	Yes	2 – x16
	GC1ER, Graphics-						mech 1
	class, Ethernet,						x16 elect.
	Right-angle						& 1 x4
	ATX/EPS power						elect.
	connectors						
6890-136	BP4FS6890-	No	No	No	Yes	Yes	2 - x16
	GC1ET, Graphics-						mech 1
	class, Ethernet,						x16 elect.
	Terminal Block						& 1 x4
	connectors	l					elect.

^{*}Trenton SLT/SLI and NLT/NLI system host boards do not support the Ethernet function on the backplane

CONFIGURATION JUMPERS

The setup of each SHB segment's configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post) in SHB segments, "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the SHB's I/O plate(s) at the top end of the backplane.

NOTE: JU4, 1-2 indicates the JU4 jumper in SHB segments one and two while JU4, 3-6 means the JU4 jumper in SHB segment three, four, five and six.

<u>Jumper</u> <u>I</u> <u>JU1-4</u>, <u>JU2-4</u>, + <u>JU3-4</u>, <u>JU4-4</u>

Description

JU1-4, JU2-4, +5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies. *

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies.

5-19 Trenton Technology Inc.

6890-000 **BP4FS6890 CONNECTORS**

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1-1, P2-1 **EPS Power Connector** P3-1, P4-1 24 pin vertical dual row, Molex #44206-0007 Pin Signal Pin Signal 1 +3.3V13 +3.3V2 +3.3V14 -12V 3 Gnd 15 Gnd 4 +5V16 PSON# 5 Gnd 17 Gnd 6 +5V18 Gnd 7 19 Gnd Gnd 8 **PWRGD** 20 -5V +5VAUX 9 21 +5V10 22 +12V+5V23 11 +12V+5V12 +3.3V24 Gnd P1-2, P2-2 +12V Power Connector P3-2, P4-2 8 pin vertical dual row, Molex #44206-0005 Signal Pin Signal Pin 1 Gnd 5 +12V2 Gnd 6 +12V3 7 Gnd +12VGnd 8 +12VP1-3, P2-3 **Terminal Block Connector** P3-3, P4-3 6 position terminal block, AMP, #796949-4 20 Amps per circuit <u>Pin</u> Signal 1 +12V2 +12V

3 +12V

Gnd

4

5 Gnd

Gnd

P6 PSON and SHB Reset Signal Connector

16 pin dual row connector, 3M, #N2516-6002RB

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	PSON# - 1	2	Gnd - 1
3	PSON# - 2	4	Gnd - 2
5	PSON# - 3	6	Gnd - 3
7	PSON# - 4	8	Gnd - 4
9	SHB_RST - 1	10	Gnd - 1
11	SHB_RST - 2	12	Gnd - 2
13	SHB_RST - 3	14	Gnd - 3
15	SHB_RST - 4	16	Gnd - 4

5-20 Trenton Technology Inc.

6890-000 **BP4FS6890 CONNECTORS (CONTINUED)**

P7 Power Button and Power Good Signal Connector

16 pin dual row connector, 3M, #N2516-6002RB

<u>Pin</u> <u>Signal</u>	<u> </u>	<u>Pin</u>	<u>Signal</u>
1 PWRI	BT# - 1	2	Gnd - 1
3 PWRI	BT# - 2	4	Gnd - 2
5 PWRI	BT# - 3	6	Gnd - 3
7 PWRI	BT# - 4	8	Gnd - 4
9 PWRO	GD - 1	10	Gnd - 1
11 PWR0	GD - 2	12	Gnd - 2
13 PWR0	GD - 3	14	Gnd - 3
15 PWRG	GD - 4	16	Gnd - 4

P1 10/100/1000 - Base-T Ethernet Connector - Backplane Hub Port (OPTIONAL)

8 pin right angle shielded RJ-45 connector, Pulse, #J0035D21BNL Pin Signal

P ₁ n	Signal
1	RXD-
2	RXD+
3	RCI
4	RC
5	TC
6	TCI
7	TXD-
8	TXD+

FAN1 **Available System Cooling Fan Power Connector**

FAN2 Standard 3 pin cooling fan power header

FAN3

FAN4

<u>Pin</u>	Signal
1	Gnd
2	+12V
3	NC

5-21 Trenton Technology Inc. This page intentionally left blank.

Chapter 6 - 2U Butterfly Backplanes

6736-000 BPX6736

The BPX6736 is a server-class PICMG-compatible backplane which is a six-layer .062" thick PCB. It supports PICMG[®] 1.3 compliant SHBs and the butterfly form factor is designed for use in 2U chassis.

The backplane has one PCI Express® slot which accepts an SHB Express™ system host board (SHB). It also has four PCI Express slots (PCIe1 through PCIe4) which provide the mechanical connections between the PCI Express option cards and the SHB.

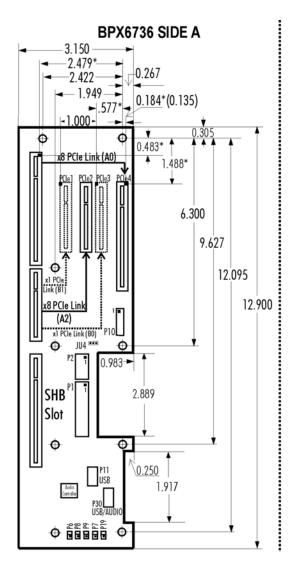
PCIe1 and PCIe3 option card slots are located on side B of the 6736. Side B is opposite the SHB and Side B slots are driven by x1 PCI Express electrical links from a Trenton MCX-series SHB. PCIe2 and PCIe4 are located on Side A of the butterfly backplane and are driven by x8 PCI Express electrical links from a server-class SHB. PCIe4 is a x16 mechanical slot and PCIe2 is a x8 mechanical slot.

The audio controller on the BPX6736 backplane eliminates the need to dedicate an option card slot to a sound card. The USB audio controller supports a variety of speaker, headset and microphone configurations. The USB4 port from the Trenton MCX-series SHB provides the input for the USB audio controller and the USB4 input becomes Audio0 on the BPX6736 backplane.

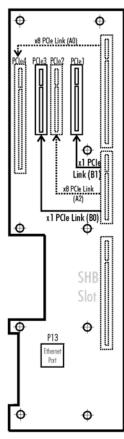
The BPX6736 supports the optional Ethernet routing feature of the SHB Express specification. The Ethernet version of the BPX6736 provides one 10/100/1000Base-T Ethernet RJ-45 connector on side B of the butterfly backplane. This required Ethernet connector location may necessitate a mechanical modification to the chassis in order to facilitate proper backplane mounting within the enclosure. It also has one USB 2.0 header which is capable of supporting up to two USB 2.0 general purpose I/O ports on the backplane.

Audio, USB and Ethernet functionality on the BPX6736 is dependent on the SHB providing the I/O capability to edge connector C of the backplane. In order to take advantage of these optional I/O features, the SHB in the system must be able to support the connections as specified in the PCI Industrial Manufacturers Group's SHB ExpressTM System Host Board PCI Express Specification, PICMG[®] 1.3.

The standard BPX6736 backplane is available with a low-profile right-angle power connector suitable for use with either an ATX or EPS power supply.


CAUTION: In some ATX/EPS systems, the power may appear to be off while the +5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the +5VSB power signal; "green" indicates that the +5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

Models with other power configurations may be available. Contact Trenton Technology for more information.


6-1 Trenton Technology Inc.

System Host Board (SHB)

BLOCK DIAGRAM 6736-000 **BPX6736** PICMG® 1.3 System Host Board x8 PCle x1 PCle Link* **USB** Connector Connector (P11) (B1) (PCle1) **Ethernet Connector** x8 PCle (P13 - Optional) x1 PCle Link* BPX6736 Backplane Connector (B0) (PCle3) System Host Board Slot ATX or EPS Power (Edge connectors A, B and C) Connector (P1) x8 PCle x8 PCle Link Connector +12V Power Connector (A2)(PCle2) (P2) x16 PCle **USB** x8 PCle Link Connector To Speaker/Microphone Audio (A0)USB (PCle4) Interface Connections Port Audio (P30) Controller *Assumes Trenton MCX-series

BPX6736 SIDE B

6-3 Trenton Technology Inc.

CONFIGURATION JUMPER

The setup of the configuration jumper on the backplane is described below. * indicates the default value of the jumper.

NOTE: For the two-position jumper (3-post), "RIGHT" and "LEFT" refer to positioning when the backplane is viewed with the slots at the top end of the backplane.

Jumper

Description

JU4 +5V Auxiliary Voltage

Install on the LEFT if +5V auxiliary voltage is provided by the standard +5V supply. This option is used for systems which do not have either an ATX or EPS standard power input. This mode provides the necessary +5V for the SHB's +5VAUX signal lines. Sleep mode recovery is not supported using non-ATX/EPS power supplies.

Install on the RIGHT if +5V auxiliary voltage is provided by a separate +5VAUX signal input pin. This enables the necessary SHB power signaling and allows recovery from sleep mode. This option is used for ATX or EPS standard power supplies. *

6736-000 E

BPX6736 CONNECTORS

NOTE: Pin 1 on the connectors is indicated by the square pad on the PCB.

P1 - ATX/EPS Power Connector

24 pin right angle dual row, Molex #39-30-1240

		,	
Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Gnd	15	Gnd
4	+5V	16	PSON#
5	Gnd	17	Gnd
6	+5V	18	Gnd
7	Gnd	19	Gnd
8	PWRGD	20	-5V
9	+5VAUX	21	+5V
10	+12V	22	+5V
11	+12V	23	+5V
12	+3.3V	24	Gnd

6736-000 BPX6736 CONNECTORS (CONTINUED)

P2 - +12V Power Connector

8 pin right angle dual row, Molex #39-30-0080

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	5	+12V
2	Gnd	6	+12V
3	Gnd	7	+12V
4	Gnd	8	+12V

P6 - Power-On Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 PSON#
2 Gnd

P7 - Power Button Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal 1 PWRBT# 2 Gnd

P8 - Reset Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 SHB_RST#
2 Gnd

P9 - Power Good Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal
1 PWRGD
2 Gnd

6-5 Trenton Technology Inc.

6736-000 BPX6736 CONNECTORS (CONTINUED)

P10 - I/O Power Connector

 $20~\rm pin$ right angle dual row header, Molex #87833-2020

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Gnd	2	+12V
3	IPMB_DA	4	Gnd
5	IPMB_CL	6	+5V
7	SMDAT	8	+5VAUX
9	SMCLK	10	+3.3V
11	PWRBT#	12	PSON#
13	Gnd	14	SHB_RST#
15	PWRGD	16	5VAUX
17	GND	18	5VAUX
19	GND	20	-12V

P11 - Universal Serial Bus (USB) Connector

10 pin right angle dual row header, 3M, #N2510-5002UB

(+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB0	2	+5V-USB1
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	Gnd-USB0	8	Gnd-USB1
9	Chassis Gnd	10	Chassis Gnd

P13 - 10/100/1000Base-T Ethernet Connector - LAN 0 (Optional)

8 pin right angle shielded RJ-45 connector, Molex #43 $\overline{8}60$ -0025

Pin	Signal
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP3+
5	TRP3-
6	TRP2-
7	TRP4+
8	TRP4-

P19 - SMBUS Connector

2 pin right angle single row header, Molex #22-05-3021

Pin Signal 1 SMBUS

2 Gnd

6736-000 BPX6736 CONNECTORS (CONTINUED)

P30 - Universal Serial Bus (USB) Audio Connector

10 pin right angle dual row header, 3M, #N2510-5002UB

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	LineIn Lt.	2	LineIn Rt.
3	Gnd	4	Gnd
5	Mic P	6	Mic In
7	Gnd	8	Gnd
9	Linout Lt.	10	LineOut Rt.

6-7 Trenton Technology Inc.